Homologies et réseaux de capteurs

L. Decreusefond

MAT4NET

Couverture

- Généralise la notion de graphes
- Constitué d'arêtes, de triangles, de tétrahèdres, ...

Exemple

Complexe de Cech

$$\begin{array}{l} \mbox{Sommets}: \left\{ \mbox{ a, b, c, d, e} \right\} = \mathcal{C}_0 \\ \mbox{Arêtes}: \left\{ \mbox{ab, bc, ca, be, ec, ed} \right\} = \mathcal{C}_1 \\ \mbox{Triangles}: \left\{ \mbox{bec} \right\} = \mathcal{C}_2 \\ \mbox{Tétrahèdre}: \left. \emptyset = \mathcal{C}_3 \end{array}$$

Exemple plus compliqué

Opérateur de bord

Définition

$$\partial_k : C_k \longrightarrow C_{k-1}$$

 $[v_0, \cdots, v_k] \longmapsto \sum_{j=0}^k (-1)^j [v_0, \cdots, \hat{v}_j, \cdots]$

Exemple

$$\partial(bec) = ec - bc + be$$

 $\partial^2(bec) = c - e - (c - b) + e - b = 0$

Théorème

$$\partial_k \partial_{k+1} = 0$$

Conséquence

 ${\sf Im}\,\,\partial_{k+1}\subset{\sf ker}\partial_k$

Définition

$$\beta_k = \dim \ker \partial_k - \operatorname{range} \partial_{k+1}$$

- β_0 : nb de composantes connexes
- β_1 : nb de trous
- β_2 : nb de « vides »
- ...

Exemple

Appel :

$$\mathcal{C}_{0} = \{a, b, c, d, e\}, \ \mathcal{C}_{1} = \{ab, bc, ca, be, ec, ed\}$$
$$\partial_{0} \equiv 0, \ \partial_{1} = \begin{pmatrix} -1 & 0 & 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix}$$

Nb de composantes connexes dim ker $\partial_0 = 5$, range $\partial_1 = 4$ donc $\beta_0 = 1$

Nombre de trous

Rappel :

$$C_1 = \{ab, bc, ca, be, ec, ed\}, C_2 = \{bec\}$$
$$\partial_2 = \begin{pmatrix} 0\\ -1\\ 0\\ 1\\ 1\\ 0 \end{pmatrix}$$

dim ker $\partial_1 = 2$, range $\partial_2 = 1$ donc $\beta_1 = 1$

Caractéristique d'Euler

Définition

$$\chi = \sum_{j=0}^{d} (-1)^{j} \beta_{j} = \sum_{j=0}^{\infty} (-1)^{j} |\mathcal{C}_{k}|$$

Inégalité de Morse

$$-|\mathcal{C}_{k-1}|+|\mathcal{C}_k|-|\mathcal{C}_{k+1}|\leq \beta_k\leq |\mathcal{C}_k|$$

- Algorithme centralisé
- Nécessite de connaître les positions exactes

Complexe de Rips

$$[x_0, \cdots, x_k] \in \mathcal{R}_k(\epsilon) \iff |x_i - x_j| \le \epsilon$$

- Si distance $= l^{\infty}$, $C_k(\epsilon) = \mathcal{R}_k(\epsilon)$
- Pour la distance euclidienne

$$\mathcal{R}_k(\epsilon \; \sqrt{rac{d+1}{2d}}) \subset \mathcal{C}_k(\epsilon) \subset \mathcal{R}_k(2\epsilon)$$

Quelques résultats (D-Ferraz-Randriam-Vergne)

n points, uniformément répartis sur un *d*-tore d'arête *a*

k simplexes

$$\mathbf{E}[|\mathcal{C}_k(n)|] = \binom{n}{k+1}(k+1)^d \left(\frac{2\epsilon}{a}\right)^{dk}$$

Caractéristique d'Euler

$$\mathbf{E}[\chi(n)] = \sum_{k=0}^{n} \binom{n}{k+1} (-1)^{k} (k+1)^{d} \left(\frac{2\epsilon}{a}\right)^{dk}$$

Dimension 5

- Calculs algébriques classiques
- Base « minimale » des e.v. quotients donne les bords des trous

Green networking

Eteindre des capteurs en maintenant la couverture

Hauteur d'une arête

Ordre du plus grand simplexe auquel elle appartient

Indice d'un sommet

Minimum des hauteurs des arêtes adjacentes

Exemple

Homologies et réseaux de capteurs

Complexité (D.-Vergne)

Régime sous-critique

$$\frac{k^{\frac{1+\eta-d}{k-1}}}{n^{\frac{k}{k-1}}} < \theta := \left(\frac{\epsilon_n}{a}\right)^d < \frac{k^{-\frac{1+\eta+d}{k}}}{n^{\frac{k+1}{k}}}$$

alors la hauteur tend vers k quand n tend vers l'infini.

Régime critique Si $n\theta_n \rightarrow 1$ alors

$$(\ln n)^{1-\eta} < \text{hauteur} < \ln n, \quad \forall \eta > 0.$$

Régime sur-critique

Si $n\theta_n \to \infty$ alors hauteur $\sim n\theta_n$.

Rips-Cech (D-Feng-Martins

- Norme euclidienne
- Rayon de couverture R_S
- Rayon de communication R_C

L. Decreusefond, E. Ferraz, H. Randriambololona, and A. Vergne. Simplicial homology of random configurations. *Advances in Applied Probability.*, 2013.

- A. Vergne, L. Decreusefond, and Ph. Martins. Reduction algorithm for simplicial complexes. In *Infocom*, April 2013.
- F. Yan, Ph. Martins, and L. Decreusefond.

Connectivity-based distributed coverage hole detection in wireless sensor networks.

In Globecom'11, Houston, Texas, USA, August 2011.

F. Yan, Ph. Martins, and L. Decreusefond.
Accuracy of homology based approaches for coverage hole detection in wireless sensor networks.
In *ICC 2012*, June 2012.

