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Outline - Road map

Background / Motivations

Spatial discretization optimized in the Fourier space

– Finite differences for spatial derivatives

– Selective filters for removing high-frequency waves

Time integration : optimized Runge-Kutta schemes

Applications

– Acoustic test problem : diffraction by a cylinder

– Navier-Stokes simulations (Large-Eddy Simulations)

Concluding remarks
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Motivations

Development of Computational
AeroAcoustics (CAA)

– direct simulation of sound generation by

solving the unsteady Navier-Stokes equa-

tions for compressible flows

– simulations of long-range propagation

(Linearized Euler Equations)

Key numerical issues in CAA

– disparities in magnitudes and length

scales between flow and acoustics

– turbulent and sound broadband spectra

– far-field propagation

vorticity field of a coaxial jet

sound pressure field
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Motivations

Problem model for wave propagation

– 1-D advection equation :�u�t + �u�x = 0 u(x; 0) = g(x)

– exact solution u(x; t) = g(x� t)
by Fourier-Laplace transform : dispersion relation ! = k

elementary solution : harmonic plane wave Aei(kx�!t)

– numerical approximation : !s = ks
Development of schemes optimized in the Fourier space

– space : Dispersion-Relation-Preserving schemes of Tam & Webb (JCP,

1991), spectral-like schemes of Lele (JCP, 1992)

– time : Runge-Kutta algorithms of Hu et al. (JCP, 1996)4 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey
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Finite di�erenes for spatial derivatives

Explicit finite-difference schemes
�u�x����l ' 1�x nXj=�m aj ul+j -x h h hhhhh xl xl+nxl�mxl = l�x centered m = n upwindm > n

Particular case of the continuous relation:�u�x ' 1�x nXj=�m aj u(x+ j�x)

By Fourier transform:ik^u ' ^u�x nXj=�m ajeijk�x u(x) = F�1 [^u(k)℄ = Z +1�1 ^u(k)eikxdk

Numerical dimensionless wavenumber ks�x = �i nXj=�m ajeijk�x

6 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey



Finite di�erenes for spatial derivatives

Centered schemes (n = m)aj is antisymmetric! ks is real (no dissipation)ks�x = 2 nXj=1 aj sin jk�x
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– high-order schemes : aj are determined by cancelling the Taylor series

formal truncation order O(�x2n)
– low-dispersion schemes : aj are determined by minimizing the error

between the exact and numerical wavenumbers k and ks over a large

wavenumber range kl�x � k�x � ku�x
e.g. in Bogey & Bailly (JCP, 2004), minimization of the integral errorZ �=2�=16 jks�x� k�xj d ln(k�x)k�x7 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey



Finite di�erenes for spatial derivatives

Non-centered schemes (n 6= m)ks has an imaginary part (providing dissipation/amplification)

– approximate solution for the 1-D advection equationu(x; t) = ei[k�Re(ks)℄t| {z }
phase error

� eIm(ks)t| {z }

dissipation
/amplification

� eik(x�t)| {z }

exact
solution

– minimization both of phase error and of dissipation/amplification

e.g. in Berland et al. (JCP, 2006) with the integral errorZ �=2�=16 h(1� �)jk�x�Re(ks�x)j| {z }
dispersion

+ � jIm(ks�x)j| {z }
dissipation

id(k�x)k�x

! low-dispersion and low-dissipation schemes8 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey



Finite di�erenes for spatial derivatives

Numerical wavenumber ks∆x vs. exact wavenumber k∆x
for centered schemes
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12th-order central differences� + � DRP 7-pt Tam & Webb

(1993)��� DRP 15-pt Tam (2003)

11-pt and 13-pt schemes

of Bogey & Bailly (2004)� � � tridiag. 5-pt 6th-order and

compact 8th-order schemes, pen-

tadiag. 4th-order of Lele (1992)� Æ � prefactored 5-pt 4th-order

scheme of Ashcroft & Zhang
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Finite di�erenes for spatial derivatives

Phase-velocity error in terms of points per wavelength
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Finite di�erenes for spatial derivatives

Group-velocity error as a function of the exact wavenumber

propagation of a wave-packet at the group velocityvg = �!�k = �ks�k ! = ks(k)
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Finite di�erenes for spatial derivatives

Accuracy limits

scheme Evϕ ≤ 5 × 10−5 Evg ≤ 5 × 10−4

k∆x|max λ/∆x|min k∆x|max λ/∆x|min kmax∆x kvϕ/kmax

CFD 2nd-order 0.0986 63.7 0.0323 194.6 1.0000 0.10

CFD 4th-order 0.3439 18.3 0.2348 26.8 1.3722 0.25

CFD 6th-order 0.5857 10.7 0.4687 13.4 1.5860 0.37

CFD 8th-order 0.7882 8.0 0.6704 9.4 1.7306 0.46

CFD 10th-order 0.9550 6.6 0.8380 7.5 1.8374 0.52

CFD 12th-order 1.0929 5.7 0.9768 6.4 1.9208 0.57

DRP 7-pts 4th-order 0.4810 13.1 0.3500 18.0 1.6442 0.29

DRP 15-pts 4th-order 1.8069 3.5 1.6070 3.9 2.1914 0.82

OFD 11-pts 4th-order 1.3530 4.6 0.8458 7.4 1.9836 0.68

OFD 13-pts 4th-order 1.3486 4.7 0.7978 7.9 2.1354 0.63

CoFD 6th-order 0.8432 7.5 0.7201 8.7 1.9894 0.42

CoFD 8th-order 1.1077 5.7 0.9855 6.4 2.1334 0.52

CoFD opt. 4th-order 2.4721 7.3 0.7455 8.4 2.6348 0.33

Opt. pre. 4th-order 0.7210 8.7 0.0471 133.3 2.3294 0.3112 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey



Seletive spatial �ltering

Need for spatial filtering

– grid-to-grid oscillations are not resolved by F-D schemes according to

the Nyquist-Shannon theorem

– the highest wave-numbers, poorly resolved by F-D, must be removed

without affecting the long (physical) waves accurately discretized

k∆x = π/4 k ∆x = π/2 k ∆x = π

λ/ ∆x = 8 λ/ ∆x = 4 λ/ ∆x = 2

Explicit discrete filtering (Æ � Æ Æ Æ)uf(xi) = u(xi)� nXj=�m dju(xi + j�x)
transfer function in the Fourier space Gk(k�x) = 1� nXj=�m djeijk�x13 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey



Seletive spatial �ltering

Requirements on the transfer function

– stability : jGk(k�x)j < 1
– removal of grid-to-grid oscillations : Gk(�) = 0

– normalization : Gk(0) = 1
Centered filters! Gk is real (no dispersion) (see fig.)

Non-centered filters! Gk has an imaginary part (phase error)

Optimized filtering

by choosing dj minimizing an integral error
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Seletive spatial �ltering

Transfer function 1�Gk of centered filters
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Time integration

Explicit Runge-Kutta schemes

differential equation

�un�t = F (un; t) un(x) = u(x; n�t)

General form of a low-storage Runge-Kutta scheme at p-stages :un+1 = un +�t pXi=1 biKi with Ki = F 0�un + i�1Xj=1 aijKj; tn + i�t1A

By Fourier analysis, numerical amplification factor RsRs = ^un+1^un = 1 + pXj=1 j(�i!�t)j exact factor :Re = e�i!�t

Optimized Runge-Kutta schemes

the coefficients j are determined by minimizing the errors

over a large range of pulsations !�t17 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey



Time integration

Damping factor (dissipation)
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Time integration

Phase error (dispersion)
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Time integration

Accuracy limits

dissipation Ed = 1� jRs(!�t)j & dispersion E' = j!�t� !s�tj=�

CFL number � given for the opt. 11-pt FD scheme

scheme formal Ed ≤ 5 × 10−4 Eϕ ≤ 5 × 10−4 stability

order ω∆t|max β ω∆t|max β ω∆t|max β

Standard RK4 4th 0.65 0.33 0.75 0.38 2.83 1.42

Standard RK8 Dormand et al. 8th 1.79 0.90 2.23 1.12 3.39 1.71

Stanescu et al. 4th 0.87 0.44 1.39 0.70 1.51 0.76

Carpenter & Kennedy 4th 0.80 0.40 0.88 0.45 3.34 1.68

Opt. LDDRK46 Hu et al. 4th 1.58 0.80 1.87 0.94 1.35 0.68

Opt. LDDRK56 Hu et al. 4th 1.18 0.59 2.23 1.13 2.84 1.43

Opt. 2N-RK Bogey et al. 2nd 1.91 0.96 1.53 0.77 3.94 1.99

Opt. 2N-RK Berland et al. 4th 1.97 0.99 1.25 0.63 3.82 1.92
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2-D Test problem - aousti di�ration

Acoustic diffraction by a cylinder

(2nd CAA Workshop, 1997)

– non-compact monopolar source

– scattering by the cylinder! complex diffraction pattern sensitive

to numerical accuracy

Numerical methods : optimized 11-pt F-D & filters and 6-stage Runge-Kutta

2 configurations of algorithms near the wall

centered F-D & filters
non-centered optimized

11-point F-D & filters

22 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey



2-D Test problem - aousti di�ration

Results

Directivity D(�) = rp02 at r = 7:5D
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Navier-Stokes simulations (Large-Eddy Simulations)

Large Eddy Simulation (LES)

– the turbulent structures supported by the grid are computed

– the (dissipative) effects of the subgrid scales are modelized

LES based on explicit filtering

-

6

k1/L ksf
c kgrid

c 1/λ 1/η

viscous
dissipation

-� -� -�

resolved filtered subgrid
scales scales scales

@
@

@
@R

E(k)

– energy draining taken into ac-

count by the filtering

– resolved scales calculated accu-

rately by the F-D scheme, un-

affected by the filtering nor by

the time integration! flow features independent of

the numerics

the use of optimized schemes appears appropriate for LES24 Institut Henri Poinar�e - 16 novembre 2006 - C. Bogey



Navier-Stokes simulations (Large-Eddy Simulations)

Investigation of noise generation

– subsonic and supersonic jets

– cavity noise

– airfoil noise

Noise generated by a subsonic jet (Mach 0.9 - Reynolds 500,000)

Velocity contour and pressure field Far-field pressure spectra at � = 40Æ
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Navier-Stokes simulations (Large-Eddy Simulations)

Investigation of turbulence

– simulations under controlled (physical and numerical) conditions

– direct calculation of flow quantities including dissipation

Energy budget in a turbulent jet

Mach 0.9 - Reynolds 11,000

Self-similarity region for 120r0 � x � 150r0
Vorticity norm
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Conluding remarks

Optimized finite-difference methods

accurate / simple / efficient

– treatment of boundary conditions

– non-uniform and curvilinear mesh

– complex geometries : interpolation, overset grids, multi-domain

– explicit selective filtering for Large Eddy Simulations (LES)

Some difficulties

– large stencils (multi-domain / parallelization)

– treatment of shock-waves
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