

Turbulence et Génération de Bruit Equipe de recherche du Centre Acoustique LMFA, UMR CNRS 5509, Ecole Centrale de Lyon

Simulation Numérique en Aéroacoustique Institut Henri Poincaré - 16 novembre 2006

Schémas de discrétisation optimisés dans l'espace de Fourier

C. Bogey, J. Berland & C. Bailly LMFA, UMR CNRS 5509 Ecole Centrale de Lyon

http://acoustique.ec-lyon.fr

- Background / Motivations
- Spatial discretization optimized in the Fourier space
 - Finite differences for spatial derivatives
 - Selective filters for removing high-frequency waves
- Time integration : optimized Runge-Kutta schemes
- Applications
 - Acoustic test problem : diffraction by a cylinder
 - Navier-Stokes simulations (Large-Eddy Simulations)
- Concluding remarks

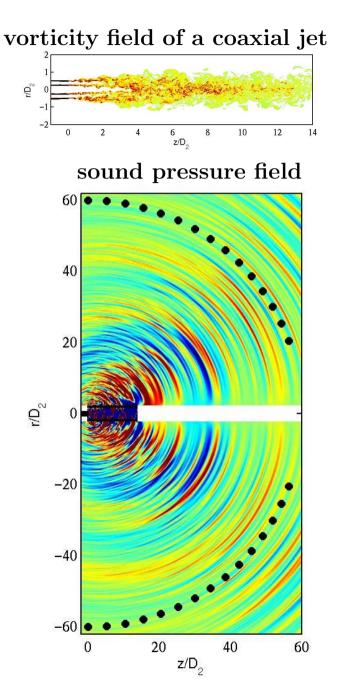
Motivations

• Development of Computational AeroAcoustics (CAA)

- direct simulation of sound generation by solving the unsteady Navier-Stokes equations for compressible flows
- simulations of long-range propagation (Linearized Euler Equations)

• Key numerical issues in CAA

- disparities in magnitudes and length scales between flow and acoustics
- turbulent and sound broadband spectra
- far-field propagation



• Problem model for wave propagation

-1-D advection equation :

$$rac{\partial u}{\partial t} + c rac{\partial u}{\partial x} = 0 \qquad u(x,0) = g(x)$$

- exact solution u(x,t) = g(x - ct)

by Fourier-Laplace transform : dispersion relation $\omega = kc$ elementary solution : harmonic plane wave $Ae^{i(kx-\omega t)}$

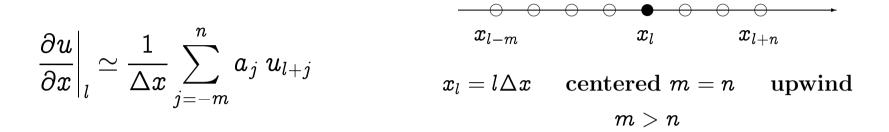
– numerical approximation : $\omega_s = k_s c$

• Development of schemes optimized in the Fourier space

- space : Dispersion-Relation-Preserving schemes of Tam & Webb (JCP, 1991), spectral-like schemes of Lele (JCP, 1992)
- time : Runge-Kutta algorithms of Hu et al. (JCP, 1996)

- Background / Motivations
- Spatial discretization optimized in the Fourier space
 - Finite differences for spatial derivatives
 - Selective filters for removing high-frequency waves
- Time integration : optimized Runge-Kutta schemes
- Applications
 - Acoustic test problem : diffraction by a cylinder
 - Navier-Stokes simulations (Large-Eddy Simulations)
- Concluding remarks

• Explicit finite-difference schemes



Particular case of the continuous relation:

$$rac{\partial u}{\partial x}\simeq rac{1}{\Delta x}\sum_{j=-m}^n a_j \ u(x+j\Delta x)$$

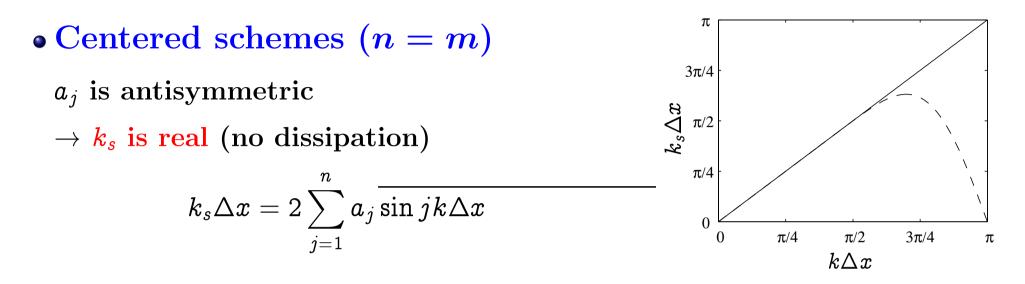
By Fourier transform:

$$ik\hat{u}\simeq rac{\hat{u}}{\Delta x}\sum_{j=-m}^n a_j e^{ijk\Delta x} \qquad u(x)=\mathcal{F}^{-1}\left[\hat{u}(k)
ight]=\int_{-\infty}^{+\infty}\hat{u}(k)e^{ikx}dk$$

Numerical dimensionless wavenumber

$$k_s \Delta x = -i \sum_{j=-m}^n a_j e^{i j k \Delta x}$$

Finite differences for spatial derivatives



- high-order schemes : a_j are determined by cancelling the Taylor series formal truncation order $\mathcal{O}(\Delta x^{2n})$
- low-dispersion schemes : a_j are determined by minimizing the error between the exact and numerical wavenumbers k and k_s over a large wavenumber range $k_l \Delta x \leq k \Delta x \leq k_u \Delta x$

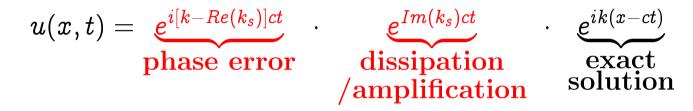
e.g. in Bogey & Bailly (JCP, 2004), minimization of the integral error

$$\int_{\pi/16}^{\pi/2} |k_s \Delta x - k \Delta x| \, rac{d \ln(k \Delta x)}{k \Delta x}$$

• Non-centered schemes $(n \neq m)$

 k_s has an imaginary part (providing dissipation/amplification)

– approximate solution for the 1-D advection equation



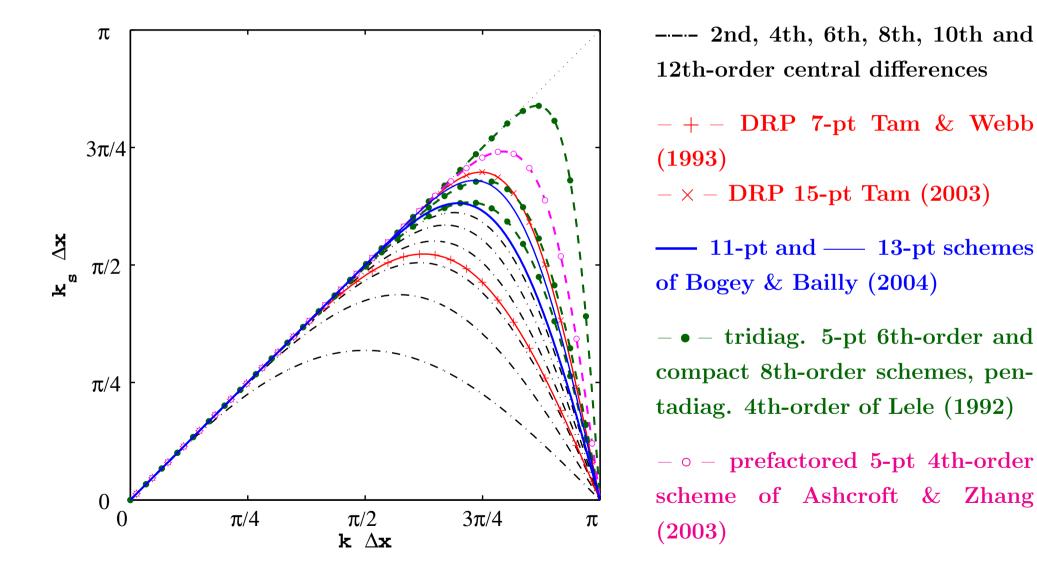
minimization both of phase error and of dissipation/amplification
 e.g. in Berland et al. (JCP, 2006) with the integral error

$$\int_{\pi/16}^{\pi/2} \Big[(1-lpha) \underbrace{|k \Delta x - Re(k_s \Delta x)|}_{ ext{dispersion}} + lpha \underbrace{|Im(k_s \Delta x)|}_{ ext{dissipation}} \Big] rac{d(k \Delta x)}{k \Delta x}$$

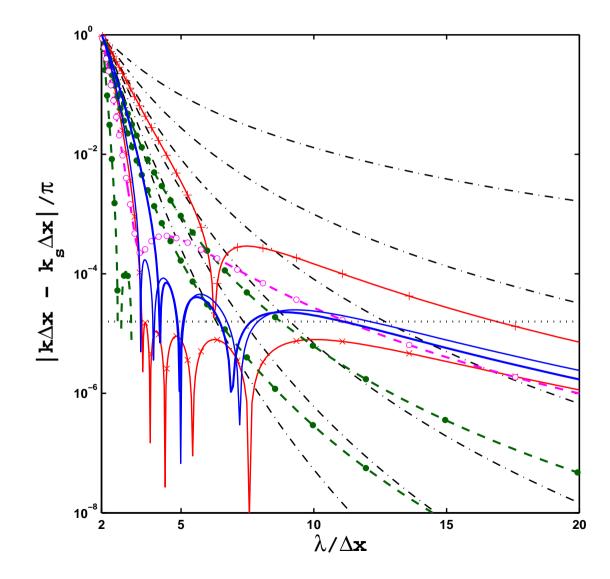
 \rightarrow low-dispersion and low-dissipation schemes

Finite differences for spatial derivatives

• Numerical wavenumber $k_s \Delta x$ vs. exact wavenumber $k \Delta x$ for centered schemes



• Phase-velocity error in terms of points per wavelength



 $ightarrow ext{error}$ observed for a harmonic wave $e^{i(kx-\omega t)}$ propagating at $v_{arphi} = \omega/k = ck_s/k$

accuracy limit given by $E_{v_{arphi}} = |k_s \Delta x - k \Delta x|/\pi \leq 5 imes 10^{-5}$

• Group-velocity error as a function of the exact wavenumber

propagation of a wave-packet at the group velocity

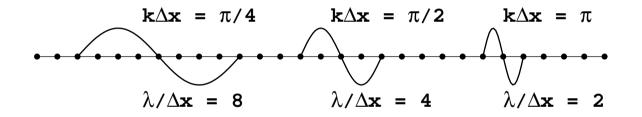


accuracy limit given by $E_{v_q} = |\partial k_s / \partial k - 1| \le 5 imes 10^{-4}$

• Accuracy limits

scheme	$E_{v_arphi} \leq 5 imes 10^{-5}$		$E_{v_g} \leq 5 imes 10^{-4}$			
	$ k\Delta x _{ m max}$	$\lambda/\Delta x _{ m min}$	$ k\Delta x _{ m max}$	$\lambda/\Delta x _{ m min}$	$k_{ m max}\Delta x$	$k_{v_{arphi}}/k_{ ext{max}}$
CFD 2nd-order	0.0986	63.7	0.0323	194.6	1.0000	0.10
CFD 4th-order	0.3439	18.3	0.2348	26.8	1.3722	0.25
CFD 6th-order	0.5857	10.7	0.4687	13.4	1.5860	0.37
CFD 8th-order	0.7882	8.0	0.6704	9.4	1.7306	0.46
CFD 10th-order	0.9550	6.6	0.8380	7.5	1.8374	0.52
CFD 12th-order	1.0929	5.7	0.9768	6.4	1.9208	0.57
DRP 7-pts 4th-order	0.4810	13.1	0.3500	18.0	1.6442	0.29
DRP 15-pts 4th-order	1.8069	3.5	1.6070	3.9	2.1914	0.82
OFD 11-pts 4th-order	1.3530	4.6	0.8458	7.4	1.9836	0.68
OFD 13-pts 4th-order	1.3486	4.7	0.7978	7.9	2.1354	0.63
CoFD 6th-order	0.8432	7.5	0.7201	8.7	1.9894	0.42
CoFD 8th-order	1.1077	5.7	0.9855	6.4	2.1334	0.52
CoFD opt. 4th-order	2.4721	7.3	0.7455	8.4	2.6348	0.33
Opt. pre. 4th-order	0.7210	8.7	0.0471	133.3	2.3294	0.31

- Need for spatial filtering
 - grid-to-grid oscillations are not resolved by F-D schemes according to the Nyquist-Shannon theorem
 - the highest wave-numbers, poorly resolved by F-D, must be removed without affecting the long (physical) waves accurately discretized



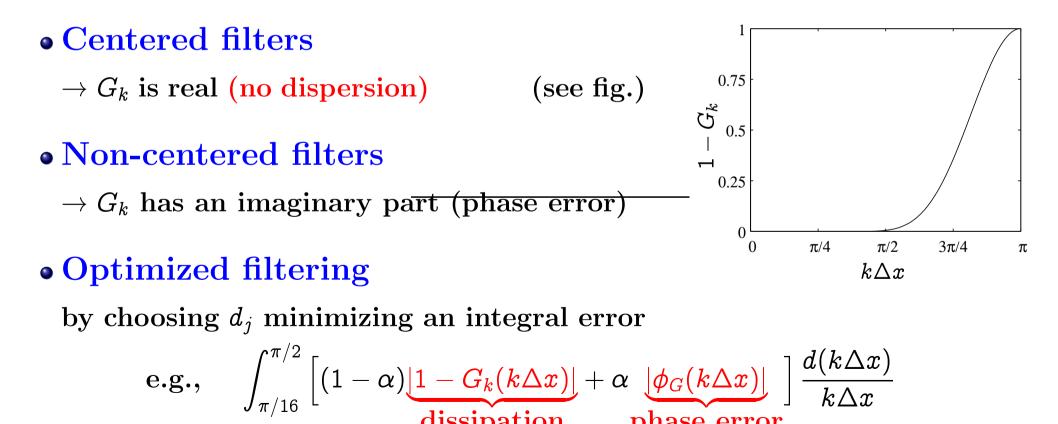
• Explicit discrete filtering ($\circ \bullet \circ \circ \circ$)

$$u^f(x_i) = u(x_i) - \sum_{j=-m}^n d_j u(x_i + j \Delta x)$$

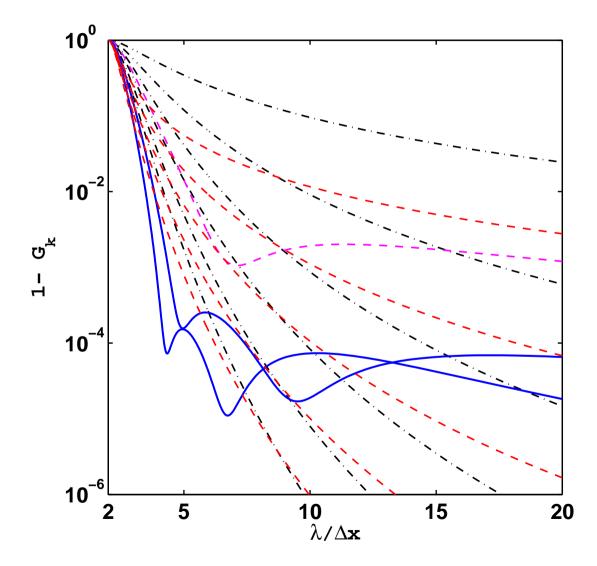
transfer function in the Fourier space $G_k(k \Delta x) = 1 - \sum d_j e^{ijk\Delta x}$

• Requirements on the transfer function

- $- ext{stability}: |G_k(k \Delta x)| < 1$
- removal of grid-to-grid oscillations : $G_k(\pi) = 0$
- normalization : $G_k(0) = 1$



• Transfer function $1 - G_k$ of centered filters



----- 2nd, 4th, 6th, 8th, 10th and 12th-order standard explicit filters

— optimized 7-pt 2nd-order filter of Tam & Webb (1993)

— optimized 11-pt 2nd-order and 13-pt 4th-order filters of Bogey & Bailly (2004)

--- implicit tridiag. 2nd, 4th, 6th, 8th and 10th implicit filters ($\alpha_f = 0.4$), see Lele (1992), Gaitonde & Visbal (2000)

- Background / Motivations
- Spatial discretization optimized in the Fourier space
 - Finite differences for spatial derivatives
 - Selective filters for removing high-frequency waves
- Time integration : optimized Runge-Kutta schemes
- Applications
 - Acoustic test problem : diffraction by a cylinder
 - Navier-Stokes simulations (Large-Eddy Simulations)
- Concluding remarks

• Explicit Runge-Kutta schemes

$$ext{differential equation} \qquad rac{\partial u^n}{\partial t} = F(u^n,t) \qquad u^n(x) = u(x,n\Delta t)$$

General form of a low-storage Runge-Kutta scheme at *p*-stages :

$$u^{n+1} = u^n + \Delta t \sum_{i=1}^p b_i K^i \quad ext{with} \quad K^i = F\left(u^n + \sum_{j=1}^{i-1} a_{ij} K^j, t^n + c_i \Delta t
ight)$$

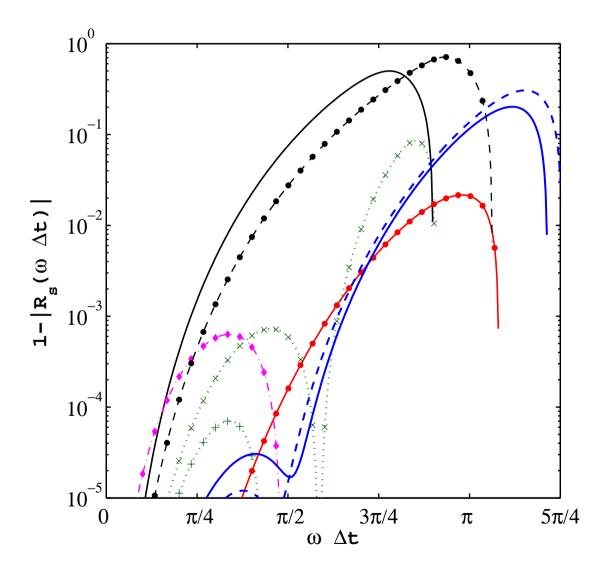
By Fourier analysis, numerical amplification factor R_s

$$R_s = rac{\hat{u}^{n+1}}{\hat{u}^n} = 1 + \sum_{j=1}^p \gamma_j (-i\omega\Delta t)^j \qquad ext{exact factor}: R_e = e^{-i\omega\Delta t}$$

• Optimized Runge-Kutta schemes

the coefficients γ_j are determined by minimizing the errors over a large range of pulsations $\omega \Delta t$

• Damping factor (dissipation)



– 4th-order

 $- \bullet - 8$ th-order of Dormand & Prince (1980)

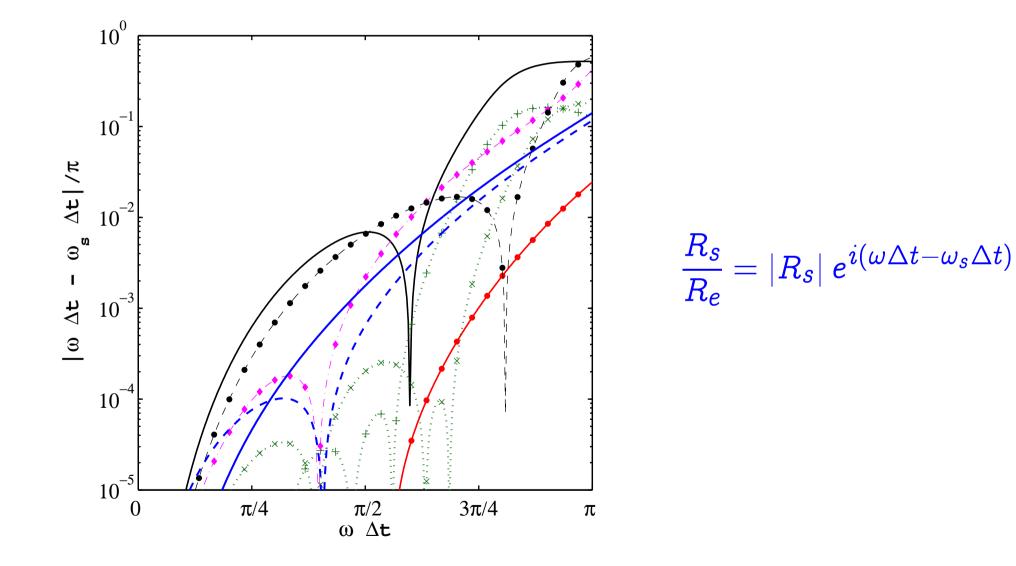
optimized --- 2nd-order 2N (p = 6) of Bogey & Bailly (2004) and — 4th-order 2N (p = 6) of Berland *et al.* (2006)

 $-\bullet$ - 4th-order 2N (p = 5) of Carpenter & Kennedy (1994)

 $\cdots + \cdots$ LDDRK46 and $\cdots \times \cdots$ LDDRK56 of Hu *et al.* (1996)

 $-\phi$ - opt. 4th-order 2N (p = 5) of Stanescu & Habashi

• Phase error (dispersion)



• Accuracy limits

dissipation $E_d = 1 - |R_s(\omega \Delta t)|$ & dispersion $E_{\varphi} = |\omega \Delta t - \omega_s \Delta t|/\pi$

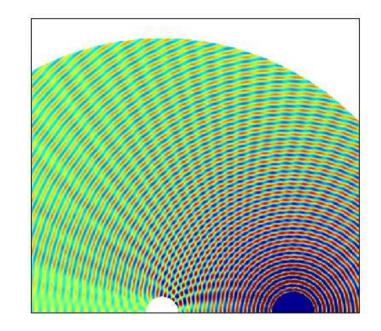
CFL number β given for the opt. 11-pt FD scheme

scheme	formal	$E_d \leq 5 imes 10^{-4}$	$E_arphi \leq 5 imes 10^{-4}$	stability
	order	$ \omega \Delta t _{ ext{max}}$ $ eta $	$ \omega\Delta t _{ ext{max}} _{eta}$ eta	$ \omega\Delta t _{ ext{max}}$ eta
Standard RK4	$4 { m th}$	0.65 0.33	0.75 0.38	2.83 1.42
Standard RK8 Dormand et al.	$8 \mathrm{th}$	1.79 <mark>0.90</mark>	2.23 1.12	3.39 1.71
Stanescu et al.	$4 { m th}$	0.87 0.44	1.39 0.70	1.51 0.76
Carpenter & Kennedy	$4 \mathrm{th}$	0.80 0.40	0.88 0.45	3.34 1.68
Opt. LDDRK46 Hu et al.	$4 { m th}$	1.58 0.80	1.87 0.94	1.35 0.68
Opt. LDDRK56 Hu et al.	$4 { m th}$	1.18 0.59	2.23 1.13	2.84 1.43
Opt. 2N-RK Bogey et al.	2nd	1.91 0.96	1.53 0.77	3.94 1.99
Opt. 2N-RK Berland et al.	$4 { m th}$	1.97 0.99	1.25 0.63	3.82 1.92

- Background / Motivations
- Spatial discretization optimized in the Fourier space
 - Finite differences for spatial derivatives
 - Selective filters for removing high-frequency waves
- Time integration : optimized Runge-Kutta schemes
- Applications
 - Acoustic test problem : diffraction by a cylinder
 - Navier-Stokes simulations (Large-Eddy Simulations)
- Concluding remarks

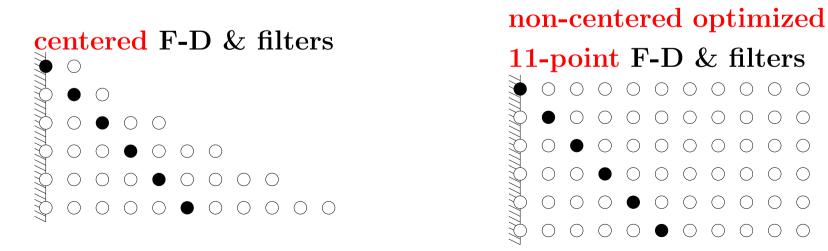
2-D Test problem - acoustic diffraction

- Acoustic diffraction by a cylinder
 - (2nd CAA Workshop, 1997)
 - $\ non-compact \ monopolar \ source$
 - scattering by the cylinder
 - \rightarrow complex diffraction pattern sensitive to numerical accuracy

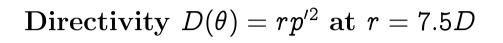


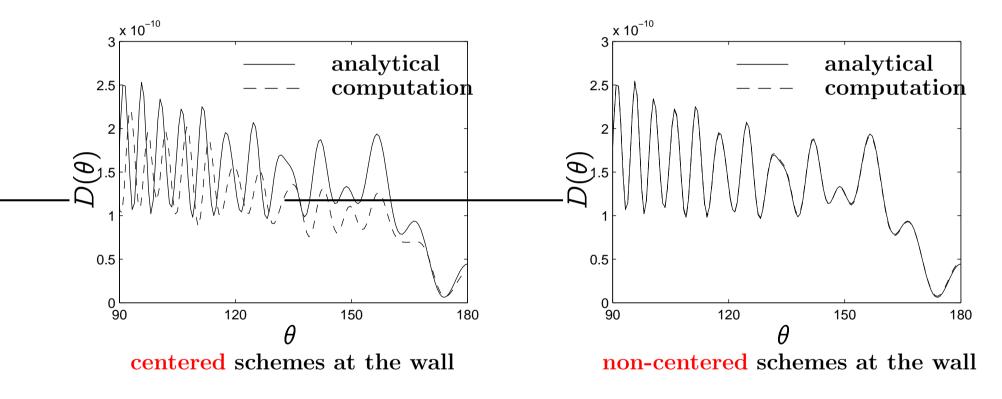
 $Numerical\ methods:\ optimized\ 11\-pt\ F-D\ \&\ filters\ and\ 6\-stage\ Runge-Kutta$

2 configurations of algorithms near the wall



• Results

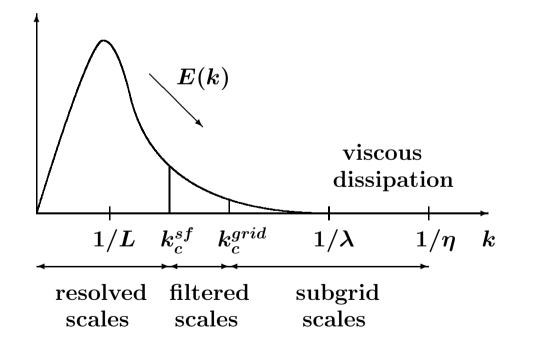




Navier-Stokes simulations (Large-Eddy Simulations)

• Large Eddy Simulation (LES)

- the turbulent structures supported by the grid are computed
- the (dissipative) effects of the subgrid scales are modelized
- LES based on explicit filtering



- energy draining taken into account by the filtering
- resolved scales calculated accurately by the F-D scheme, unaffected by the filtering nor by the time integration
 - \rightarrow flow features independent of the numerics

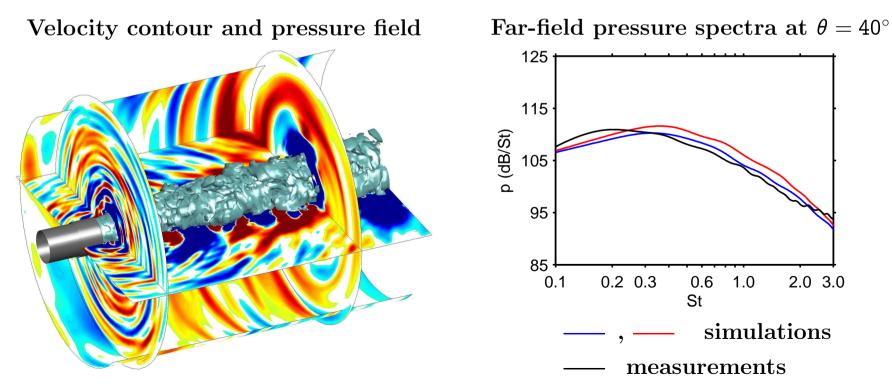
the use of optimized schemes appears appropriate for LES

Navier-Stokes simulations (Large-Eddy Simulations)

• Investigation of noise generation

- subsonic and supersonic jets
- cavity noise
- airfoil noise

• Noise generated by a subsonic jet (Mach 0.9 - Reynolds 500,000)

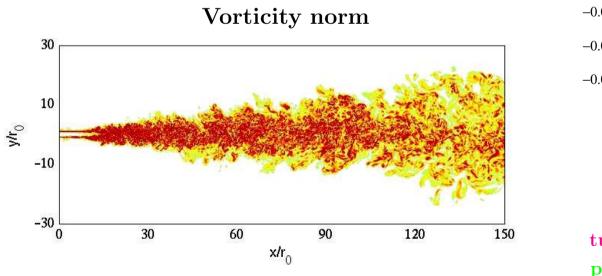


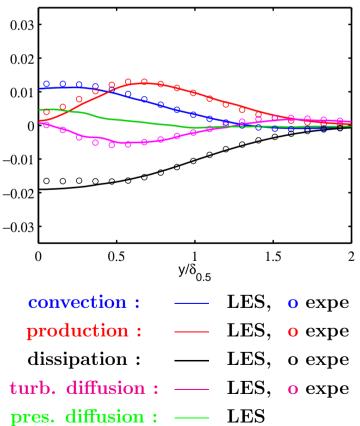
Navier-Stokes simulations (Large-Eddy Simulations)

• Investigation of turbulence

- simulations under controlled (physical and numerical) conditions
- direct calculation of flow quantities including dissipation
- Energy budget in a turbulent jet

```
Mach 0.9 - Reynolds 11,000
Self-similarity region for 120r_0 \le x \le 150r_0
```





• Optimized finite-difference methods

accurate / simple / efficient

- treatment of boundary conditions
- non-uniform and curvilinear mesh
- complex geometries : interpolation, overset grids, multi-domain
- explicit selective filtering for Large Eddy Simulations (LES)

• Some difficulties

- large stencils (multi-domain / parallelization)
- treatment of shock-waves