Méthodes et Applications en Aéronautique

Eric MANOHA

ONERA

Département Simulation Numérique des Ecoulements et Aéroacoustique

Les mathématiciens et les industriels se parlent

Simulation numérique en aéroacoustique

16 NOVEMBRE 2006

Office National d'Études et de Recherches Aérospatiales www.onera.fr

Plan

- Contexte (limité à la finalité « avion de transport civil »)
- Stratégies de réduction du bruit des avions
- Méthodes numériques développées à l'ONERA
- Plate-forme ONERA CFD /CAA « sAbrinA »
- Deux exemples de mise en œuvre de méthodes numériques pour la simulation
 - □ du bruit aérodynamique
 - □ des effets d'installation

CONTEXTE : Prévision et réduction du bruit des avions civils au voisinage des aéroports

St Martin

Tokyo

Nuisances sonores des avions civils au voisinage des aéroports

Forte pression des associations de riverains

Normes internationales (et locales) de bruit de plus en plus contraignantes

Enjeux économiques importants pour les constructeurs (concurrence Airbus/Boeing) et les compagnies aériennes

Les problèmes aréoacoustiques augmentent avec la taille de l'avion

Plan d'exposition au bruit de l'aéroport d 'Orly (coté ouest)

<u>Zone A:</u> p > 96 dB

<u>Zone B:</u> 96 dB > p > 84 dB

<u>Zone C:</u> 84 dB > p > 72 dB

Un mouvement d'avion toutes les 90 secondes sur chaque piste

Sources de bruit d'un avion civil Bruit externe = Bruit de propulsion + Bruit aérodynamique

Evolution du bruit total Contribution respective de chaque source

Évolution du bruit des avions depuis 1950 :

- Années 50 : apparition des turboréacteurs simple flux sur les avions civils : très bruyants ⇒ début des recherches en aéroacoustique des jets
- Générations successives de moteurs : turbofan double flux ⇒ <u>forte diminution du bruit</u>

Décollage : le bruit de moteur reste dominant

Approche/atterrissage : le bruit de moteur et le bruit aérodynamique sont de niveau analogue

Stratégies de réductions du bruit

- > Réduction du bruit de moteur
 - ✤ Jet : augmentation des taux de dilution, chevrons
 - Soufflante : amélioration des nacelles (matériaux absorbants)
- > Réduction du bruit aérodynamique
 - Caractérisation/localisation des sources
 - Etude de dispositifs réducteurs de bruit aérodynamique
- Effets d'installation
 - Utilisation de la structure de l'avion pour masquer le bruit de moteur
- Procédures de vol à moindre bruit

Simulation Numérique du Bruit Aérodynamique et des Effets d'Installation Méthodes hybrides CAA : CFD + acoustique

Simulation écoulement turbulent local RANS + modèle, URANS, DES, NLDE, LES, DNS

Plate-forme CFD/CAA sAbrinA

PEGASE : CFD instationnaire (LES/DNS) maillage Cartésien **FLU3M** : solveur CFD NS/Euler (volumes finis, multi-bloc, structuré, curviligne)

E3P : propagation acoustique (Euler en perturbation, différences finies d'ordre élevé,

structuré curviligne monodomaine)

Simulation Aéroacoustique du BRuit d'INteraction Aérodynamique Solver for Aeroacousic BRoadband INteractions with Aerodynamics

• CAA : propagation acoustique

sAbrinA

- CFD instationnaire: LES/NLDE
- Couplage CFD /CAA

Plate-forme CFD/CAA sAbrinA

Principales fonctionnalités

- Equations Euler / Navier-Stokes
- Schémas Volume Finis (VF) / Differences Finis (DF)
- Variables complètes ou séparation écoulement moyen / perturbation
- Schémas VF : AUSM+P avec/sans détecteur de wiggle, Roe, Van Leer
- Schémas DF(ordre 2-6) curviligne / filtres DF (ordre 2-14)
- Schémas en temps explicites / implicites (seulement VF)
- Conditions limites spécifiques pour NLDE et propagation acoustique
- Couplage instantané (ou différé) CFD (VF/implicit) / CAA (DF/explicit)
 - interface non-conforme curviligne
 - recouvrement de maillages curviligne / Cartésiens
 - terme source volumique

Simulation numérique du bruit de bec de bord d'attaque

Mécanisme aéroacoustique

- Calcul des sources aéroacoustiques
 - LES
 - I NLDE
 - DES

Calcul du bruit rayonné

- Exemple de couplage faible CFD / CAA par interface surfacique (profil simple)
- Vers un couplage faible CFD / CAA par terme source volumique : rayonnement acoustique de sources ponctuelles en écoulement non uniforme

Simulation numérique du bruit de bec de bord d'attaque Mécanisme aéroacoustique

Localisation de sources sur avion en survol

LES – Profil d'aile hypersustentée Maillage 2D – Calcul RANS 2D

S. Ben Khelil, C. François

Maillage 2D Forte résolution dans la région du bec 18 blocs structurés 413,890 points

Configuration Hybride Bec : atterrissage Volet : décollage (pas de décollement)

LES – Profil d'aile hypersustentée Maillage 2D/3D LES S. Ben Khelil, C. François

2D/3D: 7,345,812 points

52 plans dans le direction transversale Envergure = 37 % de la corde du bec

LES – Profil d'aile hypersustentée 2D/3D LES ($\alpha = 4^{\circ}$)

S. Ben Khelil, C. François

Non Linear Disturbance Equation

E. Labourasse, M. Terracol

$$\overline{U}_{LES} = U_0 + U' \longrightarrow NS(U')$$

- Couplage zonal LES / RANS (Conditions limites specifiques)
- ➔ Réduction du coût par rapport à la LES
- Prédiction des source en configuration réaliste

Application à la simulation de l'écoulement instationnaire dans une cavité de bec

E. Labourasse, M. Terracol

Detached Eddy Simulation : configuration EUROPIV2 (Projet DESIDER – S. Deck – ONERA/DAAP)

Exemple de couplage (faible) CFD / CAA <u>par interface surfacique</u> Bruit de bord de fuite d'un profil NACA0012 à bord de fuite tronqué Champ de fluctuation de pression instantanée

S. Ben Khelil / C. Herrero

Vers un couplage (faible) CFD/CAA par terme source volumique Etape intermédiaire : rayonnement de sources ponctuelles

Vers un couplage (faible) CFD/CAA par terme source volumique Localisation de zones sources actives

S. Ben Khelil / D. Mincu

Vers un couplage (faible) CFD/CAA par terme source volumique Elaboration d'un maillage acoustique à partir d'un maillage CFD

R. Guenanff

Structure multi-bloc

0.025 0.02 0.015 0.01 0.005 -0.005 -0.01 -0.015 -0.02 0.02 0 0.03 0.02 0.01 0 :-0.01 -0.02 -0.03 -0.04 -0.05

-0.04

-0.02

0

0.02

Région du bec

Vers un Couplage (faible) CFD/CAA par terme source volumique Rayonnement acoustique d'une source ponctuelle dans une cavité de bec Interpolation maillage curviligne « body-fitted » / maillage cartésien Méthode type Chimère

Couplage (faible) CFD/CAA par terme source volumique Rayonnement acoustique d'une source ponctuelle dans une cavité de bec Source au bord de fuite supérieur du bec Résultats – 1

Couplage (faible) CFD/CAA par terme source volumique Rayonnement acoustique d'une source ponctuelle dans une cavité de bec Source au bord de fuite supérieur du bec Résultats - 2

Couplage (faible) CFD/CAA par terme source volumique Rayonnement acoustique d'une source ponctuelle dans une cavité de bec Source au bord de fuite supérieur du bec Résultats - 3

Pression RMS – Diagramme de directivité

Sans écoulement : comparaison Euler / BEM

Euler : Comparaison avec / sans écoulement

Simulation numérique des effets d'installation

- Contexte : nouveaux concepts Airbus
- Objectif : masquage du bruit de fan aval par fuselage / empennage
- Méthode hybride Euler / BEM en 3D
- > Méthode Euler en 2D avec maillages de type Chimère

Contexte : nouveaux concepts Airbus

- Concept Rear Fuselage Nacelle (RFN)
- Bruit de fan rayonné vers l'aval
- Masquage acoustique par le fuselage et l'empennage

Méthodologie

- ⇒ Objectif à long terme : Calcul Euler 3D sur la configuration complète installée
- ⇒ Etapes intermédiaires

Approche hybride 3D Euler/BEM Couplage faible entre éléments isolés Coopération Airbus-France - ONERA

Approche directe 2D Euler

Calcul Euler 3D sur la configuration complète installée

sAbrinA (Euler)

Actipole (BEM)

Construction du maillage "acoustique" axisymétrique

Approche hybride 3D Euler/BEM

Calcul acoustique 3D tuyère isolée Résultats sans et avec écoulement (Mach _{max} = 0.9)

Approche hybride 3D Euler/BEM Calcul acoustique 3D tuyère installée Résultat sans écoulement moyen

Approche directe 2D Euler

Technique de maillage de type Chimère

Page 34

Maillage acoustique fond : 2D structuré, 1 domaine, 127.466 points

Approche directe 2D Euler

Calcul acoustique 2D tuyère isolée

Euler (sAbrinA)

BEM (scaled levels)

Sans écoulement Mode (<mark>0,3</mark>), à kR = <mark>26.51</mark> (≈1 BPF)

Directivité en champ lointain

Approche directe 2D Euler Calcul acoustique 2D tuyère installée

