Société de Mathématiques Appliquées et Industrielles

Elections

Elections 2017

Le groupe MODE de la SMAI renouvelle cette année sept membres de son comité de liaison. Les membres sortants sont :
1.- Terence Bayen (Candidature non-renouvelable cette année, 2 mandats déjà faits)
2.- Sonia Cafieri.
3.- Jean-Baptiste Caillau (Candidature non-renouvelable cette année, 2 mandats déjà faits)
4.- Fabien Gensbittel
5.- François Malgouyres
6.- Panayotis Mertikopoulos
7.- Oana Serea

Les sept candidats élus en juin 2017 sont : Olivier Cots, Panayotis Mertikopoulos, Sonia Cafieri, Oana Serea, François Malgouyres, Victor Magron, Filippo Santambrogio.

Merci aux collègues sortants pour leur implication dans le groupe ces dernières années et bienvenue aux collègues entrants élus en 2017.

La liste complète des candidats en 2017, avec leurs professions de foi, figure ci-dessous.

Liste des candidats 2017 et professions de foi

1.- Fabien Caubet

Intérêts scientifiques : optimisation de formes, problèmes inverses, analyse asymptotique.

Actions envisagées : si je suis élu, je souhaite m’investir activement dans la diffusion de l’optimisation en France et plus particulièrement de l’optimisation de formes. Je participerais ainsi à la représentation de ce domaine au sein du groupe SMAI-MODE et valoriserais ses multiples applications, notamment en problèmes inverses. Je m’impliquerais également à promouvoir les liens de ce thème de recherche avec l’industrie.

2.- Olivier Cots

Intérêts scientifiques : contrôle géométrique appliqué, algorithmes de tir, méthodes homotopiques et applications.

Actions envisagées : si je suis élu, je souhaite m’investir activement dans les actions menées par le groupe SMAI-MODE et notamment celles ayant pour but la diffusion de la discipline de l’optimisation auprès des jeunes et celles visant à améliorer la visibilité des jeunes « optimiseurs » vis à vis du marché de l’emploi. J’aimerais promouvoir l’idée que cette branche des mathématiques appliquées qu’est l’optimisation joue un rôle central car elle crée du lien avec d’autres domaines scientifiques, mais aussi avec l’industrie et l’ingénierie. En effet, elle permet d’analyser et optimiser des systèmes concrets et complexes, mais pour atteindre ce but, il est indispensable d’avoir de bons modèles et de bons algorithmes.

3.- Xavier Dupuis

Intérêts scientifiques : Optimisation, contrôle optimal, applications.

Actions envisagées : Je souhaiterais contribuer à l’animation du groupe MODE et au développement de ses activités, auxquelles je participe depuis le début de ma thèse avec les journées MODE de 2012. Je tâcherais ainsi promouvoir la recherche en optimisation et ses applications, en particulier en biologie/médecine et en économie.

4.- Panayotis Mertikopoulos

Intérêts scientifiques : théorie des jeux, optimisation, apprentissage.

Actions envisagées : si mon mandat au CL est renouvelé, je continuerai m’investir aux activités de diffusion du groupe SMAI-MODE (comme, en particulière, l’organisation des journées SMAI-MODE à Grenoble en 2018). Je souhaiterais aussi favoriser le développement des interactions entre l’optimisation et les sciences de l’information et des communications en proposant (en accord avec mes collègues) des écoles thématiques et des colloques sur les applications de la théorie des jeux et de l’apprentissage au monde numérique. J’espère aussi pouvoir aider le groupe MODE à maintenir son dynamisme en proposant la soumission de projets de recherche (au niveau national ou européen) sur l’optimisation et la théorie des jeux.

5.- Sonia Cafieri

Mon activité de recherche s’inscrit principalement dans le domaine de l’optimisation non-linéaire mixte en nombres entières, de l’optimisation combinatoire ainsi que l’optimisation non-linéaire, avec un goût pour les applications réelles qui se présentent notamment dans l’aéronautique. Je souhaite continuer à m’investir dans l’activité d’animation scientifique au sein du groupe MODE. Membre active de la société ROADEF également, je souhaite continuer à m’investir afin de promouvoir un rapprochement avec cette communauté, qui semble être naturellement proche de la SMAI-MODE.

6.- Oana Serea

Si ma candidature pour un deuxième mandat est retenue pour le renouvellement du comité de liaison SMAI MODE je travaillerai, en collaboration avec les autres membres du comité de liaison, à apporter une plus large visibilité au groupe SMAI-MODE au sein de petites structures, comme celle à laquelle j’appartiens. J’espère pouvoir ainsi aider les jeunes chercheurs d’institutions de taille modeste à mieux se faire connaître et à s’intégrer dans notre communauté.

7.- François Malgouyres

Je travaille sur des problèmes et modèles d’optimisation utilisés en traitement de données et d’images. Ceux-ci sont souvent non-convexes, non-différentiables et de grande taille mais possèdent des structures qu’il faut mettre à jour et exploiter pour parvenir à les optimiser. Je souhaite continuer à participer au comité de liaison du groupe MODE de la SMAI pour aider aux activités d’animation scientifique sur ces thèmes ainsi que sur de l’optimisation en général.

8.- Victor Magron

Je souhaite continuer à m’investir et à contribuer à l’animation du groupe MODE en me portant candidat au comité du groupe SMAI-MODE. Mes priorités : soutenir et développer l’action du groupe MODE en direction des doctorants et jeunes docteurs ; et contribuer aux interactions dans le groupe MODE entre l’optimisation certifiée et la vérification des systèmes en contrôle.

Pour une vue d’ensemble de mes intérêts scientifiques, de mes travaux, et de mon parcours : cliquer ici.

9.- Filippo Santambrogio

Intérêts scientifiques : calcul des variations, transport optimal, EDP, jeux de congestion.

Directeur du master d’optimisation de Paris-Saclay depuis sa création en 2015, j’ai pu voir grâce à cette tâche, lourde mais fort intéressante, les nombreux liens entre l’optimisation et de dénombrables disciplines, des sciences fondamentales aux applications industrielles ; chercheur dans une domaine à cheval entre les EDP, l’analyse numérique, l’optimisation continue et les jeux, j’ai pu voir comment parfois les différentes communautés peinent à se parler et que souvent chacune considère les autres comme étant très (trop) fermées. Le groupe SMAI-MODE n’est pas à l’abri de ces critiques et, si je suis élu, je souhaite m’investir dans des actions d’interaction avec les autres groupes et les autres communautés (les récentes journées MAS-MODE me semblent un excellent exemple, à reproposer).


Elections 2016

Le groupe MODE de la SMAI renouvelle cette année cinq membres de son comité de liaison. Les membres sortants sont :

  • Philippe Bich et Michel De Lara (dont les candidatures sont non-renouvelables cette année, 2 mandats déjà faits)
  • Rida Laraki, Dominikus Noll et Francisco Silva.

Le dépouillement des votes a eu lieu pendant les journées MODE à Toulouse du 23 au 25 mars 2016, au cours de l’AG du groupe prévue le mercredi 23 mars à 18h30.

Merci aux collègues sortants pour leur implication dans le groupe ces dernières années et bienvenue aux collègues élus le 23 mars dernier.

Liste des candidats élus en 2016 et professions de foi

  • L. Bourdin. Maître de conférences, XLIM-DMI, Université de Limoges.

Mes travaux de recherche s’axent principalement autour de la théorie du contrôle optimal, du calcul des variations et plus récemment autour de l’optimisation de formes. Je souhaite intégrer le comité de liaison du groupe MODE afin de participer activement à la diffusion en France du domaine mathématique de l’optimisation dans son ensemble. Depuis maintenant quelques mois, je suis en charge de la gestion du site web SMAI-MODE et je souhaite poursuivre cette mission tout en participant à d’autres activités du groupe.

  • R. Laraki. Directeur de recherche, LAMSADE, Université Paris Dauphine.

Je souhaite renouveler mon mandat au comité de liaison du groupe MODE afin de consolider les liens entre l’optimisation et la théorie des jeux a travers ses diverses applications en informatique, économie et choix social. J’espère aussi aider à ce que le groupe MODE reste dynamique, ouvert sur les jeunes, ouvert sur les applications, et collaborant avec les autres groupes de la SMAI.

  • D. Noll. Professeur, Institut de Mathématiques de Toulouse, Université Paul Sabatier.

Je compte m’investir dans les interactions des mathématiques de la décision avec des domaines adjacents ainsi que dans les relations avec le milieu industriel. Mes domaines de recherche incluent l’optimisation continue non-linéaire, le contrôle optimal, et la commande en feedback.

  • F. J. Silva. Maître de conférences, XLIM-DMI, Université de Limoges.

Mon thème de recherche porte sur le contrôle optimal et ses applications. Suite à la fin de mon premier mandat de secrétaire du groupe MODE, j’ai décidé de me porter candidat pour le renouvellement du comité de liaison. Je souhaite continuer à contribuer à la gestion du bureau et aussi à l’animation scientifique au sein de la SMAI.

  • H. Zidani. Professeur, Département de Mathématiques, ENSTA, ParisTech.

Enseignant-Chercheur à l’ENSTA ParisTech, mes intérêts scientifiques concernent l’optimisation dynamique, la théorie du contrôle et l’analyse numérique pour des équations aux dérivées partielles nonlinéaires. J’aimerais participer aux différentes actions scientifiques proposées par le groupe MODE et en particulier promouvoir les interactions avec d’autres groupes de la SMAI.


Elections 2014

Comme chaque année, le bureau du groupe MODE a organisé les élections en vue du renouvellement d’un tiers des membres du comité de liaison. Le comité actuel est visible à l’adresse suivante : http://smai.emath.fr/spip.php?article338

Le dépouillement des votes a eu lieu pendant les journées MODE à Rennes du 26 au 28 mars 2014, au cours de l’AG du groupe prévue le mercredi 26 mars à 18h.

Merci aux collègues sortants pour leur implication dans le groupe ces dernières années et bienvenue aux collègues élus le 26 mars dernier.

Liste des candidats élus en 2014 et professions de foi

  • Terence Bayen. Maitre de conférence à l’Université de Montpellier 2.

Intérêts scientifiques : optimisation, contrôle optimal, applications en biologie.

Depuis 2007, je participe aux journées MODE qui constituent un événement majeur pour la communauté de l’optimisation, et depuis 2009 je suis en charge du site web du groupe MODE. Actuellement enseignant-chercheur à l’Université Montpellier 2, je souhaite continuer à m’investir dans ce groupe afin notamment de promouvoir la recherche en optimisation et en contrôle optimal en France, et aussi renforcer les liens avec le monde industriel. En particulier, je souhaite continuer à faire évoluer le site web du groupe, et je souhaite également m’investir dans d’autres activités du groupe. 

  • Sonia Cafieri. Professeur à l’ENAC (Toulouse)

Mon activité de recherche s’inscrit principalement dans le domaine de l’optimisation non-linéaire mixte en nombres entiers, de l’optimisation combinatoire ainsi que l’optimisation non-linéaire, avec un goût pour les applications réelles qui se présentent notamment dans l’aéronautique. Je souhaite contribuer à l’animation du groupe MODE. Membre de la société ROADEF depuis 2009, avec une participation active dans l’organisation de sessions thématiques lors du congrès annuel, je souhaite m’investir afin de promouvoir un rapprochement avec cette communauté qui semble être naturellement proche de la SMAI-MODE.

  • Jean-Baptiste Caillau. Professeur à l’Institut de Mathématiques de Bourgogne.

Mon thème de recherche est le contrôle optimal des systèmes gouvernés par des équations différentielles ordinaires et les applications qui s’y rattachent. On assiste depuis quelques années à une remarquable diffusion de l’optimisation, au sens large, dans de très nombreux domaines des mathématiques et du calcul scientifique ; responsable depuis quelques mois du groupe MODE, c’est dans cette perspective d’ouverture que je souhaite continuer à m’investir dans cette activité d’animation scientifique au sein de la SMAI.

  • Fabien Gensbittel. Maître de conférences à l’Université Toulouse 1 Capitole.

Intérêts scientifiques : Théorie des jeux, contrôle, optimisation.

Membre du GREMAQ et de TSE depuis 2011, mes recherches sont tournées vers les jeux dynamiques en temps discret et temps continu. Je souhaite contribuer à l’animation du groupe MODE et promouvoir la recherche dans le domaine de théorie des jeux ainsi que les interactions avec les différentes thématiques représentées au sein du groupe.

  • François Malgouyres. Professeur à l’Institut de Mathématiques de Toulouse.

Mes thèmes de recherche portent sur l’optimisation dans le contexte du traitement d’images. Dans ce domaine, les problèmes rencontrés sont typiquement de grande taille, non-lisses. Ils sont de plus en plus souvent non convexe et sont parfois en nombres entiers. On s’intéresse tout autant aux algorithmes numériques pour les résoudre qu’à la stabilité des minimiseurs. Je souhaite contribuer à l’animation du groupe MODE.

  • Panayotis Mertikopoulos. CR CNRS à l’INRIA Grenoble.

L’optimisation et la théorie de la désision sont (malheureusement) souvent négligées dans les sciences de l’information et des communications : plusieurs services numériques sont déployés d’une manière ad-hoc et sous-optimale parce que les interactions entre les mathématiques et l’informatique ne sont pas toujours assez fortes. Je souhaiterais faire partie du comité de liaison MODE pour favoriser le développement de ces interactions en proposant (en accord avec mes collègues) des écoles thématiques et des colloques sur les applications de la théorie des jeux et de l’apprentissage au monde numérique - et, notamment, sur les réseaux des communications et le traitement du signal. J’espère aussi pouvoir aider le groupe MODE à maintenir son dynamisme en proposant la soumission de projets de recherche (au niveau national ou européen) sur l’optimisation et la théorie des jeux.

  • Oana Silvia Serea. Maitre de conférence à l’université de Perpignan.

Si ma candidature est retenue pour le renouvellement du comité de liaison SMAI MODE je travaillerai, en collaboration avec les autres membres du comité de liaison, à apporter une plus large visibilité au groupe SMAI-MODE au sein de petites structures, comme celle à laquelle j’appartiens. J’espère pouvoir ainsi aider les jeunes chercheurs d’institutions de taille modeste à mieux se faire connaître et à s’intégrer dans notre communauté.


Accueil du site | Contact | Coordonnées | Plan du site

Site réalisé avec SPIP + AHUNTSIC