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We are interested in elliptic systems written in the form of first order PDE systems.

d∑
k=1

Ak∂kU + KU = F on ∂Ω, (1)

There are several definitions of elliptic systems [5, 4, ?, 3]. This is due to the fact that the simplest
extensions of the scalar definition do not enjoy the property that an elliptic system remains elliptic under
a change of variables.
The classical theory ([7, 9, 8, 10]) of Friedrichs’ systems makes some assumptions such as K > 0 that
enable the use of the Lax-Milgram theorem to derive existence results (see for instance theorem 5.4 in
[1]). However, the assumption K > 0 is a serious obstacle to the analysis of linear symmetric hyperbolic
systems in the stationary regime since these do not necessarily possess a friction operator K, especially
they represent conservation laws. We also remark that in the case Ω = Rd, Fourier analysis has shows that
the assumption K > 0 is not necessary but only sufficient for the existence and uniqueness of solutions.
Furthermore we remark that the assumption K > 0 does not allow the analysis of the first order reduction
of the Poisson problem where the kernel of K is not trivial. We therefore look for an alternative theory
based on weaker assumptions. We use the more general Banach-Nečas-Babuška theorem to obtain the
existence of a uniqueness of a solution in a setting that encompasses both Friedrichs’ systems and the
first order reduction of the Poisson problem. The techniques used to prove the classical inf-sup conditions
inspired from harmonic analysis arguments that are consistent with the case Ω = Rd.
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