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Our aim is to approximate a problem with highly oscillatory coefficients by a problem with coarse coef-
ficients, when the oscillatory coefficients are not explicitly, or not entirely, known. Consider the problem

−div(Aε∇uε) = f,

where Aε(x) varies at the characteristic scale ε (and may be random). Assume that this problem is
to be solved for a large number of right-hand sides f . If the coefficient oscillations are infinitely rapid
(i.e. ε is asymptotically small), the solution uε can be accurately approximated by the solution to the
homogenized problem

−div(A?∇u?) = f,

where the homogenized coefficient A? has been evaluated beforehand by solving the corrector problem. If
the oscillations are moderately rapid, one can think instead of MsFEM-type approaches to approximate
the solution. However, in both cases, the complete knowledge of the oscillatory matrix coefficient Aε is
required, either to build the average model (namely solve the corrector equation given by the homoge-
nization theory and compute A?) or to compute the multiscale basis functions needed by the MsFEM
approach. In many practical cases, this coefficient is only partially known, or merely completely unavail-
able, and one only has access to the solution uε for any loading f (e.g. using observations on actual
experiments, or using a black-box numerical simulation code). Given these solutions uε, an interesting
question is to find the best non-oscillating (or, more generally, slowly oscillating) matrix A (think e.g.
of a constant matrix) that is consistent with the observed behavior. In a previous work [3], the last two
authors have developed an approach to solve the problem by solving a minimization problem of the type

inf
A constant matrix

sup
f of unit norm

∥∥u(Aε, f)− u(A, f)
∥∥
L2 ,

where u(Aε, f) and u(A, f) respectively denote the solution of the diffusion problem with coefficient
matrix Aε and A, for the same right-hand side f . The work reported on in the present contribution is
devoted to applying the same approach in the context of an Arlequin type method (see e.g. [2]): a portion
of the considered computational domain is modeled using the original oscillatory matrix Aε and another
portion is modeled using the matrix A; the two portions being coupled using the Arlequin approach in
order to reduce finite size and boundary effects. The approach has been pioneered in [1]. A mathematical
formalization of the approach, its numerical analysis (proofs of consistency and convergence), along with
various algorithmic improvements are now provided [4]. This work is partially supported by EOARD
under Grant FA9550-17-1-0294.
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