Parareal algorithm for multistep time schemes

Katia AÏT AMEUR, Sorbonne Université, CEA Saclay

Yvon MADAY, Sorbonne Université, Institut Universitaire de France

Marc TAJCHMAN, CEA Saclay

In the field of nuclear energy, computations of complex two-phase flows are required for the design and safety studies of nuclear reactors. System codes are dedicated to the thermal-hydraulic analysis of nuclear reactors at system scale by simulating the whole reactor. We are here interested in the Cathare code developed by CEA [1]. Typical cases involve up to a million of numerical time iterations, computing the approximate solution during long physical simulation times. A space domain decomposition method has already been implemented and to improve the response time, we will consider a strategy of time domain decomposition, based on the *parareal method* [3].

The Cathare time discretization is based on a multistep time scheme. In this work, we derive a strategy to adapt the parareal algorithm to multistep schemes that is not intrusive in the code. We propose a variant of the parareal algorithm for time dependent problems involving a multistep time scheme in the coarse and/or fine propagators. This choice can potentially bring higher approximation orders than plain one-step methods but the initialization of each time window needs to be appropriately chosen. Here, we explore some possible initializations and demonstrate their relevance on a Dahlquist test equation followed by numerical results on an advection-diffusion equation and on an industrial test case with an application on the Cathare code [2].

Références

- D. BESTION, The physical closure laws in the CATHARE code, Nuclear Engineering and Design, vol. 124, 1990.
- [2] G.F. HEWITT, J.M. DELHAYE, N. ZUBER, Multiphase science and technology, vol. 6, 1991.
- [3] J.-L. LIONS, Y. MADAY, G. TURINICI, Résolution par un schéma en temps "pararéel", C. R. Acad. Sci. Paris, 2001.

Katia AÏT AMEUR, Laboratoire Jacques Louis Lions, Sorbonne Université, 75005 Paris, France CEA Saclay - DEN/DANS/DM2S/STMF/LMES - 91191 Gif-Sur-Yvette Cedex, France aitameur.katia@gmail.com
Yvon MADAY, Laboratoire Jacques Louis Lions, Sorbonne Université, 75005 Paris, France maday@ann.jussieu.fr
Marc TAJCHMAN, CEA Saclay - DEN/DANS/DM2S/STMF/LMES - 91191 Gif-Sur-Yvette Cedex, France marc.tajchman@cea.fr