
Existence and uniqueness results
for the pressureless Euler-Poisson system

Shuyang XIANG, Laboratoire Jacques-Louis Lions

We study the Euler-Poisson system describing the evolution of a fluid without pressure effect and, more
generally, a class of nonlinear hyperbolic systems with the same structure: More generally, in this paper
we cover a class of systems:

∂tρ+ ∂x(ρf ′(u)) = 0, (1a)

∂t(ρu) + ∂x(ρf ′(u)u) = ρh(
∫ x

−∞ ρdy), (1b)

with u : R+ × R → R and ρ : R+ × R → R+. In the above, h : R → R is a given Lipschitz continuous
function and f : R→ R satisfies the following two assumptions:

1. f ∈ C2(R) is a strictly convex function;

2. lim
|x|→∞

f(x)
|x| =∞.

We investigate the initial value problem and generalize a method introduced by LeFloch in 1990 and
based on Volpert’s product and Lax’s explicit formula. A well-posed theory is obtained when one compo-
nent of the system is a measure-valued solution, while the second one has bounded variation. Existence
is established for general initial data, while uniqueness is guaranteed only when the initial data does not
generate rarefaction centers. We first solve a nonconservative version of the problem and construct solu-
tions with bounded variation. The solutions to the systems of interest is then obtained by differentiation,
which provides us with a complete theory of existence and uniqueness for both formulations.
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