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We consider the following general form of hyperbolic conservation laws for an unknown vector W (x, t) ∈
Rm that depends on a space variable x = (x1 . . . xd), d = 2 or 3, and time t according to

∂tW +

k=d∑
k=1

∂kF
k(W ) = S, (1)

with the usual notations ∂t = ∂/∂t and ∂k = ∂/∂xk. In equation (1), functions F k(W ) and S characterize
the physical model and we classically define the flux of the system by F (W,n) = F k(W )nk for space vector
n = (n1 . . . nd) ∈ Rd. This very general mathematical framework can be applied to electromagnetism,
fluid mechanics, multiphase flows, magneto-hydro-dynamics, Vlasov plasmas, etc.

We consider a mesh of the computational domain Ω. In each mesh cell L, we approximate the field by a
linear combination of basis functions ψL

j ,

W (x, t) = W j
L(t)ψL

j (x), x ∈ L, (2)

and apply the Discontinuous Galerkin (DG) approximation,

∀L,∀i
∫
L

∂tWψL
i −

∫
L

F (W,W,∇ψL
i ) +

∫
∂L

F (WL,WR, nLR)ψL
i = 0, (3)

where R is the neighbour cells along ∂L, nLR the unit normal vector on ∂L oriented from L to R, and
F (WL,WR, n) is the numerical flux, which satisfies F (W,W,n) = F k(W )nk. The DG methods is well-
suited for parallel computing on GPU (Graphic Processing Units): it requires a large amount of uniform
and simple computations, relies on explicit time-integration, and can be formulated to present a regular
and local data access pattern.

In this work, we explain how we have implemented a general DG method for multi-GPU computations
with the OpenCL and MPI libraries in order to achieve high efficiency. We also explain how the basis
is essentially built on Gauss-Legendre or Gauss-Lobatto points by tensor products of one-dimensional
Lagrange polynomials. We thus have nice interpolation property and obtain a nodal basis [2].

Our choice of basis functions allows for several standard optimizations such as local memory prefetching,
exploitation of the sparse nature of the tensor basis [1], etc. The implementation relies on a splitting of
the DG mesh into sub-domains and sub-zones. We rely on the OpenCL asynchronous task graph in order
to overlap OpenCL computations, memory transfers and MPI communications.
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