Asynchronous OpenCL/MPI Discontinuous Galerkin Solver for Conservation laws

Malcolm ROBERTS. Université de Strasbourg

M. GUTNIC, P. HELLY, M. MASSARO, Université de Strasbourg

Thomas STRUB, AxesSim

We consider the following general form of hyperbolic conservation laws for an unknown vector $W(x,t) \in \mathbb{R}^m$ that depends on a space variable $x = (x^1 \ldots x^d)$, $d = 2$ or 3, and time t according to

$$\partial_t W + \sum_{k=1}^{k=d} \partial_k F^k(W) = S,$$

with the usual notations $\partial_t = \partial / \partial t$ and $\partial_k = \partial / \partial x^k$. In equation (1), functions $F^k(W)$ and S characterize the physical model and we classically define the flux of the system by $F^k(W) n_k$ for space vector $n = (n_1 \ldots n_d) \in \mathbb{R}^d$. This very general mathematical framework can be applied to electromagnetism, fluid mechanics, multiphase flows, magneto-hydro-dynamics, Vlasov plasmas, etc.

We consider a mesh of the computational domain Ω. In each mesh cell L, we approximate the field by a linear combination of basis functions ψ^L_i,

$$W(x,t) = W^L_i(t) \psi^L_i(x), \quad x \in L,$$

and apply the Discontinuous Galerkin (DG) approximation,

$$\forall L, \forall i \int_L \partial_t W \psi^L_i - \int_L F(W,W,\nabla \psi^L_i) + \int_{\partial L} F(W_L,W_R,n_{LR}) \psi^L_i = 0,$$

where R is the neighbour cells along ∂L, n_{LR} the unit normal vector on ∂L oriented from L to R, and $F(W_L,W_R,n)$ is the numerical flux, which satisfies $F(W,W,n) = F^k(W)n_k$. The DG methods is well-suited for parallel computing on GPU (Graphic Processing Units): it requires a large amount of uniform and simple computations, relies on explicit time-integration, and can be formulated to present a regular and local data access pattern.

In this work, we explain how we have implemented a general DG method for multi-GPU computations with the OpenCL and MPI libraries in order to achieve high efficiency. We also explain how the basis is essentially built on Gauss-Legendre or Gauss-Lobatto points by tensor products of one-dimensional Lagrange polynomials. We thus have nice interpolation property and obtain a nodal basis [2].

Our choice of basis functions allows for several standard optimizations such as local memory prefetching, exploitation of the sparse nature of the tensor basis [1], etc. The implementation relies on a splitting of the DG mesh into sub-domains and sub-zones. We rely on the OpenCL asynchronous task graph in order to overlap OpenCL computations, memory transfers and MPI communications.

Références

Malcolm ROBERTS, M. GUTNIC, P. HELLY, M. MASSARO, IRMA - UMR 7501, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg Cedex - malcolm.i.w.roberts@gmail.com,

Thomas STRUB, AxesSim, rue Jean Sapidus, 67400 Illkirch-Graffenstaden - thomas.strub@axessim.fr

1Work supported by the french defence agency DGA, Labex ANR-11-LABX-0055-IRMIA and AxesSim company.