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The chemical behaviour of atoms and molecules is described by quantum mechanics.
Quantum mechanics for a molecule with N electrons boils down to the many-electron Schrödinger equation
for a function ψ ∈ L2((R× Z2)3N ;C), namely the wavefunction . The main drawback of this approach
is computational. In order to predict the chemical behaviour of H2O (10 electrons) using a 10 gridpoints
discretization of R, we need to solve the Schrödinger equation on 1030 gridpoints. Hohenberg, Kohn and
Sham introduced, in [?] and [?], the Density Functional Theory as an approximate computational method
for solving the Schrödinger equation at a more feasible cost.
The main idea of the DFT is to compute only the marginal ρ(x1) =

∫
γNdx2 · · · dxN , where γN =∑

s1,··· ,sN∈Z2
|ψ(x1, s1, · · · , xN , sN )|2 is the joint probability density of electrons at positions x1, · · · , xN ∈

R3 (and si is the spin variable), instead of the full wavefunction ψ. One of the scenario of interest for the
DFT is when the repulsion between the electrons largely dominates over the kinetic energy. In this case
we can reformulate it as an Optimal Transport problem.

Optimal transportation theory dates back to 1781 when Monge posed the problem of finding the optimal
way to move a pile of dirt to a hole of the same volume. Kantorovich provided a generalised relaxed
version in 1942. It is today known as the Monge-Kantorovich problem . Here we focus on the extension
of the Monge-Kantorovich problem to the multi-marginal framework and its application to the DFT
proposed in [?] and [?]. We propose to adapt a recently introduced [?] numerical method to solve it.
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