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Motivation

 

 

heterogeneous materials (e.g. composite materials).

we consider the stationary heat equation: −div [A∇u] = f , where A is the
conductivity matrix, u is the temperature and f is the source term.

we want an efficient numerical method that provides accurate
approximation of the temperature and its gradient.

Difficulty: A varies at a small scale.

Congrès SMAI, Guidel, 23-27 mai 2011 – p. 2



Multiscale FEM: the deterministic setting

−div [Aε∇uε] = f in D, uε ∈ H1
0 (D),

where the matrix Aε is symmetric, satisfies the standard coercivity and
boundedness conditions and varies at the scale ε (e.g. Aε(x) = A

(
x
ε

)
).

The variational formulation reads:

Find uε ∈ H1
0 (D) such that, ∀v ∈ H1

0 (D), Aε(u
ε, v) = b(v),

where

Aε(u, v) =

∫

D

(∇v)T Aε∇u and b(v) =

∫

D

f v.

The MsFEM approach: variational approximation where the basis functions
are defined numerically and encode the fast oscillations. (see [Efendiev and
Hou, 2009])
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A three step method
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A three step method

Coarse mesh with a P1 Finite Element basis φ0,K
i .
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A three step method

Coarse mesh with a P1 Finite Element basis φ0,K
i .

MsFEM basis





−div(Aε∇φε,K
i ) = 0 in K

φε,K
i = φ0,K

i on ∂K

The φε,K
i are computed independently (in parallel) over each K.
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A three step method

Coarse mesh with a P1 Finite Element basis φ0,K
i .

MsFEM basis





−div(Aε∇φε,K
i ) = 0 in K

φε,K
i = φ0,K

i on ∂K

The φε,K
i are computed independently (in parallel) over each K.

Galerkin approximation of the original problem with MsFEM basis φε,K
i .
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Numerical illustration
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FEM Basis vs MsFEM basis

The MsFEM method is accurate even with a coarse mesh, because the basis
functions encode the specific fast oscillations of the problem.
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Natural adaptation to the stochastic setting

−div [Aε (x, ω)∇uε(x, ω)] = f(x) in D, uε ∈ H1
0 (D),

and assume that we wish to build an estimate of the mean E(uε(x, ·)) using a
Monte-Carlo simulation method.

Then, for each realization of Aε,m(x, ω),

first construct a (random) MsFEM basis φε,m
i (x, ω)

and next compute the Galerkin approximation uh
m(x, ω)

and approximate E(uε(x, ·)) ∼ 1
M

M∑
m=1

uh
m(x, ω).

This is extremly expensive.

Congrès SMAI, Guidel, 23-27 mai 2011 – p. 6



Natural adaptation to the stochastic setting

−div [Aε (x, ω)∇uε(x, ω)] = f(x) in D, uε ∈ H1
0 (D),

and assume that we wish to build an estimate of the mean E(uε(x, ·)) using a
Monte-Carlo simulation method.

Then, for each realization of Aε,m(x, ω),

first construct a (random) MsFEM basis φε,m
i (x, ω)

and next compute the Galerkin approximation uh
m(x, ω)

and approximate E(uε(x, ·)) ∼ 1
M

M∑
m=1

uh
m(x, ω).

This is extremly expensive.

Look for a specific setting, relevant from the application viewpoint, and where
more affordable methods can be used.
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Outline

A weakly stochastic setting

Numerical results

Error bounds
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A weakly stochastic setting

Model: we now consider the problem

−div
[
Aε

η (x, ω)∇uε(x, ω)
]

= f(x) in D, uε ∈ H1
0 (D)

with

Aε
η(x, ω) = Aε

0(x) + ηAε
1(x, ω)

where η ∈ R is a small parameter, uniquely determined by

∥∥∥∥
Aε

1

Aε
0

∥∥∥∥
L∞

= 1.

Aε
0 is a deterministic matrix uniformly elliptic;

Aε
1(·, ω) is a bounded random matrix.

Aε
η is a perturbation of the deterministic matrix Aε

0.

For a review on various weakly stochastic settings see [C. Le Bris, Enumath
2009]
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A weakly stochastic material

An example of a perturbation of a periodic material:

 

 

 

 

Deterministic matrix Aε
0. Stochastic perturbation Aε

η, with
η = 0.1.
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A weakly stochastic MsFEM

Aε
η(x, ω) = Aε

0(x) + ηAε
1(x, ω)

Adaptation of the MsFEM:

Compute MsFEM basis only once, with the deterministic matrix Aε
0;

Perform Monte-Carlo realizations at the macro-scale level.

MsFEM basis:

−div
[
A

ε
0∇φε,K

i

]
= 0 in K, φε,K

i = φ0,K
i on ∂K

build the finite dimentional space: Wh := span {φε
i , i = 1, . . . , L} ⊂ H1

0 (D).

Macro scale problem: for each realization m compute uws,h
m ∈ Wh such that

∀v ∈ Wh,

∫

D

(∇v)T
A

ε,m
η (·, ω)∇uws,h

m (·, ω) =

∫

D

f v.

Note that we have used different conductivity matrices for the MsFEM basis function

problem and the macro scale problem
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Numerical results

We compute:

Reference solution uε (fine mesh FEM solution);

Standard MsFEM uh;

Weakly stochastic MsFEM uws,h.

Our error estimator is

e(u1, u2) = E

( ||u1 − u2||H1

||u2||H1

)

We estimate the expectation with an empirical mean µM . The Central Limit
Theorem yields

|E(X) − µM (X)| ≤ 1.96
σM√
M

,

where σM denotes the empirical standard deviation.
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A classical test case

Aη(x, y, ω) =
∑

(k,l)∈Z2

1(k,k+1](x)1(l,l+1](y)

(
2 + 1.8 sin(2πx)

2 + 1.8 sin(2πy)

+
2 + sin(2πy)

2 + 1.8 sin(2πx)

)
(1 + ηXk,l(ω)) Id2,

where Xk,l(ω) are i.i.d. scalar random variables uniformly distributed over
[0, 1].

We compute uε solution to

−div
[
Aη

(x

ε
,
y

ε
, ω

)
∇uε

]
= 1 in D, uε ∈ H1

0 (D)

in the domain D = (0, 1)2 with ε = 0.025.

We next proceed with the two MsFEM methods, using a coarse mesh size
H = 1/30 and a fine mesh h = ε/80. We consider M = 30 realizations.
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Error (uh: General MsFEM; uws,h: weakly-stochastic MsFEM)

H1(D) relative error (in %).

η e(uh, uε) e(uws,h, uε) e(uws,h, uh)

1 8.12 ± 0.19 17.37 ± 0.78 15.51 ± 0.87

0.1 7.17 ± 0.02 7.62 ± 0.07 2.56 ± 0.10

0.01 7.15 ± 0.002 7.28 ± 0.007 1.39 ± 0.002

provided that η is small (here η ≤ 0.1), uws,h is an approximation of uε as
accurate as uh

a large computational gain, of order M , is observed, as the MsFEM basis
function is only computed once.

same conclusion if we look at the energy defined by

E = E

(∫

D

Aε
η(x, ·)∇u(x, ·) · ∇u(x, ·)dx

)
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Error bounds: the deterministic case (η = 0)

Assume Aε
η=0(x) := Aper

(x

ε

)

where Aper is a deterministic periodic matrix.

Theorem 1: Consider uh, solution of MsFEM problem. There exists C,
independent of h and ε such that

‖uε − uh‖H1(D) ≤ C
(
h +

ε

h
+

√
ε
)

.

‖uε − uh‖L2(D) ≤ C
(
h2 +

ε

h
+ ε

)
.

The two main arguments of the proof are

Homogenization result

Interpolation / Finite Element estimate
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Sketch of the proof

Recall that Wh := span {φε
i , i = 1, . . . , L}.

‖uε − uh‖H1(D) ≤ inf
vh∈Wh

‖uε − vh‖H1(D)

≤ ‖uε − ũε‖H1(D) + inf
vh∈Wh

‖ũε − vh‖H1(D)

where ũε is the two-scale expansion of uε (homogenization setting).

Bound on the first term: periodic homogenization result

‖uε − ũε‖H1(D) ≤ C
√

ε

Bound on the second term: (standard) interpolation result.
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Error bounds: the weakly stochastic case (η 6= 0)

Assume Aε
η(x, ω) := Aper

(x

ε

)
+ η

∑

k∈Z2

1Q+k

(x

ε

)
Bper

(x

ε

)
Xk(ω)

where Aper and Bper are deterministic periodic matrices and (Xk(ω))k∈Z2 is a
sequence of i.i.d. scalar random variables.

Theorem 2: Consider uws,h, solution of the weak stochastic MsFEM
problem. There exists C, deterministic, independent of h, ε and η such
that
√

E

(
‖uε − uws,h(·, ω)‖2

H1(D)

)
≤ C

(
h +

ε

h
+

√
ε + η

)

√
E

(
‖uε − uws,h(·, ω)‖2

L2(D)

)
≤ C

(
h2 +

ε

h
+ ε + η

ε

h
ln(h−1) + η2

)

If η = 0, we recover the standard MsFEM bound.
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Conclusions

The approach has been

tested in several 2D situations.

is as accurate as the standard MsFEM provided that η is small.

a computational gain of order M , the number of realizations, is observed.
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