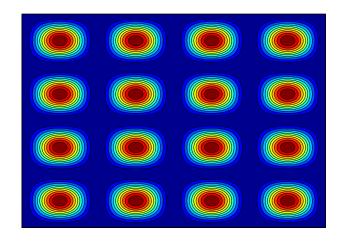
Méthode Eléments Finis multiéchelles pour les matériaux faiblement aléatoires

Florian Thomines

ENPC et INRIA

En collaboration avec C. Le Bris et F. Legoll (ENPC et INRIA)

Congrès SMAI, Guidel



- heterogeneous materials (e.g. composite materials).
- we consider the stationary heat equation: $-\operatorname{div}[A\nabla u] = f$, where A is the conductivity matrix, u is the temperature and f is the source term.
- we want an efficient numerical method that provides accurate approximation of the temperature and its gradient.
- Difficulty: A varies at a small scale.

 $-\mathrm{div}\left[A^{\varepsilon}\nabla u^{\varepsilon}\right]=f\quad \text{in}\quad \mathcal{D},\qquad u^{\varepsilon}\in H^1_0(\mathcal{D}),$

where the matrix A^{ε} is symmetric, satisfies the standard coercivity and boundedness conditions and varies at the scale ε (*e.g.* $A^{\varepsilon}(x) = A\left(\frac{x}{\varepsilon}\right)$).

The variational formulation reads:

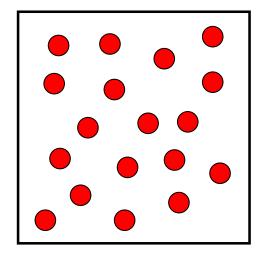
Find $u^{\varepsilon} \in H_0^1(\mathcal{D})$ such that, $\forall v \in H_0^1(\mathcal{D}), \ \mathcal{A}_{\varepsilon}(u^{\varepsilon}, v) = b(v),$

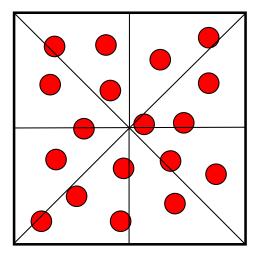
where

$$\mathcal{A}_{\varepsilon}(u,v) = \int_{\mathcal{D}} (\nabla v)^T A^{\varepsilon} \nabla u \quad \text{and} \quad b(v) = \int_{\mathcal{D}} f v.$$

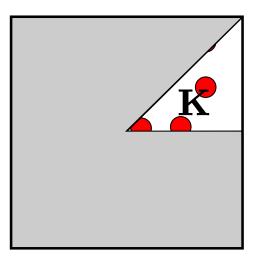
The MsFEM approach: variational approximation where the basis functions are defined numerically and encode the fast oscillations. (see [Efendiev and Hou, 2009])

A three step method





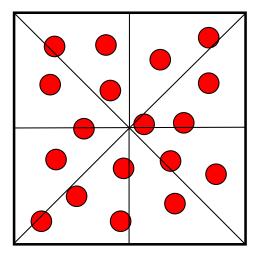
• Coarse mesh with a P1 Finite Element basis $\phi_i^{0,\mathbf{K}}$.



• Coarse mesh with a P1 Finite Element basis $\phi_i^{0,\mathbf{K}}$.

$$\begin{array}{l} \text{MsFEM basis} \\ & & \\$$

The $\phi_i^{\varepsilon, \mathbf{K}}$ are computed independently (in parallel) over each \mathbf{K} .

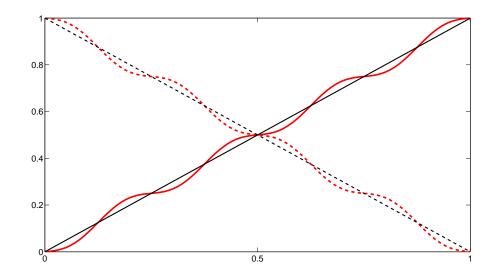


• Coarse mesh with a P1 Finite Element basis $\phi_i^{0,\mathbf{K}}$.

$$\begin{array}{l} \text{MsFEM basis} \\ \phi_i^{\varepsilon,\mathbf{K}} = \phi_i^{0,\mathbf{K}} \end{array} \begin{array}{l} \text{on } \mathcal{K} \\ \phi_i^{\varepsilon,\mathbf{K}} = \phi_i^{0,\mathbf{K}} \end{array} \end{array} \begin{array}{l} \text{on } \mathcal{K} \\ \text{on } \partial \mathbf{K} \end{array}$$

The $\phi_i^{\varepsilon, \mathbf{K}}$ are computed independently (in parallel) over each \mathbf{K} .

• Galerkin approximation of the original problem with MsFEM basis $\phi_i^{\varepsilon, \mathbf{K}}$.



FEM Basis vs MsFEM basis

The MsFEM method is accurate even with a coarse mesh, because the basis functions encode the specific fast oscillations of the problem.

$$-\operatorname{div}\left[A^{\varepsilon}\left(x,\omega\right)\nabla u^{\varepsilon}(x,\omega)\right]=f(x)\quad \text{in}\quad \mathcal{D},\qquad u^{\varepsilon}\in H^{1}_{0}(\mathcal{D}),$$

and assume that we wish to build an estimate of the mean $\mathbb{E}(u^{\varepsilon}(x, \cdot))$ using a Monte-Carlo simulation method.

Then, for each realization of $A^{\varepsilon,m}(x,\omega)$,

- first construct a (random) MsFEM basis $\phi_i^{\varepsilon,m}(x,\omega)$
- and next compute the Galerkin approximation $u_m^h(x, \omega)$

and approximate $\mathbb{E}(u^{\varepsilon}(x,\cdot)) \sim \frac{1}{M} \sum_{m=1}^{M} u_m^h(x,\omega)$. This is extremly expensive.

$$-\operatorname{div}\left[A^{\varepsilon}\left(x,\omega\right)\nabla u^{\varepsilon}(x,\omega)\right]=f(x)\quad \text{in}\quad \mathcal{D},\qquad u^{\varepsilon}\in H^{1}_{0}(\mathcal{D}),$$

and assume that we wish to build an estimate of the mean $\mathbb{E}(u^{\varepsilon}(x, \cdot))$ using a Monte-Carlo simulation method.

Then, for each realization of $A^{\varepsilon,m}(x,\omega)$,

- first construct a (random) MsFEM basis $\phi_i^{\varepsilon,m}(x,\omega)$
- and next compute the Galerkin approximation $u_m^h(x, \omega)$

and approximate $\mathbb{E}(u^{\varepsilon}(x, \cdot)) \sim \frac{1}{M} \sum_{m=1}^{M} u_m^h(x, \omega)$. This is extremly expensive.

Look for a specific setting, relevant from the application viewpoint, and where more affordable methods can be used.

Outline

- A weakly stochastic setting
- Numerical results
- Error bounds

Model: we now consider the problem

$$-\mathrm{div}\left[A^{\varepsilon}_{\eta}\left(x,\omega\right)\nabla u^{\varepsilon}(x,\omega)\right]=f(x)\quad \text{in}\quad \mathcal{D},\qquad u^{\varepsilon}\in H^{1}_{0}(\mathcal{D})$$

with

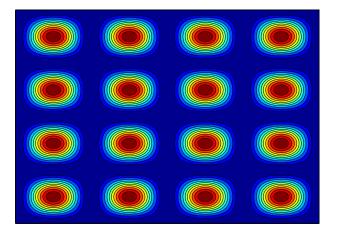
$$A^{\varepsilon}_{\eta}(x,\omega) = A^{\varepsilon}_{0}(x) + \eta A^{\varepsilon}_{1}(x,\omega)$$

where $\eta \in \mathbb{R}$ is a small parameter, uniquely determined by $\left\|\frac{A_1^{\varepsilon}}{A_0^{\varepsilon}}\right\|_{L^{\infty}} = 1$.

- A_0^{ε} is a deterministic matrix uniformly elliptic;
- $A_1^{\varepsilon}(\cdot, \omega)$ is a bounded random matrix.
- A_{η}^{ε} is a perturbation of the deterministic matrix A_{0}^{ε} .

For a review on various weakly stochastic settings see [C. Le Bris, Enumath 2009]

An example of a perturbation of a periodic material:



Deterministic matrix A_0^{ε} .

Stochastic perturbation A_{η}^{ε} , with $\eta = 0.1$.

$$A_{\eta}^{\varepsilon}(x,\omega) = A_{0}^{\varepsilon}(x) + \eta A_{1}^{\varepsilon}(x,\omega)$$

Adaptation of the MsFEM:

- Compute MsFEM basis only once, with the deterministic matrix A_0^{ε} ;
- Perform Monte-Carlo realizations at the macro-scale level.

MsFEM basis:

$$-\operatorname{div}\left[\mathbf{A}_{\mathbf{0}}^{\varepsilon}\nabla\phi_{i}^{\varepsilon,\mathbf{K}}\right] = 0 \quad \text{in} \quad \mathbf{K}, \qquad \phi_{i}^{\varepsilon,\mathbf{K}} = \phi_{i}^{0,\mathbf{K}} \quad \text{on} \quad \partial\mathbf{K}$$

build the finite dimensional space: $\mathcal{W}_h := \text{span} \{ \phi_i^{\varepsilon}, i = 1, \dots, L \} \subset H_0^1(\mathcal{D}).$

Macro scale problem: for each realization m compute $u_m^{ws,h} \in W_h$ such that

$$\forall v \in \mathcal{W}_h, \quad \int_{\mathcal{D}} (\nabla v)^T \mathbf{A}^{\varepsilon, \mathbf{m}}_{\eta}(\cdot, \omega) \nabla u^{ws, h}_m(\cdot, \omega) = \int_{\mathcal{D}} f v.$$

Note that we have used different conductivity matrices for the MsFEM basis function problem and the macro scale problem

We compute:

- Reference solution u^{ε} (fine mesh FEM solution);
- Standard MsFEM u^h ;
- Weakly stochastic MsFEM $u^{ws,h}$.

Our error estimator is

$$e(u_1, u_2) = \mathbb{E}\left(\frac{||u_1 - u_2||_{H^1}}{||u_2||_{H^1}}\right)$$

We estimate the expectation with an empirical mean μ_M . The Central Limit Theorem yields

$$|\mathbb{E}(X) - \mu_M(X)| \le 1.96 \frac{\sigma_M}{\sqrt{M}},$$

where σ_M denotes the empirical standard deviation.

$$A_{\eta}(x, y, \omega) = \sum_{(k,l)\in\mathbb{Z}^2} \mathbf{1}_{(k,k+1]}(x) \mathbf{1}_{(l,l+1]}(y) \left(\frac{2+1.8\sin(2\pi x)}{2+1.8\sin(2\pi y)} + \frac{2+\sin(2\pi y)}{2+1.8\sin(2\pi x)}\right) (1+\eta X_{k,l}(\omega)) \operatorname{Id}_2,$$

where $X_{k,l}(\omega)$ are i.i.d. scalar random variables uniformly distributed over [0,1].

• We compute u^{ε} solution to

$$-\operatorname{div}\left[A_{\eta}\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon},\omega\right)\nabla u^{\varepsilon}\right] = 1 \quad \text{in} \quad \mathcal{D}, \qquad u^{\varepsilon} \in H^{1}_{0}(\mathcal{D})$$

in the domain $\mathcal{D} = (0, 1)^2$ with $\varepsilon = 0.025$.

• We next proceed with the two MsFEM methods, using a coarse mesh size H = 1/30 and a fine mesh $h = \varepsilon/80$. We consider M = 30 realizations.

Error (u^h) : *General MsFEM;* $u^{ws,h}$: *weakly-stochastic MsFEM*)

 $H^1(\mathcal{D})$ relative error (in %).

η	$e(u^h, u^{\varepsilon})$	$e(u^{ws,h}, u^{\varepsilon})$	$e(u^{ws,h}, u^h)$
1	8.12 ± 0.19	17.37 ± 0.78	15.51 ± 0.87
0.1	7.17 ± 0.02	7.62 ± 0.07	2.56 ± 0.10
0.01	7.15 ± 0.002	7.28 ± 0.007	1.39 ± 0.002

- provided that η is small (here $\eta \leq 0.1$), $u^{ws,h}$ is an approximation of u^{ε} as accurate as u^h
- a large computational gain, of order M, is observed, as the MsFEM basis function is only computed once.
- same conclusion if we look at the energy defined by

$$E = \mathbb{E}\left(\int_{\mathcal{D}} A_{\eta}^{\varepsilon}(x, \cdot) \nabla u(x, \cdot) \cdot \nabla u(x, \cdot) dx\right)$$

Congrès SMAI, Guidel, 23-27 mai 2011 - p. 13

Assume
$$A_{\eta=0}^{\varepsilon}(x) := A_{\mathrm{per}}\left(\frac{x}{\varepsilon}\right)$$

where A_{per} is a deterministic periodic matrix.

Theorem 1: Consider u^h , solution of MsFEM problem. There exists C, independent of h and ε such that

$$\|u^{\varepsilon} - u^{h}\|_{H^{1}(\mathcal{D})} \leq C\left(h + \frac{\varepsilon}{h} + \sqrt{\varepsilon}\right).$$
$$\|u^{\varepsilon} - u^{h}\|_{L^{2}(\mathcal{D})} \leq C\left(h^{2} + \frac{\varepsilon}{h} + \varepsilon\right).$$

The two main arguments of the proof are

- Homogenization result
- Interpolation / Finite Element estimate

Recall that $\mathcal{W}_h := \operatorname{span} \{ \phi_i^{\varepsilon}, i = 1, \dots, L \}.$

$$\begin{aligned} \|u^{\varepsilon} - u^{h}\|_{H^{1}(\mathcal{D})} &\leq \inf_{v_{h} \in \mathcal{W}_{h}} \|u^{\varepsilon} - v^{h}\|_{H^{1}(\mathcal{D})} \\ &\leq \|u^{\varepsilon} - \widetilde{u}^{\varepsilon}\|_{H^{1}(\mathcal{D})} + \inf_{v_{h} \in \mathcal{W}_{h}} \|\widetilde{u}^{\varepsilon} - v^{h}\|_{H^{1}(\mathcal{D})} \end{aligned}$$

where $\widetilde{u}^{\varepsilon}$ is the two-scale expansion of u^{ε} (homogenization setting).

Bound on the first term: periodic homogenization result

 $\|u^{\varepsilon} - \widetilde{u}^{\varepsilon}\|_{H^1(\mathcal{D})} \le C\sqrt{\varepsilon}$

Bound on the second term: (standard) interpolation result.

Error bounds: the weakly stochastic case ($\eta \neq 0$ *)*

Assume
$$A_{\eta}^{\varepsilon}(x,\omega) := A_{\mathrm{per}}\left(\frac{x}{\varepsilon}\right) + \eta \sum_{k \in \mathbb{Z}^2} \mathbf{1}_{Q+k}\left(\frac{x}{\varepsilon}\right) B_{\mathrm{per}}\left(\frac{x}{\varepsilon}\right) X_k(\omega)$$

where A_{per} and B_{per} are deterministic periodic matrices and $(X_k(\omega))_{k \in \mathbb{Z}^2}$ is a sequence of i.i.d. scalar random variables.

Theorem 2: Consider $u^{ws,h}$, solution of the weak stochastic MsFEM problem. There exists *C*, deterministic, independent of *h*, ε and η such that

$$\sqrt{\mathbb{E}\left(\|u^{\varepsilon} - u^{ws,h}(\cdot,\omega)\|_{H^{1}(\mathcal{D})}^{2}\right)} \leq C\left(h + \frac{\varepsilon}{h} + \sqrt{\varepsilon} + \eta\right)$$

$$\sqrt{\mathbb{E}\left(\|u^{\varepsilon} - u^{ws,h}(\cdot,\omega)\|_{L^{2}(\mathcal{D})}^{2}\right)} \leq C\left(h^{2} + \frac{\varepsilon}{h} + \varepsilon + \eta\frac{\varepsilon}{h}\ln(h^{-1}) + \eta^{2}\right)$$

If $\eta = 0$, we recover the standard MsFEM bound.

Conclusions

The approach has been

- tested in several 2D situations.
- is as accurate as the standard MsFEM provided that η is small.
- a computational gain of order M, the number of realizations, is observed.

A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and FT, *Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments*, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, in press.

C. Le Bris, F. Legoll and FT, *Multiscale FEM for weakly random problems and related issues*, in preparation.

Support from EOARD is gratefully acknowledged.