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Optimal control’s tools

The cost quadratic functional considered is as below

J(v) :=
1

2
‖y(T ) − y target‖2 +

α

2

∫ T

0

‖v‖2dt (1)

The primal state variable y(t, x ; v) depends linearly on the control v

through the heat equation starting form the initial data y0

The first derivative of the Euler-Lagrange equations gives the following
optimality system ;

Primal



∂ty − µ∆y = Bv
y(t = 0) = y0

(2)

Dual



∂tp + µ∆p = 0
p(t = T ) = y(T ) − y target (3)

gradient ∇J(v) = αv +t Bp. (4)

MK.Riahi, Y.Maday & J.Salomon () Parallel In Time Optimal Control Solver 22 mai 2011 2 / 21



Summary

1 Introduction
Tools of : Optimal Control Solver

2 SITPOC : Parallel optimal control solver
Parallelization setting

3 Coupling SITPOC & Parareal
Parareal algorithm
PITPOC algorithm

4 Numerical experiments

5 Further reading

6 Conclusion

MK.Riahi, Y.Maday & J.Salomon () Parallel In Time Optimal Control Solver 22 mai 2011 3 / 21



Parallelization of the optimal control solver

Now we aim to :

Divide the global system into series of dependent time problems

Solve iteratively sub problem independently, so that in the limit the
solution of the global problem is obtained.

The key ingredient is the introduction of the intermediate targets and
initial conditions as follows.
∀n ≥ 0

◮

λn := y(tn; vn), γn := p(tn; vn)on [0, T ] × Ω (5)

◮

ξ(tn; vn) := y(tn; vn) − p(tn; vn), on [0, T ] × Ω (6)
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Parallelization setting

That definition allows us to define sub cost functional as follows ;

Jn(wn, λn, ξn+1) :=
1

2
‖yn(T

−

n+1
) − ξn+1‖

2 +
α

2

∫ Tn+1

Tn

‖wn‖
2dt (7)

where yn(T
−

n+1
) is the solution at time t = Tn+1 evolved from the initial

data yn(T
+
n ) = λn according to the PDE : ∂tyn + µ∆yn = Bwn. Here we

note that the local (on In := [Tn,Tn+1]) optimality system is :

{

∂tyn − µ∆yn = Bwn on In × Ω
yn(t = n) = λn

(8)

{

∂tpn + µ∆pn = 0 on In × Ω
pn(t

−

n+1
) = yn(t

−

n+1
) − ξn+1

(9)

∇Jn(wn) = αwn +t Bpn. (10)

MK.Riahi, Y.Maday & J.Salomon () Parallel In Time Optimal Control Solver 22 mai 2011 5 / 21



Theoretical support

Lemma (Consistence Lemma)

Let τ ∈]0, T [, and the optimal control problem : Find w⋆
τ ∈ H such that

w⋆
τ := argminw∈HJτ (w)

where

Jτ (w) :=
1

2
‖y(τ ) − ξ

⋆(τ )‖2 +
α

2

Z Tn+1

Tn

‖w‖2 (11)

with y(τ ) the solution of Equation (2). We have

w⋆
τ = v⋆

I[0,τ ]

Intermediate targets : With the notations above, denote by ξ⋆ the target trajectory
defined by Equation (6) with y = y⋆ and p = p⋆ and by y⋆

n , p⋆
n , v⋆

n the solutions of
Equations (8–10) associated with v⋆. One has :

v⋆
n = v⋆

|In
.

With an arbitrary subinterval index n
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Play SITPOC algorithm
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Over view of the Parareal algorithm

The parareal algorithm is an iterative preconditioned scheme that ensure
convergence at its nth iteration, this happens thanks to the pascal triangle
behavior.

λk+1

n+1
= G∆T (λk+1

n ) + F∆T (λk
n) − G∆T (λk

n) (12)

Compatibility with parallel architecture.

No sleeping process (with some particular implementation).

Fast convergence if it holds (stability question).

For instance we get : when the error is about 1.E − 4

∣

∣

∣

∣

∣

∣

Nb processor 4# 8# 16#

Nb itrations 3 3 3

Wallclock mn : s 2 : 23 1 : 15 0 : 49

∣

∣

∣

∣

∣

∣
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PITPOC algorithm

In this algorithm, our aim is to

Reduce complexity by applying the coarse operator G instead of the
fine operator F

Replace y(T )(v) by λN on the functional J in order to hang over the
target solution y target

Φ
vk ,λk (θ) :=

1

2
‖λk+1

N (θ) − y target‖2 +
α

2

Z T

0

‖vk+1(θ)‖2dt

Use parallel information in order to correct predictor propagator in the
sequential part of the algorithm

Optimize relaxation of the coupled parareal-control algorithm
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Numerical experiments

Play PITPOC algorithm
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Speed up convergence I

Figure: SITPOC : Decaying against number of global iterations
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Speed up convergence II

Figure: PITPOC : Decaying against number of global iterations
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Speed up by reducing complexity I

Figure: Decaying against number of multiplications
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Speed up by reducing complexity II

Figure: Decaying of the functional value per complexity per processor
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Speed up the wallclock Simulation

Figure: Elapsed real time for the simulation with SITPOC algorithm
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We calculate the speed up using a serial and MPI simulation of the
same problem with the same tools used as solvers.

The reference here is the elapsed real time of an ordinary simulation
(for instance optimal time step decent algorithm).

The speed up formula reads

Sp# =
T1#(serial)

Tp#(MPI )
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Elapsed time to reach 1% of the result

∣

∣
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Conclusion & perspectives

Even if we are under the master-slaves net-framework an important
speed up is shown

Conjugate descent is applicable in the parallel resolution, and it may
gives some more speed up.

There is in algebraic interpretation for theses algorithms, that shows
some relationship with the Jacobi process.

Parareal could be coupled with others iterative solvers.

We project to apply these parallel optimal control solvers to non-linear
PDE
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THANK YOU
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