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Consider the gradient flow

U ′(t) = −∇F (U(t)) t ≥ 0, (1)

where U = (u1, . . . , ud)
t , F ∈ C

1,1
loc (R

d ,R). For every solution
U(t), we have

F (U(t)) +

∫ t

0
‖U ′(s)‖2ds = F (U(0)), t ≥ 0.

If U is a solution of (1) which is bounded on [0,+∞), then

ω(U(0)) := {U⋆ : ∃tn → +∞, U(tn) → U⋆}

is a non-empty compact connected subset of

S = {V ∈ Rd : ∇F (V ) = 0}.

Moreover, d
(

U(t), ω(U(0))
)

→ 0 as t → +∞.
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Does U(t) → U⋆ as t → +∞ ?
If d = 1, it is obvious by monotonicity.
If d ≥ 2, it is obviously true if S is discrete, but it is no longer true
in general: counterexample in Palis and De Melo’82.
The following counter-example is given in Absil, Mahony and
Andrews’05 :

F (r , θ) = e−1/(1−r2)

[

1−
4r4

4r4 + (1− r2)4
sin(θ −

1

1− r2
)

]

,

if r < 1 and F (r , θ) = 0 otherwise. We have F ∈ C∞, F (r , θ) > 0
for r < 1 so every point on the circle r = 1 is a global minimizer.
We can check that the curve defined by

θ = 1/(1− r2)

is a trajectory.
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Theorem (Lojasiewicz’65)

If F : Rd → R is real analytic in a neighbourhood of U ∈ Rd , there

exist ν ∈ (0, 1/2], σ > 0 and γ > 0 s.t. for all V ∈ Rd ,

‖V − U‖ < σ ⇒ |F (V )− F (U)|1−ν ≤ γ‖∇F (V )‖. (2)
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Theorem (Lojasiewicz’65)

If F : Rd → R is real analytic in a neighbourhood of U ∈ Rd , there

exist ν ∈ (0, 1/2], σ > 0 and γ > 0 s.t. for all V ∈ Rd ,

‖V − U‖ < σ ⇒ |F (V )− F (U)|1−ν ≤ γ‖∇F (V )‖. (2)

Example: for d = 1 and p ≥ 2, x 7→ |x |p satisfies (2) at x = 0
with ν = 1/p. Also true for 1 < p ≤ 2.
In the ”generic case”’ where ∇2F (U) inversible, ν = 1/2.
Counter-examples: for d = 1, the C∞ function
x 7→ exp(−1/x2) satisfies (2) at x = 0 for ν = 0 (too weak). The
C∞ function

x 7→ exp(−1/x2) sin(1/x)

does not satisfy (2) at x = 0.
NB: see the preprint of Michel Coste on his web page.
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Corollary

If F : Rd → R is real analytic, then for any bounded semi-orbit of

U ′(t) = −∇F (U(t)), there exists U∞ ∈ S s.t. U(t) → U∞ as

t → +∞.

Moreover, let ν be a Lojasiewicz exponent of F at U∞:

• if ν = 1/2, then for t large enough,

F (U(t)) ≤ Ce−αt and ‖U(t)− U∞‖ ≤ C ′e−αt/2,

for some constants α, C and C ′ > 0 ;

• if ν ∈ (0, 1/2), then for t large enough

F (U(t)) ≤ Ct−1/(1−2ν) and ‖U(t)− U∞‖ ≤ C ′t−ν/(1−2ν),

for some constants C and C ′ > 0.

NB : optimal convergence rates. If F (x) = |x |p (p > 2), then
ν = 1/p, ν/(1− 2ν) = 1/(p − 2) and the solution of
x ′(t) = −|x(t)|p−1 is Cp(C + t)1/(2−p).
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A proof (convergence)

−[F (U(t))ν ]′ = −νU ′(t) · ∇F (U(t))F (U(t))ν−1

= ν‖U ′(t)‖‖∇F (U(t))‖F (U(t))ν−1

≥ νγ−1‖U ′(t)‖,

so F (U(tn))
ν − F (U(t))ν ≥ νγ−1

∫ t

tn

‖U ′(s)‖ds.
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A proof (convergence)
F (U(t)) is non increasing and so has a limit F ⋆(= 0). Let
tn → +∞ s.t. U(tn) → U⋆. We have F (U⋆) = F ⋆ and U⋆ ∈ S.
Choose n large enough so that ‖U(tn)− U⋆‖ < σ/2 and
ν−1γF (U(tn))

ν < σ/2, and define

t+ = sup{t ≥ tn | ‖U(s)− U⋆‖ < σ ∀s ∈ [tn, t)}.

For t ∈ [tn, t
+), we have

−[F (U(t))ν ]′ = −νU ′(t) · ∇F (U(t))F (U(t))ν−1

= ν‖U ′(t)‖‖∇F (U(t))‖F (U(t))ν−1

≥ νγ−1‖U ′(t)‖,

so F (U(tn))
ν − F (U(t))ν ≥ νγ−1

∫ t

tn

‖U ′(s)‖ds.

Thus ‖U(t)− U(tn)‖ < σ/2, ∀t ∈ [tn, t
+) and so t+ = +∞,

otherwise ‖U(t+)− U⋆‖ = σ and

‖U(t+)− U⋆‖ ≤ ‖U(t+)− U(tn)‖+ ‖U(tn)− U⋆‖ < σ,

a contradiction. QED.
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Questions:

If we consider (stable) time discretizations of the gradient
flow, can we obtain similar results of convergence to
equilibrium ?

In particular, what happens for the backward Euler scheme ?

What restriction on the time step do we have ?

Can we find a unifying background ?
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The backward Euler scheme for (1) reads: let U0 ∈ Rd , and for
n ≥ 0, let Un+1 solve

Un+1 − Un

∆t
= −∇F (Un+1), (3)

where ∆t > 0 is fixed and F ∈ C 1(Rd ,R). Since existence is not
obvious, we rewrite (3) in the form:

Un+1 ∈ argmin

{

‖V − Un‖2

2∆t
+ F (V ) : V ∈ Rd

}

. (4)

In optimization, (4) is known as the proximal algorithm.
In particular, Un+1 satisfies

F (Un+1) +
1

2∆t
‖Un+1 − Un‖2 ≤ F (Un).

Morgan PIERRE SMAI 2011



By induction, any sequence defined by (4) satisfies

F (Un) +
1

2∆t

n−1
∑

k=0

‖Uk+1 − Uk‖2 ≤ F (U0), ∀n ≥ 0 (5)

This is a stability result.
By (5), it is easy to prove that if (Un)n∈N is a bounded sequence
defined by the proximal algorithm (4), then

ω(U0) :=
{

U⋆ ∈ Rd : ∃nk → +∞, Unk → U⋆
}

is a non-empty compact connected subset of S. Moreover,
d(Un, ω(U0)) → 0 as n → +∞.

Question : does Un → U⋆ as n → +∞ ?
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Theorem (Attouch and Bolte’09, Merlet and P.’10)

If F : Rd → R is real analytic, and if (Un)n is a bounded sequence

defined by the proximal algorithm (4), then there exists U∞ ∈ S
s.t. Un → U∞ as n → +∞.
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Theorem (Attouch and Bolte’09, Merlet and P.’10)

If F : Rd → R is real analytic, and if (Un)n is a bounded sequence

defined by the proximal algorithm (4), then there exists U∞ ∈ S
s.t. Un → U∞ as n → +∞.

Remark 1: If lim‖V ‖→+∞ F (V ) = +∞, then (Un)n defined by (4)
is bounded.
Remark 2: A more general version:

variable stepsize 0 < ∆t⋆ ≤ ∆tn ≤ ∆t⋆ < +∞

F : Rd → R real analytic replaced by F : dom(F ) ⊂ Rd → R
continuous and satisfies a Lojasiewicz property

Remark 3: in addition, (optimal) convergence rates
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The proof of convergence extends to many situations:

For any other scalar product on Rd : AU ′(t) = −∇F (U(t)) ,

where A is positive definite (symmetric or not).

Generalizations in infinite dimension (Simon, Jendoubi,
Haraux, Chill,. . . )

Semilinear heat equation: ut = ∆u − f (u), t ≥ 0, x ∈ Ω

Cahn-Hilliard equation (Hoffman, Rybka, Chill, Jendoubi):

ut = −α∆2u +∆f ′(u), t ≥ 0, x ∈ Ω , with

f ′(u) = u3 − u typically, α > 0, and Neumann or periodic BC.
Merlet and P.’10

Cahn-Hilliard equation with dynamic boundary conditions
(Wu, Zheng, Chill, Fasangova, Pruss) Cherfils, Petcu and
P.’10

Cahn-Hilliard-Gurtin equations (Miranville and Rougirel):
gradient-like flow Injrou and P.’10

Morgan PIERRE SMAI 2011



Generalization to second-order gradient-like asymptotically
autonomous flows:

ǫU ′′(t) + U ′(t) = −∇F (U(t)) + G (t), t ≥ 0,

where ǫ > 0 and G (t) −→
∞

0 fast enough: Haraux and

Jendoubi’98, Chill and Jendoubi’03, Grasselli and P., to
appear

Asymptotically autonomous damped wave equation

ǫutt + ut = ∆u − f (u) + g(t), t ≥ 0, x ∈ Ω.

Haraux, Jendoubi, Chill,. . .

Cahn-Hilliard equation with inertial term (Grasselli,
Schimperna, Zelig, Miranville, Bonfoh) Grasselli, Lecoq and
P., to appear

(optimal) convergence rates for 1st and 2nd order
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Application : Allen-Cahn equation

ut(x , t) = α∆u(x , t)− f ′(u(x , t)), t ≥ 0, x ∈ Ω,

where Ω is bounded with Lipschitz boundary, α > 0,
f ′(u) = u3 − u and Neumann boundary condition. It is a L2(Ω)
gradient flow of the functional

E (u) =

∫

Ω

α

2
|∇u(x)|2 + f (u(x))dx .

NB: +1, −1 and 0 are steady states ; if Ω = unit disc and α > 0
small, there is a continuum of steady states.
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A space discretization by finite elements with a nodal basis (ϕi )i
reads

MU ′(t) = −AU(t)−∇F h(U), (6)

where M = (ϕi , ϕj)i ,j is the mass matrix,
A = (∇ϕi ,∇ϕj)i ,j is the discrete Laplacian, and

∇F h(U)i =

∫

Ω
f ′(

∑

i

uiϕi (x))ϕi (x)dx ,

is the gradient of F h(U) =
∫

Ω f (
∑

i uiϕi (x))dx .
(6) is a gradient flow, so we have convergence to equilibrium
for its time discretization (by the backward Euler scheme).
A similar argument holds for the standard finite difference scheme.
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The Cahn-Hilliard equation
• Simulation on the “unit disc” for f ′(u) = u3 − u, α = 0.05,
Neumann boundary condition

P1-P1 finite elements (splitting method for the bilaplacian)

∆t = 0.015 and 600 iterations.

(FreeFem++ software)
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Initial state
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Iteration n = 100
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Iteration n = 400
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A steady state for the Cahn-Hilliard equation (α = 0.05)
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Another steady state for the Cahn-Hilliard equation (α = 0.05)
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Semilinear heat equation

un+1 − un

δt
= ∆un+1 − f (un+1) in Ω (7)

∃C > 0, |f ′(s)| ≤ C (1 + |s|)p1 , ∀s ∈ R,

with p1 < 4/(d − 2) if d ≥ 3, p1 < ∞ if d = 2,

∃cf ≥ 0, f ′(s) ≥ −cf , ∀s ∈ R.

lim inf |s|→+∞
f (s)
s

> −λ1 where λ1 = inf‖v‖0=1 a(v , v).

Theorem (Merlet and P.’10)

If f : R → R is real analytic and δt < 1/cf , then for all

u0 ∈ L2(Ω), the sequence (un)n defined by (7) converges in H1
0 (Ω)

to a stationary solution u∞.

see also Bolte, Daniilidis, Ley, Mazet’09
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Ongoing work and perspectives

Replace “real analytic” by “Lojasiewicz inequality” : this
allows explicit schemes or linearly explicit schemes

Schemes with variable stepsize

Multi-step schemes

Asymptotically autonomous schemes

Infinite dimension. . .
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Phase-field crystal equation

ut = ∆(u + 2∆u +∆2u + f ′(u)) in Ω× R+,

with periodic boundary conditions and f ′(u) = u3 + ru (r < 0).

Finite difference (FFT) in space : 256× 256 grid

linearly implicit Euler scheme in time: δt = 0.01

r = −0.9,
∫

Ω u0 = 0.54|Ω|, 15000 iterations

Matlab software

Rk: H−1 gradient flow for the Swift-Hohenberg functional

E(u) =

∫

Ω

1

2

(

u2 − 2|∇u|2 + |∆u|2
)

+ f (u).
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PFC, iteration n = 100
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PFC, iteration n = 2800
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PFC, iteration n = 4000
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PFC, iteration n = 6000
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PFC, iteration n = 15000
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