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Consider the gradient flow
U(t) = -VF(U(t) t>0, (1)

where U = (u1,...,uq)t, F € C,})’Cl(Rd, R). For every solution
U(t), we have

F(U(1)) + /Ot IU'(s)[ds = F(U(0)), t=>o0.
If U is a solution of (1) which is bounded on [0, +00), then
w(U(0)) :={U* : 3t, — o0, U(ty) — U*}
is a non-empty compact connected subset of
S={VeR? : VF(V)=0}
Moreover, d(U(t),w(U(0))) — 0 as t — +oo.
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Does U(t) - U* as t — 400 ?
If d =1, it is obvious by monotonicity.
If d > 2, it is obviously true if S is discrete, but it is no longer true
in general: counterexample in Palis and De Melo'82.
The following counter-example is given in Absil, Mahony and
Andrews'05 :

4r* in(0 1
4rt + (1 —r2)* sn 1—1r2

F(r,0) = e /A=) |1 — )|,

if r <1and F(r,f8) =0 otherwise. We have F € C*>, F(r,8) >0
for r < 1 so every point on the circle r = 1 is a global minimizer.
We can check that the curve defined by

0=1/(1-r%

is a trajectory.
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Theorem (Lojasiewicz'65)

If F: R? — R is real analytic in a neighbourhood of U € RY, there
exist v € (0,1/2], 0 > 0 and v > 0 s.t. for all V € RY,

IV - Ul <o = |F(V) - FO)'™" <AIVFE(W)I.  (2)
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Theorem (Lojasiewicz'65)

If F: R? — R is real analytic in a neighbourhood of U € RY, there
exist v € (0,1/2], 0 >0 and v > 0 s.t. forall V € RY,

IV - Ul <o = |F(V) - FO)'™" <AIVFE(W)I.  (2)

Example: for d =1 and p > 2, x — |x|P satisfies (2) at x =0
with v = 1/p. Also true for 1 < p < 2.
In the " generic case”' where V2F(U) inversible, v = 1/2.
Counter-examples: for d = 1, the C* function
x ++ exp(—1/x?) satisfies (2) at x = 0 for v = 0 (too weak). The
C*° function

x = exp(—1/x?)sin(1/x)

does not satisfy (2) at x = 0.
NB: see the preprint of Michel Coste on his web page.
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Corollary

If F: R — R is real analytic, then for any bounded semi-orbit of
U'(t) = —VF(U(t)), there exists U>® € S s.t. U(t) — U™ as

t — +o0.

Moreover, let v be a Lojasiewicz exponent of F at U™:

e if v =1/2, then for t large enough,

F(U(t)) < Ce®t and ||U(t) — U™ < C'e /2,

for some constants a;, C and C' > 0 ;
e ifv € (0,1/2), then for t large enough

F(U(t)) < ct1/1-2v) 5pq |U(t) — U= < c'tv/(-2),

for some constants C and C' > 0.

NB : optimal convergence rates. If F(x) = |x|P (p > 2), then
v=1/p,v/(1—-2v)=1/(p—2) and the solution of
X' (t) = —|x(t)[P~Lis Co(C + t)¥/ (=P,
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A proof (convergence)

—[FU@)7T = —vU'(t) VE(U()F(U(1)"
= v|U@IIVFU@)IFWU(D))
> vy V()]s

so F(U(ta))” = F(U(1))" = vy /tt IU'(s)llds.
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A proof (convergence)
F(U(t)) is non increasing and so has a limit F*(=0). Let
t, — +oo s.t. U(t,) — U*. We have F(U*) = F* and U* € S.
Choose n large enough so that ||U(t,) — U*|| < ¢/2 and
v 1yF(U(t,))” < 0/2, and define
tT =sup{t>t, | |U(s)— U*|| <o Vs&ltyt)}
For t € [tn, tT), we have
—[FU@)T = —vU'(t) VF(U()F(U()"
= v|U@OIIVFU@)IFUE) ™
> vy HIU()],

t
so  F(U(ta))” — F(U(1))" = w‘l/ IU'(s)lds.
tn
Thus ||U(t) — U(t,)|| < 0/2, Vt € [tn,tT) and so tT = +oo0,
otherwise [|U(tT) — U*|| = o and
[U(tT) = U] < JJU(ET) = Utn)ll + 11 U(tn) — U*]| < o,

a contradiction. QED.
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Questions:

o If we consider (stable) time discretizations of the gradient
flow, can we obtain similar results of convergence to
equilibrium 7

@ In particular, what happens for the backward Euler scheme ?

@ What restriction on the time step do we have 7

@ Can we find a unifying background ?
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The backward Euler scheme for (1) reads: let U° € RY, and for
n >0, let U™ solve

Un+1 o Un

INEE —VF(U™, (3)

where At > 0 is fixed and F € C1(RY,R). Since existence is not
obvious, we rewrite (3) in the form:

U™ ¢ argmin w +F(V): VeRY}. (4)
2At

In optimization, (4) is known as the proximal algorithm.
In particular, U™t satisfies

1
n+1 n+l _ yny2 < n
F(UP) 4 U= U2 < F(U™).
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By induction, any sequence defined by (4) satisfies

F(U™) +2AtZHU —UAP<F(U%), Yn=0 (5)

This is a stability result.

By (5), it is easy to prove that if (U"),en is a bounded sequence
defined by the proximal algorithm (4), then

w(UP) = {U* eR? : dng — +oo, U™ — U*}
is a non-empty compact connected subset of S. Moreover,

d(U™,w(U%) — 0 as n — +o0.
Question : does U" — U* as n — 400 ?
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Theorem (Attouch and Bolte'09, Merlet and P."10)

If F: R? — R is real analytic, and if (U™), is a bounded sequence
defined by the proximal algorithm (4), then there exists U>* € S
s.t. U" — U as n — +o0.
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Theorem (Attouch and Bolte'09, Merlet and P."10)

If F: R? — R is real analytic, and if (U™), is a bounded sequence
defined by the proximal algorithm (4), then there exists U>* € S
s.t. U" — U as n — +o0.

Remark 1: If lim)|y 400 F(V) = +00, then (U"), defined by (4)
is bounded.
Remark 2: A more general version:

@ variable stepsize 0 < At, < At, < At* < 400

@ F:RY — R real analytic replaced by F : dom(F) c RY = R
continuous and satisfies a Lojasiewicz property

Remark 3: in addition, (optimal) convergence rates
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The proof of convergence extends to many situations:

@ For any other scalar product on RY: ‘AU’(t) = —VF(U(t)) ‘
where A is positive definite (symmetric or not).

@ Generalizations in infinite dimension (Simon, Jendoubi,
Haraux, Chill,...)

@ Semilinear heat equation: ‘ up=Au—"~f(u), t>0, x¢€ Q‘

@ Cahn-Hilliard equation (Hoffman, Rybka, Chill, Jendoubi):

up = —al?u+ Af'(u), t>0, x € Q| with

f'(u) = u® — u typically, & > 0, and Neumann or periodic BC.

Merlet and P.’10

@ Cahn-Hilliard equation with dynamic boundary conditions
(Wu, Zheng, Chill, Fasangova, Pruss) Cherfils, Petcu and
P.’10

@ Cahn-Hilliard-Gurtin equations (Miranville and Rougirel):
gradient-like flow Injrou and P.’10
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@ Generalization to second-order gradient-like asymptotically
autonomous flows:

eU"(t) + U'(t) = —VF(U(t)) + G(t), t>0,

where € > 0 and G(t) — 0 fast enough: Haraux and

Jendoubi’98, Chill and jfendoubi'03, Grasselli and P., to
appear

@ Asymptotically autonomous damped wave equation
eupr +up = Au—f(u) + g(t), t>0, xeQ.

Haraux, Jendoubi, Chill,. ..

o Cahn-Hilliard equation with inertial term (Grasselli,
Schimperna, Zelig, Miranville, Bonfoh) Grasselli, Lecoq and
P., to appear

@ (optimal) convergence rates for 1st and 2nd order
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Application : Allen-Cahn equation

ur(x, t) = alu(x, t) — f'(u(x,t)), t>0, xe€Q,

where € is bounded with Lipschitz boundary, a > 0,
f'(u) = u® — u and Neumann boundary condition. It is a L%(Q)
gradient flow of the functional

Ew) = [ 5IVuCOP + F(ux))ds.

NB: +1, —1 and 0 are steady states ; if 2 = unit disc and @ > 0
small, there is a continuum of steady states.
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A space discretization by finite elements with a nodal basis (p;);
reads
MU'(t) = —AU(t) — VFh(U), (6)

where M = (;, ;)i is the mass matrix,
A = (Vp;, Vyj)ij is the discrete Laplacian, and

VFh(U / f/ ZU/SOI X) 90/ )

is the gradient of F"(U) = [, f(3_; uipi(x))dx.

(6) is a gradient flow SO we have convergence to equilibrium
for its time discretization (by the backward Euler scheme).

A similar argument holds for the standard finite difference scheme.
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The Cahn-Hilliard equation
e Simulation on the “unit disc” for f'(u) = u® — u, a = 0.05,
Neumann boundary condition

@ P1-P1 finite elements (splitting method for the bilaplacian)
o At = 0.015 and 600 iterations.

(FreeFem+-+ software)
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Initial state
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Iteration n = 100
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Iteration n = 400
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A steady state for the Cahn-Hilliard equation (o = 0.05)
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Another steady state for the Cahn-Hilliard equation (o = 0.05)
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Semilinear heat equation
un+1 —yn
ot
AC >0, |f'(s)| < C(1+]s])P, VseR,

with pr < 4/(d —2)ifd >3, p1 <o ifd=2,

= Au"t — F(u™ ) in Q (7)

der >0, f'(s)> —cr, VseR.

lim inf‘5|_>+oo f(ss) > —A1 where A\; = inf”VHo:l a(v, V).

Theorem (Merlet and P.’10)

If f : R — R is real analytic and 6t < 1/c¢, then for all
up € L2(Q), the sequence (u"), defined by (7) converges in H}()
to a stationary solution u™.

see also Bolte, Daniilidis, Ley, Mazet’09
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Ongoing work and perspectives

(]

Replace “real analytic” by “Lojasiewicz inequality” : this
allows explicit schemes or linearly explicit schemes
Schemes with variable stepsize

Multi-step schemes

Asymptotically autonomous schemes

e © ¢ ¢

Infinite dimension. ..
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Phase-field crystal equation

vy = A(u+28u + A%u+ f'(u)) in Q x Ry,
with periodic boundary conditions and f'(u) = u3 + ru (r < 0).
o Finite difference (FFT) in space : 256 x 256 grid
@ linearly implicit Euler scheme in time: §t = 0.01
o r=—-0.9, [,up = 0.54|Q, 15000 iterations
o Matlab software
Rk: H~! gradient flow for the Swift-Hohenberg functional

£(u) _/Q;( 2 2|Vul + |AuP) + f(u).

Morgan PIERRE SMAI 2011



100

_.. - N - B - v
b “0 LI L '.
. -—..‘ Y -. nv L
A . §woo fb.
I OURR T o
B 8 at® a2t n.a'
’ ‘ A Y ¥
R AL (LB
Y o \n"
~ - 4 .. . ’
s Y ..\- ~ .0. .
N -
> Aol A B . . e
.‘\ .O..ﬁ - ath " w
) oh w %, A
r. - o A1 L
" .’r.._ P \ g ..
& s & WS 4
A% pete ‘\..
0 OS5 NI,
- L \ L] -
A L 4 X .

an

0

il

]

a0

30

20

1o

PFC, iteration n = 100

SMAI 2011

Morgan PIERRE



= 2800

iteration n

PFC,
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PFC, iteration n = 4000

SMAI 2011

Morgan PIERRE



0
voo

0
0

o
Q

] 00 4~
%0% 008 yg0

w

o »u

0
Oo...-oomoo.

PFC, iteration n = 6000
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PFC, iteration n = 15000
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Some references

@ Absil, Mahony and Andrews'05: Convergence of iterates of
descent methods for analytic cost functions

@ Attouch, Bolte'09: On the convergence of the proximal
algorithm. . .

@ Huang'06: Gradient inequalities
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