

SMAI 2011, Guidel, Bretagne

Dynamique des instabilités gravitaires sur Terre et sur Mars

ANR ANR

Anne Mangeney¹, François Bouchut², Antoine Lucas³, Pascal Favreau¹, Lev Tsimring⁴

¹Institut de Physique du Globe de Paris, Université Paris-Diderot 7 ²LAMA, UMR-8050, Université Paris Est Marne la Vallée ³Division of Geological & Planetary Sciences, Caltech, Pasadena, USA ⁴INLS, University Californía San Diego, CA

Collaborations

Nathalie Thomas, IUSTI, Marseille

Olivier Roche, LMV, Clermont

François Bouchut, DMA, ENS Paris

((S.U) + K R(r.U) + W & (S.U) + US. ((+1-28)) (2P)

= $-g^{(S)^2} + (S.(V, R_S))(S.U) + C^2(V, R_S).U + S.(V, R_S)W$ · Equation d'énergie

 $\frac{2}{2} \frac{|u|^{2}}{2} + V \cdot \frac{2}{2} \frac{|u|^{2}}{2} + W_{2}^{2} \frac{|u|^{2}}{2} + c \int (14 - 560) \left[(14 - 26)^{-1} \right]^{2} \frac{1}{2} \frac{1}{2$

Ioan Ionsecu, LPMTM

Pascal Favreau, JP Vilotte, IPGP

Enrique Fernandez Nieto, Université de Seville

$$\begin{split} & \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \cdot \frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) + \frac{1}{2} \left($$

PhD. Antoine Lucas PhD. Clément Hibert PhD. Laurent Moretti Post-doc Marica Pelanti

Philippe Labazuy, Karim Kelfoun, LMV, Clermont

Claudio Scavia, Marina Pirulli, Politecnico, Turin

Georges Boudon, Anne Le Friant, IPGP

Nicolas Mangold, *IDES-Orsay* Daniel Mèges, *LPG*, *Nantes*

Dmitri Volfson, Lev Tsimring, INLS, UC San Diego

Modélisation des glissements de terrain

Motivation

- **Processus d'érosion** à la surface de la Terre et des planètes telluriques
- Evaluation des risques en milieu volcanique, sismique, montagneux, côtier ...

Echelle de volume : $m^3 \rightarrow 10^5 \text{ km}^3$ Echelle de temps : seconde \rightarrow année \neq Sources, \neq Topographies

Observation terrain,

Modélisation expérimentale, théorique et numérique

Ecoulements naturels

Matériaux hétérogènes Peu de **données**: aire du **depôt**

Ecoulements granulaires de laboratoire

Mesures épaisseur et vitesse

Nathalie Thomas, IUSTI

Comprendre et quantifier les processus de mise en place

Approximation de couche mince sur topographie 2D

Savage and Hutter, 1989

Commentaires sur les équations de Savage and Hutter

• Forces effectives agissant sur le milieu moyenné

• Transition solide/fluide:

"seuil de Coulomb" pour le milieu moyen $\sigma_c = \mu \rho g \gamma_z h$

Forces "motrices": $\mathcal{F} = f_g + f_p - f_i$

 $\begin{cases} |\mathcal{F}| > \sigma_c, \ f_f = -\sigma_c \frac{u}{|u|} & \text{Comportement de type fluide} & Bouchut, 2004 \\ |\mathcal{F}| < \sigma_c, \ u = 0 & \text{Comportement de type solide} & Mangeney et al., 2003, 2007 \end{cases}$

• Etat d'équilibre au repos non préservé : **un terme supplémentaire doit être introduit**

Restaure une inégalité de dissipation d'énergie...

masse granulaire au repos

fluide au repos

Bouchut, Mangeney, Perthame, Vilotte, 2003

Mangeney et al., 2003

Approximation de couche mince sur topographie 3D

 Jusqu'à très récemment : extension arbitraire des équations sur topographie 2D ... Repère lié à la pente
 Encore utilisée [Pitman et al., 2003]

Forces « centrifuges »

Bouchut and Westdickenberg, 2004; Mangeney et al., 2007

ATIP, ACI, ANR Nouvelles Interfaces avec les Mathématiques (2002-2009)

Limites de l'approximation de couche mince

а

Comparaison avec simulations aux éléments discrets Limites de l'approximation de couche mince

• Effets non hydrostatiques importants quand *a* /

- Nouveaux développements asymptotiques incluant l'accélération verticale
- **Description de la transition statique/mobile** dans les milieux granulaires

Modèles proposés dans la littérature: équation pour l'énergie non cohérente !

Bouchut, Fernandez-Nieto, Mangeney, and Lagrée, 2008...

Simulation des écoulements naturels

Simulation des **dépôts observés** (Suisse) avec modèle de couche mince incluant friction de Coulomb:

 $\mu = \tan \delta$: description empirique de la dissipation moyenne

t = 70 s

Friction utilisée dans le modèle : $\delta = 17^{\circ}$

Angle de friction petit comparé aux angles de friction des matériaux naturels ! $\theta_r \sim 35^{\circ}$

Origine de la grande mobilité des écoulements naturels ??

Pirulli and Mangeney, 2008

Différents processus physiques

Phase fluide

Fluidisation

Modèle de fluidisation partielle

Ecoulements pyroclastiques, volcan Lascar, Chili

Simulation par éléments discrets

Loi de comportement valide pour les grains statiques et les grains mobiles ??

$$\sigma_{ij} = \sigma_{ij}^{f} + \sigma_{ij}^{s} \qquad \left\{ \begin{array}{l} \sigma_{ij}^{f} & -\text{ grains en écoulement} \\ \sigma_{ij}^{s} & -\text{ grains statiques} \end{array} \right.$$

$$\rho_{xy} = q(\rho) \sigma_{xy}$$

$$\rho_{xy} = q(\rho) \sigma_{xy}$$

$$\rho_{xy} = q(\rho) \sigma_{xy}$$

Aranson and Tsimring, 2002; Aranson et al., 2008

Paramètre

INLS, UC San Diego

Modélisation des effets d'érosion

Accord expériences Pouliquen and Forterre, 2002, Aranson et al., 2006, Mangeney et al., 2010

Simulation des instabilités et des ondes générées

Problème direct

Mangeney et al., 2005, 2007

r

Favreau et al., 2010

Champs de contrainte appliqué sur le sol

$$\mathbf{T}_{x} = \rho g h \left(\cos \theta + \frac{\mathbf{u}_{h}^{t} \mathcal{H} \mathbf{u}_{h}}{g \cos^{2} \theta} \right) \left(\mu \frac{u_{X}}{\|\mathbf{u}\|}, \mu \frac{u_{Y}}{\|\mathbf{u}\|}, -1 \right)$$
Effets de courbure

Simulation du glissement de Thurweiser

Avalanche rocheuse Thurwieser, Italy Septembre 2004

Sosio et al., 2008, Favreau et al., 2010

STS2 Data

Pour T > 15 s, $\lambda = cT \approx 45$ km

Effets de topographie et de complexité du milieu traversé faibles

Simulation des ondes sismiques générées

• Le scenario avec glacier reproduit mieux la forme d'onde verticale

⇒ Première estimation des **parametres rhéologiques**

• Effets de la topographie sur la dynamique de l'écoulement impact important sur le signal sismique généré

V (m/s)

Nouveaux problèmes : milieux bi-phasés, ...

Ecoulements de débris (granulaire/fluide)

Mangold et al., 2010; Pelanti, Bouchut, Mangeney, 2008, 2010

Glissements de terrain sous-marins et tsunamis générés

Fernandez-Nieto, Bouchut et al., 2008; Fernandez-Nieto, Mangeney et al., 2010

Downslope 30 m

Conclusion

Modèles numériques: **outil empirique** \Rightarrow **mobilité** des écoulements naturels

calibré sur évènements passés

prédiction dans le même contexte géologique

Premiers outils opérationnels pour l'évaluation des risques

• Des données sur la dynamique : sismologie

• Plus de **physique** dans les modèles: mélange solide/fluide, érosion/déposition ...

De nouvelles équations à résoudre.....