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Introduction

Continuous problem

> Euler (Navier-Stokes) equations:
Oto + div(ou) =0,
Ot (ou) + div(pu ® u)—divr + Vp =0,
91 (0E) + div[(E + p)u] = div(ru),

1
p=(r-1) e, E=_luf+e.
» For regular functions, taking the inner product of the momentum balance equation by u
and using the mass balance equation yields the kinetic energy balance equation:
1
Bt(0Ec) + div(gEcu) + Vp - u = div(T) - u, Ec=3 |ul?.

Subtracting to the total energy balance yields the internal energy balance:

0t (0€) + div(peu) + pdivu = 7: Vu,

and, from this equation, we get e > 0.

» Estimates satisfied by the solution: ¢ >0, e > 0, / o =/ o, / oE = / oo0Eo-
Q Q Q Q
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Introduction
Objectives (1/2)

Derive a scheme for Euler (or Navier-Stokes) equations:
(/) unconditionnally stable (i.e. same estimates as in the continuous case),
(if) accurate at all Mach numbers,

(7if) which converges to the correct weak (discontinuous) solutions.

> (ii) suggests to use a staggered discretization (/v), and to perform
upwinding (if any) with respect to the material velocity.

» (i) and (iv) suggest to solve the internal energy balance:

keep e positive,

1 . .
e and §|u\2 are not discretized at the same place. N

N

» (i) will be a constraint for the choice of the time-stepping algorithm: implicit scheme or
pressure correction method.

So a staggered scheme, solving the internal energy balance, upwind/u.

ISIS: https://gforge.irsn.fr/gf/project/isis
PELICANS: https://gforge.irsn.fr/gf/project/pelicans

(IRSN/LATP) Pressure corr. schemes and all speed flows Guidel, May 2011 3 /21



Introduction

Objectives (2/2)

- o=K|L =~
XK X
> Let us consider the equation:
cee 4 Oxu= ...
The centered scheme reads:
1
VK, st Z E(UK—l-uL)-ng:...

o=K]|L

Let ¢ € C*°, ok = ¢(xk), multiply each equation by ¢k and sum over K. This yields:

IK| PL— PK L] oL — vk
—|— —UKi—F—Li:...
2 2 Tl —xkll 2 T |xL — xkll

../uV,,godx:...
Q

» Morality: "Consider a conservative scheme. Suppose that a sequence of discrete
solutions converges. Then the limit is a weak solution."

o=KI|L

» So how to obtain the correct weak solutions of Euler equations while solving the internal
energy balance ?
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A colocated scheme

A colocated scheme (1/7)

» Mass balance

Velocity at the face o = K|L:

d d
uo = =T up+ Ty dk,o =d(xk,0), dL o =d(xL,0), do = d(xk,xL).
do do
Mass flux : Fk » = |0| 0o Us - Nk o, With o5 the upwind value of the density at
the face.
Mass balance: ﬂ (ok — 0k) + Z Fk. o =0.
ot ’

o=K]|L
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A colocated scheme

A colocated scheme (2/7)

> Building convection operators z — 0:(0z) + div(ozu) from the mass balance:

Let: p
K ok~ ot + Y2 Fio=0.
o=K|L
Then (1) the centered operator:
1 1
u)k = — Okl — QK“K K,oUo, Uk = - Uk uy
(Copi = == ( g 2R > (ukc + uy)
o=K|L
satisfies:
‘K| ‘ | * * 12
KUK N K Kl
(Cu)kupe = o (o lux|* - ok |u} \)+ > Fk ukuLt oo Ok luk—u
o=K|L
Then (2) the upwind operator:
1
(Ce)k = 5t (exex — QK6K)+ Z Fk 060,

o=K]|L
with an upwind choice for e, satisfies a discrete maximum principle.

(IRSN/LATP) Pressure corr. schemes and all speed flows Guidel, May 2011 6 /21



A colocated scheme

A colocated scheme (3/7)

» Momentum balance

|K] [(C")K +(Vp)k — (EAu)K] =0,

» Centered convection term.

> Pressure gradient designed to be the dual operator of the divergence:

1 dx dp
(Vp)k = Z lo| po nk,o, PK|L = 2 pr + —Zpi.
Kl %, do do

» A diffusion term is added for stabilisation:

lo

—(eAu)k = — Z o — (uk —up).
K| 22 %7 q,
o=K]|L

. . o . d
Upwind discretization of the convection term: e, = ?‘T |us - nk 5|
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A colocated scheme

A colocated scheme (4/7)

> Internal energy balance

K| (Ce)x + (v~ Doxee S lol o - .o = Src,
o=K]|L

with ejf = max (ex,0) and Sy is a numerical source term.

» Upwind convection term.
» If the solutions exists, and if S >0, e > 0.

> 3 at least a solution (topological degree argument), and, for this solution, et =e
(the scheme is consistent).
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A colocated scheme

A colocated scheme (5/7)

Sk ?
» Strategy: try to build a (conservative) discrete total energy balance equation.

» Kinetic energy balance, without diffusion (¢ = 0):

» Multiply the momentum balance equation by uk and use the mass balance:

K 1
% (exluxl® = icluic*) + > Z Fk oukup + (Vp)k - ug = Ri.
o=K|L

> Then, adding to the internal energy balance yields a total energy balance

K]

Y (ekEk — 0kER)+ D FroEo+ D lo| (pu)s - nk o = Ric + Sk,
o=K|L o=K|L
with:
1 2
Ex =ek+ 3 luk|*,
1
Ea‘ :eo'+5uK’uL7
dk dp
(p)k L = —Zpkup + —Zp uk.
do do
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A colocated scheme

A colocated scheme (6/7)

> Sk and total energy balance, without diffusion (continued):

> Rest term:
|K]

Rk = —— 2,
K 26t |

ok |uk —uk

For a regular function (Jux — uj| < Cdt):

> > St|Rk| < Cot

n Kem

... but for a discontinuous function: A

t
> > stlRe| ~ Q. b1

n KeM

=> choose Sk = —Rg.
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A colocated scheme

A colocated scheme (7/7)

» Kinetic energy balance, Sk and total energy balance, with diffusion (e # 0):

With a dissipation term:

Ret= —[ 3 e \d”\

— (uk — uL)} ‘UK,
o=K]|L 7

1 g 2
Sk+= = E Eo — |ug —up|°.
K > o d, K L‘
o=K|L

Then:
1 lo|
Rk + Sk =< 2 €o (uk —u) - (uk +ug).
2 ds
o=K|L
At the continuous level, the viscous term at the right-hand side of the total energy

balance reads div(sV*u u), so we need an approximation on the face of
(Vtuu)-n=(Vun) u=33_ u; Vu;-n ... which is what we get.
Ry + Sk is conservative: conservation of/ oE.

Q

Let ¢ € C2°(Q2 x (0, T)), and pk be an approximation of ¢ on K at the current
time step. Then :

DD st (Re+Sk) e Z o LT (uk —ur) - (uk +uL)(ek — L)

n KeM o=K|L i
< Co lleliree llullree [[ullpy .
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A staggered scheme

A staggered scheme (1/2)

hy, 47

» The velocity is now defined at the center of the faces.
» The approximation of u, becomes natural.

» Up to this change, the mass mass balance and the left-hand side of the internal energy
balance are left unchanged.

» Build mass fluxes at the dual faces in such a way that the mass balance is ensured on
the diamond cells’, and write the momentum balance equation on the diamond cells,
following the same guidelines* as for the colocated scheme.

: L. Gastaldo, R. Herbin, W. Kheriji, JCL, FVCA 6.

*: convection term buit from the mass balance, pressure gradient built by duality.
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A staggered scheme

A staggered scheme (2/2)

» A kinetic energy balance is still available, but is associated to faces, and can no more be
combined to the internal energy equation (defined on primal meshes) to obtain a total
energy balance equation.

> Strategy:

Suppose bounds and convergence for a sequence of discrete solutions, compatible
with the regularity of the sought continuous solutions: control in BV and 1.°°,
convergence in LP, for p > 1.

Let o a regular function, (¢s) an interpolate on the faces and (k) an interpolate
on the cells, at the current time step. Multiply the kinetic energy balance by ¢,
the internal energy balance by ¢k, sum over the time steps, i/, o and K and pass
to the limit in the scheme.

Sk is chosen in such a way to recover, at the limit, the weak form of the total
energy equation.

<12 —~ “' 2
‘4 2 Ee — |Ug — Uy r|”.
d

ce&(K) eCK, e=o|o’
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Various time discretizations

An explicit time discretization

» Scheme (time semi-discrete setting):
1 * . * %k
sple— @) +div(etu™) =0,
1
a(gu —o"u*) +div(e*u* ® u™)—divr(u") + Vp* =0,

1 ,
a(ge —o"e*) +div(e*e*u*) + p*dive* = 7(u™) : Vu™,

p=(y—1) ce
> Sk
|DK,0'| * 12 |E| * * 2
Sk =— Z s K lug —ul|” + Z €e @ luy —ul,|”.
ce&(K) eCK, e=o|o’
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Various time discretizations

A pressure correction scheme

» Scheme (time semi-discrete setting):

1
— (0"t — o u*) + div(e* o ® u*)—divr(i) + Vp* =0,

ot
2 (w— i)+ V(p— p*) =0,
ot
%(9 —0") +div(eu) =0,

1
E(ge — 0" e*) + div(peu) + pdivu = (i) : Vi,

p=(y—1) ce

Dk,o| - lel o o
Sk = Z TUQT( lito — u}|? + Z EeI|UU—Ua'2
occ&(K) eCK, e=olo’

> |If a pressure renormalization step is added, this scheme is unconditionnally stable
(0 >0, e>0, gand gE controlled in 1.>°(0, T;L1)).
In addition, the time splitting yields a control on 6t Vp in L>°(0, T;12).
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Numerical tests

A Riemann Problem

35 T
[P. Woodward, P. Collela, JCP 1984] =
[E. Toro, Riemann solvers and I e I

numerical methods for fluid dynamics, -
third edition, test 5 of chapter 4]. i

v

25
Two shocks travelling to the right,
contact discontinuity.

density

20
» Computation performed with the
upwind explicit scheme.

2

15

L

» 6t = h/50, so a cfl number close to
1/2.

» An additional diffusion term is added in
the momentum balance equation, in r:
the range of Quh/2. 0 0.2 0.4 06 08 1
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A Riemann Problem

pressure
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Numerical tests

A Riemann Problem

rho
p -
i
10 » Difference between the numerical and
o analytical solution (T.! norm), as a
L function of the time and space step
! (cfl =~ 0.4).
/ » First order convergence for the
o 7 quantities which remain constant
// through the contact discontinuity (u,
0.01 o P)-
> Convergence as h'/? for g.
0.001
le-05 le-04 0.001 0.01
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A Riemann Problem

density

Numerical tests
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A Riemann Problem

density

Numerical tests
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Conclusion

Conclusion

» A class of naive schemes for Euler equations:

staggered mesh,

upwinding with respect to the (material) velocity, centered approximation of the
pressure gradient,

total energy equation “— internal energy equation + source term,

a reasonably decoupled (?) unconditionally stable time discretization (?).

» Convergence 7

estimates: o0 >0, e > 0, ¢ and oE controlled in 1.°(0, T;T.1), entropy ?

Compactness: far from being sufficient !
(no control on the translations)

Passage to the limit in the scheme: OK.

> Tests under progress.

> Further developments: less diffusive versions (entropy viscosity technique ?)
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