SMAI 2011, Guidel (France), May 23-27 2011
Validated performance of accurate algorithms

Bernard Goossens, Philippe Langlois, David Parello

DALI Research Project, University of Perpignan Via Domitia
LIRMM Laboratory, CNRS — University Montpellier 2, France.

DALLI, Digits, Architectures O P ‘; D
et Logiciels Informatiques

LIRMM mem(c de Perpignan V

Context: Floating point computation using IEEE-754 arithmetic (64 bits)

Aim: Improve and validate the accuracy of numerical algorithms . ..

... without sacrificing the running-time performances

Improving accuracy:
Why 7 result accuracy &~ condition number X machine precision
How ? more bits

o double-double (128) or quad-double librairies (256)
@ MPFR (arbitrary # bits, fast for 256+)

@ Compensated algorithms

1/u 1/u? 1/u? 1/u*
Backward stable : :
algorithms

Compensated algorithms

relative forward error

a T T

condition number

Compensated algorithms

@ summation and dot product: Knuth (65), Kahan (66), ...,
Ogita-Rump-Oishi (05,08)

o polynomial evaluation: Horner (Langlois-Louvet, 07), Clenshaw, De
Casteljau (Hao et al., 11)

o triangular linear systems: (Langlois-Louvet, 08)

These algorithms are fast in terms of measured computing time

o Faster than other existing solutions: double-double, quad-double, MPFR
Question: how to trust such claim?

o Faster than the theoretical complexity that counts floating-point operations
Question: how to explain and verify such claim —at least illustrate?

A classic problem: | want to double the accuracy of a computed result while
running as fast as possible?

A classic answer:

Metric Eval AccEvall AccEval2
Flop count 2n 22n+5 28n+ 4
Flop count ratio 1 ~ 11 ~ 14

Measured #cycles ratio 1 28-32 87-97

Flop counts and running-times are not proportional. \WWhy? Which one trust?

Average ratios for polynomials of degree 5 to 200
Working precision: |EEE-754 double precision

CompHorner | DDHorner DDHorner

Horner Horner CompHorner
Pentium 4, 3.00 GHz GCC 4.1.2 2.8 8.5 3.0
(x87 fp unit) ICC9.1 2.7 9.0 3.4
(sse2 fp unit) GCC 4.1.2 3.0 8.9 3.0
(sse2 fp unit) ICC 9.1 3.2 9.7 3.4
Athlon 64, 2.00 GHz GCC 4.1.2 3.2 8.7 3.0
Itanium 2, 1.4 GHz GCC4.11 2.9 7.0 2.4
ICCo9.1 15 5.9 3.9

Results vary with a factor of 2
Life-period for the significance of these computing environments?

Measures are mostly non-reproducible

@ The execution time of a binary program varies, even using the same data
input and the same execution environment.

Why? Experimental uncertainties
@ spoiling events: background tasks, concurrent jobs, OS interrupts
@ non deterministic issues: instruction scheduler, branch predictor
o external conditions: temperature of the room (!)

@ timing accuracy: no constant cycle period on modern processors (i7, ...)

Uncertainty increases as computer system complexity does
o architecture issues: multicore, many/multicore, hybrid architectures

@ compiler options and its effects

Lack of proof, or at least of reproducibility
Measuring the computing time of summation algorithms in a high-level
language on today’s architectures is more of a hazard than scientific
research. S.M. Rump (SISC, 2009)

The picture is blurred: the computing chain is wobbling around
If we combine all the published speedups (accelerations) on the well
known public benchmarks since four decades, why don't we observe
execution times approaching to zero? S. Touati (2009)

e The PerPl Tool
@ Goals and principles
o What is ILP?

General goals

@ Understand the algorithm and architecture interaction

o Explain the set of measured running-times of its implementations

o Abstraction w.r.t. the computing system for performance prediction and
optimization

o Reproducible results in time and in location

o Automatic analysis

Our context
@ Objects: accurate and core-level algorithms: XBLAS, polynomial evaluation

o Tasks: compare algorithms, improve the algorithm while designing it,
chose algorithms — architecture, optimize algorithm — architecture

10/23

Abstract metric: Instruction Level Parallelism

@ ILP: the potential of the instructions of a program that can be executed

simultaneously
o #IPC for the Hennessy-Patterson ideal machine
o Compilers and processors exploits ILP: superscalar out-of-order execution

@ Thin grain parallelism suitable for single node analysis

11/23

A synthetic sample: e = (a+b) + (c+d)

i
i2
i3
i4
i5
i6

x86 binary

mov

eax ,DWP [ebp-16]

mov edx ,DWP [ebp-20]
add edx,eax
mov ebx ,DWP [ebp-8]
add ebx ,DWP [ebp-12]
add edx, ebx

12/23

A synthetic sample: e = (a+b) + (c+d)

i
i2
i3
i4
i5
i6

x86 binary

mov

eax ,DWP [ebp-16]

mov edx ,DWP [ebp-20]
add edx,eax
mov ebx ,DWP [ebp-8]
add ebx ,DWP [ebp-12]
add edx, ebx

Instruction and cycle counting

12/23

A synthetic sample: e = (a+b) + (c+d)

i
i2
i3
i4
i5
i6

x86 binary

mov

eax ,DWP [ebp-16]

mov edx ,DWP [ebp-20]
add edx,eax
mov ebx ,DWP [ebp-8]
add ebx ,DWP [ebp-12]
add edx, ebx

Instruction and cycle counting

Cycle

12/23

A synthetic sample: e = (a+b) + (c+d)

i
i2
i3
i4
i5
i6

x86 binary

mov

eax ,DWP [ebp-16]

mov edx ,DWP [ebp-20]
add edx,eax
mov ebx ,DWP [ebp-8]
add ebx ,DWP [ebp-12]
add edx, ebx

Instruction and cycle counting

Cycle

12/23

A synthetic sample: e = (a+b) + (c+d)

i
i2
i3
i4
i5
i6

x86 binary

mov

eax ,DWP [ebp-16]

mov edx ,DWP [ebp-20]
add edx,eax
mov ebx ,DWP [ebp-8]
add ebx ,DWP [ebp-12]
add edx, ebx

Instruction and cycle counting

Cycle

12/23

A synthetic sample: e = (a+b) + (c+d)

[

S | QSR R (T b

i
o

x86 binary
(EE |
mov eax,DWP [ebp-16]
mov edx ,DWP [ebp-20]
add edx,eax
mov ebx ,DWP [ebp-8]
add ebx ,DWP [ebp-12]
add edx, ebx

Instruction and cycle counting

Cycle

of instructions = 6, # of cycles = 3
ILP = # of instructions/# of cycles = 2

12/23

AccEval
ILP: ~ 11

K
@
Q]
o/n=
@]
@y
o]
I
O] 0]
@] @]
(e
ol
0
o]
@]
e} -
ol 0
ol O <
Q]
Ol 5
(@]
0 -
0
0]
Q| gl
@] Q)
w[Q|
@]
@)
(@]
@0
@]
e}
@)
w

(c)

AccEval2
1.65

ot

/23

From ILP analysis to the PerPl tool

@ 2007: successful previous pencil-and-paper ILP analysis [PhL-Louvet,2007]

® 2008: prototype within a processor simulation platform (PPC asm)

@ 2009: PerPI to analyse and visualise the ILP of x86-coded algorithms
PerPI

o Pintool (http://www.pintool.org)

o Input: x86 binary file

@ Outputs: ILP measure, IPC histogram, data-dependency graph

14 /23

@ The PerPl Tool: outputs and first examples

15/23

start : _start
start : .plt
start : __libc_csu_init
start : _init
start : call_gmon_start
stop : call_gmon_start::I[13]::C[9]::ILP[1.44444]
start : frame_dummy
stop : frame_dummy::I[7]::C[3]::ILP[2.33333]
start : __do_global_ctors_aux
stop : __do_global_ctors_aux::I[11]::C[6]::ILP[1.83333]
stop : _init::I[41]::C[26]::ILP[1.57692]
stop : __libc_csu_init::I[63]::C[39]::ILP[1.61538]
start : main
start : .plt
start : .plt
start : Horner
stop : Horner::I[5015]::C[2005]::ILP[2.50125]
start : Horner
stop : Horner::I[5015]::C[2005]::ILP[2.50125]
start : Horner
stop : Horner::I[5015]::C[2005]::ILP[2.50125]
stop : main::I[20129]::C[7012]::ILP[2.87065]
start : _fini
start : __do_global_dtors_aux
stop : __do_global_dtors_aux::I[11]::C[4]::ILP[2.75]
stop : _fini::I[23]::C[13]::ILP[1.76923]

Global ILP ::I1[20236]::C[7065]::ILP[2.86426] 16/23

Philippe Langlois

Philippe Langlois

Philippe Langlois

start :

Global ILP

_start

(depth: 1 rtn_s_d: 0)

start : _ libc_csu_init

start

stop
stop :
start :
start
stop
start
stop
start
stop
stop :
start :
start
stop
stop :

start :
stop :
start :
stop :
start :
stop :

call _gmon_start
call_gmon_start
frame_dummy
frame dummy
__do_global_ctors_aux

(depth: 2 rtn_s_d: 0)
_init (depth: 3 rtn_s_d:

__do_global_ctors_aux (depth:
_init (depth: 3 rtn_s_d:

__libc_csu_init

main

Horner (depth: 3

Horner (depth: 3
CompHorner (depth: 3 rtn_s_d:

Compiiornes (depth: 3

DDHorner (depth: 3

3

BBHGEREE (depth:

main
_fini

(depth: 2 rtn_s_d: 0)
(depth: 2 rtn_s_d: 0)
rtn_s_d:
rtn_s_d:

rtn_s_d:
rtn_s_
rtn_s_d:
(depth: 2 rtn_s_d: 0)
(depth: 2 rtn_s_d: 0)

0)

4
0)
Il

0)
0)
0)

1

(depth: 4 rtn_s_d: 0)

(depth: 4 rtn s d: 0) I[13]::C[9]::ILP[1.44444]
(depth: 4 rtn_s_d: 0)

(depth: 4 rtn_s_d: 0) I[7]::C[3]::ILP[2.33333]
(depth: 4 rtn_s_d: 0)

rtn_s_d: 0) I[11]::C[6]::ILP[1.8
I[41]::C[26]::ILP[1.57692]
63]::C[39]::ILP[1.61538]

I[519]::C[206]::ILP[2.51942]

9062]::C[2509]::ILP[3.6118]

__do_global_dtors_aux (depth: 3 rtn_s_d: 0)
__do_global_dtors_aux (depth: 3 rtn_s_d: 0) I[11]::C[4]::ILP[2.75]

_fini

(depth: 2 rtn_s_d: 0)

I[9169]::C[2562]::ILP[3.57884]

I[

23]::C[13]::ILP[1.76923]

17/23

compensated summation

ILP

©

°

2 b

=50

P

10

@
T

double-double summation

-100

0 100 200 300 400 500 600 700 800 900

cycles

18 /23

\

9w 0w

19/23

Ultimatly Fast Accurate Summation. S.M. Rump. [SISC,2009]
o New FastAccSum is announced to be faster than AccSum:
@ 3nvs. 4n flop (xm outer iterations) [SISC,2009]

SIEGFRIED M. RUMP

TaBLE 6.1
Ratio of computing times t{AccSum)/t(FastAccSum).

cond \n 100 300 1000 3000 10,000
10 1.09 1.18 1.30 1.35 1.33
1016 122 122 1.29 1.30 1.88
10%2 133 127 145 125 1.38
10 135 143 1.38 1.33 1.47
1080 125 133 129 1.27 1.40

20/23

Ultimatly Fast Accurate Summation. S.M. Rump. [SISC,2009]
o New FastAccSum is announced to be faster than AccSum:
@ 3nvs. 4n flop (xm outer iterations) [SISC,2009]

AccSum/FastAccSumU ———

=1 ---ee-

1.8

1.8
1.6 16
14 1.4
12 1.2

Speed-Up 1 :

0.8
0.6 08
04 00

00
data size

20/23

Ultimatly Fast Accurate Summation. S.M. Rump. [SISC,2009]
o New FastAccSum is announced to be faster than AccSum:
® 3n vs. 4n flop (xm outer iterations) [SISC,2009]

@ but AccSum benefits for more ILP: PerPl ouputs

2l @

=

=

IEEEEE

Ultimatly Fast Accurate Summation. S.M. Rump. [SISC,2009]
o New FastAccSum is announced to be faster than AccSum:
@ 3nvs. 4n flop (xm outer iterations) [SISC,2009]

@ but AccSum benefits for more ILP: PerPl ouputs

o Let's exploit it!

AccSumVect/FastAccSumUanoIIed

1.4

13 1.4
1.2 13
1.1 12
1 1.1

0.9 1
reedUp gg gg
06 07
0.5 0.6
04 0.5
0.3 0.4
0.3

conditionement (10e...) 00 16+ 6

00 .
data size

20/23

Ultimatly Fast Accurate Summation. S.M. Rump. [SISC,2009]

@ New FastAccSum is announced to be faster than AccSum:

o S.M. Rump is right!

6. Timing. In this section we briefly report on some timings. We do this with
great hesitation: Measuring the computing time of summation algorithms in a high-
level language on today’s architectures is more of a hazard than scientific research.
The results are hardly predictable and often do not reflect the actual performance.

20/23

Philippe Langlois

© Conclusion

21/23

PerPl: a software platform to analyze and visualise ILP

o Useful: a detailed picture of the intrinsic behavior of the algorithm
o Reliable: reproducibility both in time and location
o Realistic: correlation with measured ones

o Exploratory tool: gives us the taste of the behavior of our algorithms within

“tomorrow” processors

o Optimisation tool: analyse the effect of some hardware constraints

Cons ... at the current state
o Work in progress

o Not abstract enough: instruction set dependence (RISC vs. CISC,
3-operand instructions, ...

o Assembler program or high level programming language?
IPC vs. FloPC ?

22/23

@ Improving the post-processing visualisation

o Make PerPl available on-line and usable as black-box

23/23

	Accurate algorithms : why ? how ? which ones ?
	How to choose the fastest algorithm?
	The PerPI Tool
	Goals and principles
	What is ILP?

	The PerPI Tool: outputs and first examples
	Conclusion

