Validated performance of accurate algorithms

Bernard Goossens, Philippe Langlois, David Parello

DALI Research Project, University of Perpignan Via Domitia
LIRMM Laboratory, CNRS – University Montpellier 2, France.
Context and motivation

Context: Floating point computation using IEEE-754 arithmetic (64 bits)

Aim: Improve and validate the accuracy of numerical algorithms . . .
. . . without sacrificing the running-time performances

Improving accuracy:
Why ? result accuracy \approx condition number \times machine precision
How ? more bits

- double-double (128) or quad-double libraries (256)
- MPFR (arbitrary # bits, fast for 256+)
- Compensated algorithms
Computed accuracy is constrained by the condition number.

Backward stable algorithms

Compensated algorithms

Highly accurate Faithful algorithms
Compensated algorithms

- summation and dot product: Knuth (65), Kahan (66), . . . , Ogita-Rump-Oishi (05,08)
- polynomial evaluation: Horner (Langlois-Louvet, 07), Clenshaw, De Casteljau (Hao et al., 11)
- triangular linear systems: (Langlois-Louvet, 08)

These algorithms are fast in terms of measured computing time

- Faster than other existing solutions: double-double, quad-double, MPFR
 Question: how to trust such claim?
- Faster than the theoretical complexity that counts floating-point operations
 Question: how to explain and verify such claim —at least illustrate?
A classic problem: I want to double the accuracy of a computed result while running as fast as possible?

A classic answer:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Eval</th>
<th>AccEval1</th>
<th>AccEval2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flop count</td>
<td>2n</td>
<td>22n + 5</td>
<td>28n + 4</td>
</tr>
<tr>
<td>Flop count ratio</td>
<td>1</td>
<td>≈ 11</td>
<td>≈ 14</td>
</tr>
<tr>
<td>Measured #cycles ratio</td>
<td>1</td>
<td>2.8 – 3.2</td>
<td>8.7 – 9.7</td>
</tr>
</tbody>
</table>

Flop counts and running-times are not proportional. Why? Which one trust?
Running-time measures: details

Average ratios for polynomials of degree 5 to 200
Working precision: IEEE-754 double precision

<table>
<thead>
<tr>
<th></th>
<th>CompHorner</th>
<th>DDHorner</th>
<th>DDHorner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horner</td>
<td>Horner</td>
<td>CompHorner</td>
</tr>
<tr>
<td>Pentium 4, 3.00 GHz</td>
<td>2.8</td>
<td>8.5</td>
<td>3.0</td>
</tr>
<tr>
<td>(x87 fp unit)</td>
<td>2.7</td>
<td>9.0</td>
<td>3.4</td>
</tr>
<tr>
<td>(sse2 fp unit)</td>
<td>3.0</td>
<td>8.9</td>
<td>3.0</td>
</tr>
<tr>
<td>(sse2 fp unit)</td>
<td>3.2</td>
<td>9.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Athlon 64, 2.00 GHz</td>
<td>3.2</td>
<td>8.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Itanium 2, 1.4 GHz</td>
<td>2.9</td>
<td>7.0</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>5.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Results vary with a factor of 2
Life-period for the significance of these computing environments?
How to trust non-reproducible experiment results?

Measures are mostly non-reproducible

- The execution time of a binary program varies, even using the same data input and the same execution environment.

Why? Experimental uncertainties

- spoiling events: background tasks, concurrent jobs, OS interrupts
- non deterministic issues: instruction scheduler, branch predictor
- external conditions: temperature of the room (!)
- timing accuracy: no constant cycle period on modern processors (i7, . . .)

Uncertainty increases as computer system complexity does

- architecture issues: multicore, many/multicore, hybrid architectures
- compiler options and its effects
How to read the current literature?

Lack of proof, or at least of reproducibility

Measuring the computing time of summation algorithms in a high-level language on today’s architectures is more of a hazard than scientific research.

S.M. Rump (SISC, 2009)

The picture is blurred: the computing chain is wobbling around

If we combine all the published speedups (accelerations) on the well known public benchmarks since four decades, why don’t we observe execution times approaching to zero?

S. Touati (2009)
Outline

1. Accurate algorithms: why? how? which ones?

2. How to choose the fastest algorithm?

3. The PerPI Tool
 - Goals and principles
 - What is ILP?

4. The PerPI Tool: outputs and first examples

5. Conclusion
Highlight the potential of performance

General goals

- Understand the algorithm and architecture interaction
- Explain the set of measured running-times of its implementations
- Abstraction \(w.r.t. \) the computing system for performance prediction and optimization
- Reproducible results in time and in location
- Automatic analysis

Our context

- Objects: accurate and core-level algorithms: XBLAS, polynomial evaluation
- Tasks: compare algorithms, improve the algorithm while designing it, chose algorithms \(\rightarrow \) architecture, optimize algorithm \(\rightarrow \) architecture
Abstract metric: Instruction Level Parallelism

- ILP: the potential of the instructions of a program that can be executed simultaneously
- #IPC for the Hennessy-Patterson ideal machine
- Compilers and processors exploits ILP: superscalar out-of-order execution
- Thin grain parallelism suitable for single node analysis
What is ILP?

A synthetic sample: \(e = (a+b) + (c+d) \)

x86 binary

```
...  

i1  mov  eax,DWP[ebp-16]  
i2  mov  edx,DWP[ebp-20]  
i3  add  edx,eax     
i4  mov  ebx,DWP[ebp-8]  
i5  add  ebx,DWP[ebp-12]  
i6  add  edx,ebx  
...  
```
What is ILP?

A synthetic sample: \(e = (a+b) + (c+d) \)

x86 binary

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td><code>mov eax, DWP[ebp-16]</code></td>
</tr>
<tr>
<td>i2</td>
<td><code>mov edx, DWP[ebp-20]</code></td>
</tr>
<tr>
<td>i3</td>
<td><code>add edx, eax</code></td>
</tr>
<tr>
<td>i4</td>
<td><code>mov ebx, DWP[ebp-8]</code></td>
</tr>
<tr>
<td>i5</td>
<td><code>add ebx, DWP[ebp-12]</code></td>
</tr>
<tr>
<td>i6</td>
<td><code>add edx, ebx</code></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Instruction and cycle counting
What is ILP?

A synthetic sample: \(e = (a+b) + (c+d) \)

x86 binary

```
... 
```

Instruction and cycle counting

Cycle 0: i1 i2 i4

```
i1 mov eax,DWP[ebp-16]
i2 mov edx,DWP[ebp-20]
i3 add edx,eax 
i4 mov ebx,DWP[ebp-8]
i5 add ebx,DWP[ebp-12]
i6 add edx,ebx 
... `
What is ILP?

A synthetic sample: \( e = (a+b) + (c+d) \)
What is ILP?

A synthetic sample: $e = (a+b) + (c+d)$

x86 binary

```
... i1
mov eax, DWP[ebp-16] i2
mov edx, DWP[ebp-20] i3
add edx, eax i4
mov ebx, DWP[ebp-8] i5
mov ebx, DWP[ebp-12] i6
add edx, ebx
add ebx, DWP[ebp-12]...
```

Instruction and cycle counting

Cycle 0: i1 → i2 → i4

Cycle 1: i3 → i5

Cycle 2: i6
What is ILP?

A synthetic sample: \( e = (a+b) + (c+d) \)

X86 binary

\[
\begin{align*}
&\ldots \\
&i1: \text{mov} \ eax, \text{DWP}[ebp-16] \\
&i2: \text{mov} \ edx, \text{DWP}[ebp-20] \\
&i3: \text{add} \ edx, \ eax \\
&i4: \text{mov} \ ebx, \text{DWP}[ebp-8] \\
&i5: \text{add} \ ebx, \text{DWP}[ebp-12] \\
&i6: \text{add} \ edx, \ ebx \\
&\ldots
\end{align*}
\]

Instruction and cycle counting

Cycle 0: \( i1 \rightarrow i2 \rightarrow i4 \)

Cycle 1: \( i3 \rightarrow i5 \)

Cycle 2: \( i6 \)

Number of instructions = 6, Number of cycles = 3

ILP = \# of instructions / \# of cycles = 2
ILP explains why compensated algorithms are fast

ILP:

AccEval

\[ \approx 11 \]

AccEval2

1.65
The PerPI Tool: principles

From ILP analysis to the PerPI tool

- 2008: prototype within a processor simulation platform (PPC asm)
- 2009: PerPI to analyse and visualise the ILP of x86-coded algorithms

PerPI

- Pintool (http://www.pintool.org)
- Input: x86 binary file
- Outputs: ILP measure, IPC histogram, data-dependency graph
1 Accurate algorithms: why? how? which ones?

2 How to choose the fastest algorithm?

3 The PerPI Tool

4 The PerPI Tool: outputs and first examples

5 Conclusion
Simulation produces reproducible results

start: _start
start: .plt
start: __libc_csu_init
start: _init
start: call_gmon_start
stop: call_gmon_start::I[13]:C[9]:ILP[1.44444]
start: frame_dummy
stop: frame_dummy::I[7]:C[3]:ILP[2.33333]
start: __do_global_ctors_aux
stop: __do_global_ctors_aux::I[11]:C[6]:ILP[1.83333]
stop: _init::I[41]:C[26]:ILP[1.57692]
stop: __libc_csu_init::I[63]:C[39]:ILP[1.61538]
start: main
start: .plt
start: .plt
start: Horner
stop: Horner::I[5015]:C[2005]:ILP[2.50125]
start: Horner
stop: Horner::I[5015]:C[2005]:ILP[2.50125]
start: Horner
stop: Horner::I[5015]:C[2005]:ILP[2.50125]
stop: main::I[20129]:C[7012]:ILP[2.87065]
start: _fini
start: __do_global_dtors_aux
stop: __do_global_dtors_aux::I[11]:C[4]:ILP[2.75]
stop: _fini::I[23]:C[13]:ILP[1.76923]

Global ILP ::I[20236]:C[7065]:ILP[2.86426]
Profile results to compare two algorithms

start :   _start   (depth: 1 rtn_s_d: 0)
start :   __libc_csu_init   (depth: 2 rtn_s_d: 0)
 start :    _init   (depth: 3 rtn_s_d: 0)
start :   call_gmon_start   (depth: 4 rtn_s_d: 0)
 stop :  call_gmon_start   (depth: 4 rtn_s_d: 0)    I[13]:C[9]:ILP[1.44444]
start :   frame_dummy   (depth: 4 rtn_s_d: 0)
 stop :   frame_dummy   (depth: 4 rtn_s_d: 0)    I[7]:C[3]:ILP[2.33333]
start :   __do_global_ctors_aux   (depth: 4 rtn_s_d: 0)
 stop :  __do_global_ctors_aux   (depth: 4 rtn_s_d: 0)    I[11]:C[6]:ILP[1.8]
stop :  __do_global_ctors_aux   (depth: 4 rtn_s_d: 0)    I[41]:C[26]:ILP[1.57692]
stop :  __libc_csu_init   (depth: 2 rtn_s_d: 0)    I[63]:C[39]:ILP[1.61538]
start :   main   (depth: 2 rtn_s_d: 0)
 start :    Horner   (depth: 3 rtn_s_d: 0)
stop :     Horner   (depth: 3 rtn_s_d: 0)    I[519]:C[206]:ILP[2.51942]
start :   CompHorner   (depth: 3 rtn_s_d: 0)
 stop :  CompHorner   (depth: 3 rtn_s_d: 0)    I[3732]:C[318]:ILP[11.7358]
start :   DDHorner   (depth: 3 rtn_s_d: 0)
 stop :  DDHorner   (depth: 3 rtn_s_d: 0)    I[4229]:C[2106]:ILP[2.00807]
stop :  main   (depth: 2 rtn_s_d: 0)    I[9062]:C[2509]:ILP[3.6118]
start :   _fini   (depth: 2 rtn_s_d: 0)
 start :    __do_global_dtors_aux   (depth: 3 rtn_s_d: 0)
stop :  __do_global_dtors_aux   (depth: 3 rtn_s_d: 0)    I[11]:C[4]:ILP[2.75]
stop :    __do_global_dtors_aux   (depth: 3 rtn_s_d: 0)    I[23]:C[13]:ILP[1.76923]

Global ILP    I[9169]:C[2562]:ILP[3.57884]
Histograms to compare two algorithms

compensated summation

double-double summation
Visualisation of the instruction dependence graph
Instruction dependence analysis to compare two algorithms

*Ultimatlly Fast Accurate Summation*. S.M. Rump. [SISC,2009]

- New FastAccSum is announced to be faster than AccSum:
- $3n$ vs. $4n$ flop ($\times m$ outer iterations) [SISC,2009]

<table>
<thead>
<tr>
<th>cond \ n</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th>3000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^6$</td>
<td>1.09</td>
<td>1.18</td>
<td>1.30</td>
<td>1.35</td>
<td>1.33</td>
</tr>
<tr>
<td>$10^{16}$</td>
<td>1.22</td>
<td>1.22</td>
<td>1.29</td>
<td>1.30</td>
<td>1.88</td>
</tr>
<tr>
<td>$10^{32}$</td>
<td>1.33</td>
<td>1.27</td>
<td>1.45</td>
<td>1.25</td>
<td>1.38</td>
</tr>
<tr>
<td>$10^{48}$</td>
<td>1.35</td>
<td>1.43</td>
<td>1.38</td>
<td>1.33</td>
<td>1.47</td>
</tr>
<tr>
<td>$10^{60}$</td>
<td>1.25</td>
<td>1.33</td>
<td>1.29</td>
<td>1.27</td>
<td>1.40</td>
</tr>
</tbody>
</table>
Instruction dependence analysis to compare two algorithms

**Ultimatly Fast Accurate Summation.** S.M. Rump. [SISC,2009]

- New FastAccSum is announced to be faster than AccSum:
- $3n$ vs. $4n$ flop ($\times m$ outer iterations) [SISC,2009]
Instruction dependence analysis to compare two algorithms

*Ultimatly Fast Accurate Summation.* S.M. Rump. [SISC,2009]

- New FastAccSum is announced to be faster than AccSum:
- 3n vs. 4n flop ($\times m$ outer iterations) [SISC,2009]
- but AccSum benefits for more ILP: PerPI outputs
Instruction dependence analysis to compare two algorithms

*Ultimatly Fast Accurate Summation.* S.M. Rump. [SISC,2009]

- New `FastAccSum` is announced to be faster than `AccSum`:
  - $3n$ vs. $4n$ flop ($\times m$ outer iterations) [SISC,2009]
- but `AccSum` benefits for more ILP: PerPI outputs
- Let’s exploit it!

[Graph showing performance comparison between `AccSumVect/FastAccSumUnrolled` for different data sizes and condition numbers.]
Instruction dependence analysis to compare two algorithms

*Ultimatly Fast Accurate Summation.* S.M. Rump. [SISC,2009]

- New FastAccSum is announced to be faster than AccSum:

- S.M. Rump is right!

6. **Timing.** In this section we briefly report on some timings. We do this with great hesitation: Measuring the computing time of summation algorithms in a high-level language on today’s architectures is more of a hazard than scientific research. The results are hardly predictable and often do not reflect the actual performance.
Accurate algorithms: why? how? which ones?

How to choose the fastest algorithm?

The PerPI Tool

The PerPI Tool: outputs and first examples

Conclusion
Conclusions

PerPI: a software platform to analyze and visualise ILP

- Useful: a detailed picture of the intrinsic behavior of the algorithm
- Reliable: reproducibility both in time and location
- Realistic: correlation with measured ones
- Exploratory tool: gives us the taste of the behavior of our algorithms within “tomorrow” processors
- Optimisation tool: analyse the effect of some hardware constraints

Cons . . . at the current state

- Work in progress
- Not abstract enough: instruction set dependence (RISC vs. CISC, 3-operand instructions, . . .
- Assembler program or high level programming language? IPC vs. FloPC ?
Current working list

- Improving the post-processing visualisation
- Make PerPI available on-line and usable as black-box