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Context and motivation

Context: Floating point computation using IEEE-754 arithmetic (64 bits)

Aim: Improve and validate the accuracy of numerical algorithms . . .

. . . without sacrificing the running-time performances

Improving accuracy:

Why ? result accuracy ≈ condition number × machine precision

How ? more bits

double-double (128) or quad-double librairies (256)

MPFR (arbitrary # bits, fast for 256+)

Compensated algorithms
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Compensated algorithms: accurate and fast

Compensated algorithms

summation and dot product: Knuth (65), Kahan (66), . . . ,

Ogita-Rump-Oishi (05,08)

polynomial evaluation: Horner (Langlois-Louvet, 07), Clenshaw, De

Casteljau (Hao et al., 11)

triangular linear systems: (Langlois-Louvet, 08)

These algorithms are fast in terms of measured computing time

Faster than other existing solutions: double-double, quad-double, MPFR

Question: how to trust such claim?

Faster than the theoretical complexity that counts floating-point operations

Question: how to explain and verify such claim —at least illustrate?
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Flop counts and running-times are not proportional

A classic problem: I want to double the accuracy of a computed result while

running as fast as possible?

A classic answer:

Metric Eval AccEval1 AccEval2

Flop count 2n 22n + 5 28n + 4

Flop count ratio 1 ≈ 11 ≈ 14

Measured #cycles ratio 1 2.8 – 3.2 8.7 – 9.7

Flop counts and running-times are not proportional. Why? Which one trust?
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Running-time measures: details

Average ratios for polynomials of degree 5 to 200

Working precision: IEEE-754 double precision

CompHorner

Horner

DDHorner

Horner

DDHorner

CompHorner

Pentium 4, 3.00 GHz GCC 4.1.2 2.8 8.5 3.0

(x87 fp unit) ICC 9.1 2.7 9.0 3.4

(sse2 fp unit) GCC 4.1.2 3.0 8.9 3.0

(sse2 fp unit) ICC 9.1 3.2 9.7 3.4

Athlon 64, 2.00 GHz GCC 4.1.2 3.2 8.7 3.0

Itanium 2, 1.4 GHz GCC 4.1.1 2.9 7.0 2.4

ICC 9.1 1.5 5.9 3.9

Results vary with a factor of 2

Life-period for the significance of these computing environments?

6 / 23



How to trust non-reproducible experiment results?

Measures are mostly non-reproducible

The execution time of a binary program varies, even using the same data

input and the same execution environment.

Why? Experimental uncertainties

spoiling events: background tasks, concurrent jobs, OS interrupts

non deterministic issues: instruction scheduler, branch predictor

external conditions: temperature of the room (!)

timing accuracy: no constant cycle period on modern processors (i7, . . . )

Uncertainty increases as computer system complexity does

architecture issues: multicore, many/multicore, hybrid architectures

compiler options and its effects
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How to read the current literature?

Lack of proof, or at least of reproducibility

Measuring the computing time of summation algorithms in a high-level

language on today’s architectures is more of a hazard than scientific

research. S.M. Rump (SISC, 2009)

The picture is blurred: the computing chain is wobbling around

If we combine all the published speedups (accelerations) on the well

known public benchmarks since four decades, why don’t we observe

execution times approaching to zero? S. Touati (2009)
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Outline

1 Accurate algorithms : why ? how ? which ones ?

2 How to choose the fastest algorithm?

3 The PerPI Tool

Goals and principles

What is ILP?

4 The PerPI Tool: outputs and first examples

5 Conclusion
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Highlight the potential of performance

General goals

Understand the algorithm and architecture interaction

Explain the set of measured running-times of its implementations

Abstraction w.r.t. the computing system for performance prediction and

optimization

Reproducible results in time and in location

Automatic analysis

Our context

Objects: accurate and core-level algorithms: XBLAS, polynomial evaluation

Tasks: compare algorithms, improve the algorithm while designing it,

chose algorithms → architecture, optimize algorithm → architecture
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The PerPI Tool: principles

Abstract metric: Instruction Level Parallelism

ILP: the potential of the instructions of a program that can be executed

simultaneously

#IPC for the Hennessy-Patterson ideal machine

Compilers and processors exploits ILP: superscalar out-of-order execution

Thin grain parallelism suitable for single node analysis
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What is ILP?

A synthetic sample: e = (a+b) + (c+d)

x86 binary
...

mov eax,DWP[ebp-16]i1

mov edx,DWP[ebp-20]i2

add edx,eaxi3

mov ebx,DWP[ebp-8]i4

add ebx,DWP[ebp-12]i5

add edx,ebxi6

...
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ILP explains why compensated algorithms are fast

AccEval AccEval2

ILP: ≈ 11 1.65
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The PerPI Tool: principles

From ILP analysis to the PerPI tool

2007: successful previous pencil-and-paper ILP analysis [PhL-Louvet,2007]

2008: prototype within a processor simulation platform (PPC asm)

2009: PerPI to analyse and visualise the ILP of x86-coded algorithms

PerPI

Pintool (http://www.pintool.org)

Input: x86 binary file

Outputs: ILP measure, IPC histogram, data-dependency graph
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Simulation produces reproducible results

     start : _start

          start : .plt

               start : __libc_csu_init

                    start : _init

                         start : call_gmon_start

                         stop : call_gmon_start::I[13]::C[9]::ILP[1.44444]

                         start : frame_dummy

                         stop : frame_dummy::I[7]::C[3]::ILP[2.33333]

                         start : __do_global_ctors_aux

                         stop : __do_global_ctors_aux::I[11]::C[6]::ILP[1.83333]

                    stop : _init::I[41]::C[26]::ILP[1.57692]

               stop : __libc_csu_init::I[63]::C[39]::ILP[1.61538]

               start : main

                    start : .plt

                         start : .plt

                              start : Horner

                              stop : Horner::I[5015]::C[2005]::ILP[2.50125]

                              start : Horner

                              stop : Horner::I[5015]::C[2005]::ILP[2.50125]

                              start : Horner

                              stop : Horner::I[5015]::C[2005]::ILP[2.50125]

                         stop : main::I[20129]::C[7012]::ILP[2.87065]

                         start : _fini

                              start : __do_global_dtors_aux

                              stop : __do_global_dtors_aux::I[11]::C[4]::ILP[2.75]

                         stop : _fini::I[23]::C[13]::ILP[1.76923]

Global ILP ::I[20236]::C[7065]::ILP[2.86426]
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Profile results to compare two algorithms

start :          _start   (depth: 1 rtn_s_d: 0) 

          start : __libc_csu_init   (depth: 2 rtn_s_d: 0) 

               start :           _init   (depth: 3 rtn_s_d: 0) 

                    start : call_gmon_start   (depth: 4 rtn_s_d: 0) 

                    stop  : call_gmon_start   (depth: 4 rtn_s_d: 0)   I[13]::C[9]::ILP[1.44444] 

                    start :     frame_dummy   (depth: 4 rtn_s_d: 0) 

                    stop  :     frame_dummy   (depth: 4 rtn_s_d: 0)   I[7]::C[3]::ILP[2.33333] 

                    start : __do_global_ctors_aux   (depth: 4 rtn_s_d: 0) 

                    stop  : __do_global_ctors_aux   (depth: 4 rtn_s_d: 0)   I[11]::C[6]::ILP[1.83333] 

               stop  :           _init   (depth: 3 rtn_s_d: 0)   I[41]::C[26]::ILP[1.57692] 

          stop  : __libc_csu_init   (depth: 2 rtn_s_d: 0)   I[63]::C[39]::ILP[1.61538] 

          start :            main   (depth: 2 rtn_s_d: 0) 

               start :          Horner   (depth: 3 rtn_s_d: 0) 

               stop  :          Horner   (depth: 3 rtn_s_d: 0)   I[519]::C[206]::ILP[2.51942] 

               start :      CompHorner   (depth: 3 rtn_s_d: 0) 

               stop  :      CompHorner   (depth: 3 rtn_s_d: 0)   I[3732]::C[318]::ILP[11.7358] 

               start :        DDHorner   (depth: 3 rtn_s_d: 0) 

               stop  :        DDHorner   (depth: 3 rtn_s_d: 0)   I[4229]::C[2106]::ILP[2.00807] 

          stop  :            main   (depth: 2 rtn_s_d: 0)   I[9062]::C[2509]::ILP[3.6118] 

          start :           _fini   (depth: 2 rtn_s_d: 0) 

               start : __do_global_dtors_aux   (depth: 3 rtn_s_d: 0) 

               stop  : __do_global_dtors_aux   (depth: 3 rtn_s_d: 0)   I[11]::C[4]::ILP[2.75] 

          stop  :           _fini   (depth: 2 rtn_s_d: 0)   I[23]::C[13]::ILP[1.76923] 

 

Global ILP    I[9169]::C[2562]::ILP[3.57884] 
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Histograms to compare two algorithms

compensated summation double-double summation
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Visualisation of the instruction dependence graph
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Instruction dependence analysis to compare two algorithms

Ultimatly Fast Accurate Summation. S.M. Rump. [SISC,2009]

New FastAccSum is announced to be faster than AccSum:

3n vs. 4n flop (×m outer iterations) [SISC,2009]

but AccSum benefits for more ILP: PerPI ouputs

Let’s exploit it!

S.M. Rump is right!
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ULTIMATELY FAST ACCURATE SUMMATION 3499

Table 5.3
Minimum treatable condition number for faithful rounding in about the same number of flops.

m flops n=100 n=1000 n=1000

SumK 3 19n 2.38 · 1038 2.29 · 1034 2.28 · 1030
PrecSum 4 19n 6.39 · 1052 1.95 · 1048 1.86 · 1042

FastPrecSum 5 18n 2.85 · 1064 2.89 · 1058 2.89 · 1052

6. Timing. In this section we briefly report on some timings. We do this with
great hesitation: Measuring the computing time of summation algorithms in a high-
level language on today’s architectures is more of a hazard than scientific research.
The results are hardly predictable and often do not reflect the actual performance.

These statements sound harsh, so I give a few examples. It happens occasionally
that adding statements to a code, thus supposedly increasing the computing, actually
decreases the computing time.

The compiler optimization is also hardly predictable. Consider the code

for i = 1 : n
σ� = fl(|σ + pi|)
q = fl(σ� − σ)
pi = fl(pi − q)
σ = σ�

end for

as it is used in FastAccSum. We used Ogita’s trick [37] to avoid optimization of q =
fl(σ�−σ). Since the value of σ changes in each loop, such an optimization is not possible
without additional knowledge of the data. Nevertheless, certain compilers do eliminate
the evaluation of q by setting q = pi and subsequently pi = 0. Obviously, there is a
predicted branch which is faster than executing the 3 floating-point operations.

Declaring a variable as “volatile” is a common method to prevent compiler opti-
mization. However, this works only sometimes. Also this slows down computation,
sometimes by a factor 2 and sometimes only a few percent.

In summary we want to stress that the following numbers should be read with
great hesitation. Different implementations using different compilers and/or architec-
tures may vary the times easily by a factor 2 or more for all algorithms and in both
directions.

We measured the computing time of FastAccSum compared to AccSum. We used
a Pentium 4 laptop and the Intel Visual Fortran 9.1 compiler. To avoid unexpected
compiler optimizations we used “improved consistency” of the floating-point arith-
metic. Various comparisons in [37] seem to show that AccSum used to be the fastest
known algorithm to compute a faithfully rounded result.

In Table 6.1 we display the ratio of computing times of AccSum over FastAccSum
for various condition numbers and dimensions n = 100, 300, 1000, 3000, 10000. A value
greater than 1 indicates that FastAccSum is faster by this factor than AccSum.

We treated 1000 random sums for each combination of condition number and
dimension and display the median of the ratios. As can be seen in Table 6.1, the
ratio approaches the theoretical limit of 1.33 with increasing condition number and
dimension; that is, FastAccSum is 33% faster than AccSum. This is because the main
loop in AccSum needs 4n operations, whereas FastAccSum needs 3n operations.

There are a few exceptions. For instance, cond = 1016 and n = 10, 000 show a
ratio 1.88—much better than 1.33. This is a combination where FastAccSum often
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This is the end
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Conclusions

PerPI: a software platform to analyze and visualise ILP

Useful: a detailed picture of the intrinsic behavior of the algorithm

Reliable: reproducibility both in time and location

Realistic: correlation with measured ones

Exploratory tool: gives us the taste of the behavior of our algorithms within

“tomorrow” processors

Optimisation tool: analyse the effect of some hardware constraints

Cons . . . at the current state

Work in progress

Not abstract enough: instruction set dependence (RISC vs. CISC,

3-operand instructions, . . .

Assembler program or high level programming language?

IPC vs. FloPC ?
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Current working list

Improving the post-processing visualisation

Make PerPI available on-line and usable as black-box
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