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Introduction

Heat Conduction

» Fourier's law of heat conduction J(x,t) = —k VT (x,t).

» For a 1-D finite system of length N in contact with two
thermostats at temperatures T; #+ Tg with AT =T, - Tg
AT

=y

where ky = f(N, Ty, Tg) is the thermal conductivity.

» If lim lim kpn =k < oo = Fourier's law
N—oco AT—0

» Anomalous conductivity :

» We study the behavior of kp in a Toda chain subjected to a
stochastic perturbation. In particular, we are interested in the
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Introduction

Two main approaches
» non-equilibrium molecular dynamics with fixed temperatures
at the boundaries
» stochastic thermostats (Langevin, Maxwell)
» deterministic thermostats (Nosé-Hoover)
» equilibrium method based on the following Green-Kubo

formula
1

5 [ I

Both approaches are theoretically equivalent when (N, T) < co.

k(N,T) =
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Introduction

Previous Results

» Fourier’s law is generally valid for 3-D systems, but this is not
always the case in lower dimensions.

» Roughly speaking, we have normal transport in 1-D systems
only in presence of stochastic perturbations destroying the
conservation of (total) momentum and energy.

» In all other low-dimensional cases transport is anomalous.

» In particular for the Toda chain we have

3Zotos (2002)

®Basile et al.(2009)
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Model Specification and Dynamics

Model Description
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» {(gi,pi),i=1,...,N} e R?N (g; displacement with respect to
equilibrium and p; momentum of the i-th oscillator)

» equal unit masses, first particle attached to a wall (go =0, po = 0)

N 2 N —br
. br-1
> H=;%+;V(qi_qi—l)With \/(r):%andb>0

» the Hamiltonian system is completely integrable €

“Hénon (1974)
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Model Specification and Dynamics

Evolution equations

» Hamiltonian dynamics in the bulk, Langevin dynamics at the
boundaries (V'(gn+1— gn) =0)

dq; = p; dt
dpi = (V' (qis1 = a7) = V'(qi - qi-1) ) dt
+ 00 ( -~ pydt + /26Ty dWa )
+ 0 n( - Epw dt + /26T dW )

Vie[l,N]

e "/ Teadqy ... dgndps . .. dpn

Z
» If T, # Tgr one can prove the existence and uniqueness of an
invariant measure under some specific assumptions on the potential

» Ty = Tgr = Teq = invariant measure
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Model Specification and Dynamics

Stochastic Perturbation

» Conservative noise: at times t; ~ Exp(y~!) exchanges of
momenta between nearest neighbor atoms ¢
» Locally fori=2...,N-1

d&i(t) = dJi1,i(t) — dJiisa(t)
where the local energy is

21
-5 5(v(q,- = qi-1) + V(qis1 - qi))

and the local current is

t
Jia(®) = [T GEE() #7800 () ds+ My (8). ()

&

with
-ham 1 ! - sto 1 2 2
Jii+1 = _E(pi +pis1) V' (giv1 — qi), Jiji+1 = > (Pi - Pi+1)

9Basile, Bernardin, Olla (2006) & (2009) 7/17



Model Specification and Dynamics

Thermal Conductivity

» Because of energy conservation, the expectation of the local
current with respect to the stationary (unknown) measure is

ham - sto

<Jivi+1(t)> (JI i+1 T 7]1 I+1> = tJ[IV =ty

» Computing the spatial mean of (J,hf}ff w,s,tf:l)

2 2
N- 1<jham> ZM :Jham+ sto (2)
N 1 Pt iyi+1 2 N_1 N N -
. NJ
> Slnce HN(T) = - |7r:'gﬁo # ham(T)+ sto(T)
Tr—T

= k5°(T) bounded = divergence relies only on x ™ (T
N g y N
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Numerical Simulations

Numerical Simulations: Integration Scheme (1)

We split the dynamics in two parts: Langevin dynamics -+ noise.

For the implementation of noise, we attach to each spring a clock
m

7", i=2,...,N -1, and apply the following algorithm at each
iteration t,, = mAt

m=0 draw 77 i E(vY)
m>1 (¥i=2,...,N-1)

if 7" < At = exchange p; and pj;1 and
redraw 7™ ~ E(y71)

otherwise = 7',-"”1 =7 - At
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Numerical Simulations

Numerical Simulations: Integration Scheme (2)

Langevin dynamics: BBK scheme ¢

p;n+1/2

m+1

At At At
- AL Vg v oia [~ Slepr /20 T, 6
2 2 2
At At

m Atperl/Q7 (3)

A /

pim+1/2 2t V( m+l)+5: 1(_ t£Pf1+1+ f t T Gl )
At At

+0i N (—2§Pﬂ+1 \/ % T GN)

where G A7(0,1), k=1,N

°Briinger, Brooks, Karplus (1984)
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Numerical Simulations

Numerical Simulations: Implementation

Choice of the parameters and initial conditions:
» all simulations performed with T; =1.05 and Tg =0.95
» N=27:2Y 4¢{1073,1072,107,1}
» coupling with the thermostats: £ =1 and £ =0.1
» Toda potential: b=1 and b=10

» linear temperature profile imposed as initial condition by
attaching each oscillator to a Langevin thermostat at a
temperature T; = % T, + ,(,;_11 Tr
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Numerical Simulations

Estimation of o on Ty, = MAt (with 106 < M <5 x 107) by

1 N-2 b o
am,m
In(tm) = 5= 2 Jiia” =N
P
U
~ 1 M_
JM_ 2 S m
U
M _ NJII\\I/I a
Ry = ~N
T -Tr
U
Ina kN = alng N + cost. [linear fit]
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Numerical Simulations

Numerical Results: Case b=1, £ =1

—
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Numerical Simulations

Numerical Results: Case b=1, £ =0.1
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Numerical Simulations

Numerical Results: Case b=10, £ =1

b=10, £=0.1
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Numerical Simulations

Numerical Results: Linear Fit

A least square fit of the log-log diagram gives

vy « « «
(b=1,£=1) (b=1,£=01) (b=10,¢=0.1)
0.001 0.10 - -
0.01 0.11 0.17 0.25
0.1 0.32 0.30 0.32
1 0.44 0.44 0.43
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Numerical Simulations

Concluding Remarks

Our findings:
» ballistic transport broken as soon as v # 0
» a < 0.5 in accordance with the theoretical upper bound

» a~0.5 for v =1 in any parameter configuration (stochastic
dynamics prevails)

» no universal o value

» for a fixed parameter configuration, o depends on + in a
monotonically increasing way
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