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INTRODUCTION

Why L1 for PDEs?

A new idea based on L~ minimization

Why L1 for PDEs?

@ Solve 1D eikonal
|'(x)|=1, wu(0)=0, u(l)=0

@ Exists infinitely many weak solutions
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INTRODUCTION Why L1 for PDEs?

A new idea based on L* minimization

Why L1 for PDEs?

e Exists a unique (positive) viscosity solution, u
|ul| —eu! =1, wu(0)=0, u(l)=0.

o |lu—ue|m < cez,

@ Sloppy approximation.
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INTRODUCTION Why L1 for PDEs?

A new idea based on L* minimization

Why L1 for PDEs?

One can do better with L! (of course @)

@ Define mesh 7, = U,’-\’ZO[X,-,X,-H], h=xj11 — X.

@ Use continuous finite elements of degree 1.

vV ={vec’o,1] Vipixia] € P1, v(0) = v(1) = 0}.

Xit+1
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INTRODUCTION Why L1 for PDEs?

A new idea based on L* minimization

Why L1 for PDEs?

o Consider p > 1 and set

1 N
J(v) = / V] = 1] dx+ 2 S (v (67) — V()2
1

L1-norm of residual

Entropy

@ Define up € V

up = arg ‘r/‘nel\r} J(v)
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INTRODUCTION Why L1 for PDEs?

A new idea based on L* minimization

Why L1 for PDEs?

@ Implementation: use mid-point quadrature

N
Ip(v) = Z h
i=0

#-norm of residual

‘V,(XH-%)‘ — 1| +Entropy.

@ Define

up = arg ‘I’/T‘I€I\I’} In(v)
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INTRODUCTION Why L1 for PDEs?

A new idea based on L* minimization

Why L1 for PDEs?

Theorem (J.-L. G.&B. Popov (2008))
up — u and Ty — u strongly in W11(0,1) N %[0, 1].

@ Fast solution in 1D (JLG&BP 2010) and in higher dimension
(fast-marching/fast sweeping, Osher/Sethian) to compute .

e Similar results in 2D for convex Hamiltonians (JLG&BP
2008).
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INTRODUCTION Why L1 for PDEs?

A new idea based on L' minimization

A new idea based on L! minimization

Some provable properties of minimizer iy,
(JLG&BP 2008, 2009, 2010). Minimizer &, is such that:

@ Residual is SPARSE:
~ . 1
]u;,(x,-Jr%)\ —1=0, Visuch that > Z [xi, xiv1]-

@ Entropy makes it so that graph of &I} (x) is concave down in
[xi, xi41] 2 3.
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INTRODUCTION Why L1 for PDEs?

A new idea based on L' minimization

A new idea based on L! minimization

Conclusion:

@ Residual is SPARSE: PDE solved almost everywhere. Entropy
does not play role in those cells.

e Entropy plays a key role only in cell where PDE is not solved.
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INTRODUCTION Why L1 for PDEs?

A new idea based on L' minimization

Can L1 help anyway?

New idea:
@ Go back to the notion of viscosity solution
@ Add smart viscosity to the PDE:

|ug| — Ox(e(ue)Oxue) = 1

@ | Make ¢ depend on the entropy production ‘

@ Viscosity large (order h) where entropy production is large
@ Viscosity vanish when no entropy production

@ Entropy plays a key role in cell where PDE is not solved.
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LINEAR TRANSPORT EQUATION

Numerical tests

NONLINEAR SCALAR CONSERVATION EQUATIONS

© LINEAR TRANSPORT EQUATION

Transport,
mixing
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Linear transport
The idea

LINEAR TRANSPORT EQUATION

Numerical tests

@ Solve the transport equation
Otu+ -Vu=0, ult=o=up, +BCs

@ Use standard discretizations (ex: continuous finite elements)

@ Deviate as little possible from Galerkin.
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LINEAR TRANSPORT EQUATION

A little bit of theory
Numerical tests

Entropy for linear transport? ‘

@ Notion of renormalized solution (DiPerna/Lions (1989))
Good framework for non-smooth transport.

e VE € C}(R;R) is an entropy

e If solution is smooth = E(u) solves PDE, VE € C'(R;R)
(multiply PDE by E’(u) and apply chain rule)

8:E(u) + B-VE(u) =0

Entropy residual
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Linear transport
The idea

LINEAR TRANSPORT EQUATION

Numerical tests

Key idea 1:
Use entropy residual to construct viscosity
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Linear transport
The idea

LINEAR TRANSPORT EQUATION The algorithm
A little bit of theory

Numerical tests

viscosity ~ entropy residual
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Linear transport
The id

LINEAR TRANSPORT EQUATION
A little bit of theory
Numerical tests

‘viscosity ~ entropy residual ‘

e Viscosity ~ residual (Hughes-Mallet (1986) Johnson-Szepessy
(1990))

@ Entropy Residual ~ a posteriori estimator (Puppo (2003))

e Add entropy to formulation (For Hamilton-Jacobi equations
Guermond-Popov (2007))

@ Application to nonlinear conservation equations
(Guermond-Pasquetti (2008))
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Linear
The idea

LINEAR TRANSPORT EQUATION The algorithm
A little bit of theory

Numerical tests

The algorithm + time discretization

@ Numerical analysis 101:
Up-winding=centered approx + %L@\h viscosity

@ Proof:
Uip1 — 2U; + Uj—1
h;

up—ui—1 g Ui — Uiy 1
Bi o Bi oh 25,/7
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Linear transport
The idea
LINEAR TRANSPORT EQUATION The algorithm

A little bit of theory
Numerical tests

The algorithm + time discretization

Key idea 2:
Entropy viscosity should not exceed || h
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Linear transport

LINEAR TRANSPORT EQUATION
A little bit of theory
Numerical tests

The algorithm

@ Choose one entropy functional.

EX1: E(u) = |u — Tp|,

EX2: E(u) = (u— )2, etc.
o Define entropy residual Dy, := 0:E(up) + 3-VE(up),
o Define local mesh size of cell K: hx = diam(K)/p?

@ Construct a wave speed associated with this residual on each
mesh cell K:

vk = hk||Dhllco,k / E(un)

@ Define entropy viscosity on each mesh cell K:

o1
vk = hk m'n(i\lﬂlloo,m Vk)
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Linear transport
The idea

LINEAR TRANSPORT EQUATION The algorithm
A little bit of theory
Numerical tests

Summary

@ Space approximation: Galerkin 4 entropy viscosity:

/(8tuh+ﬂ-Vuh)vhdx —1—2/ vkVupVvpdx =0, VYV
Q K

Galerkin(centered approximation) Entropy viscosity

@ Time approximation: Use an explicit time stepping: BDF2,
RK3, RK4, etc.

@ Idea: make the viscosity explicit = Stability under CFL
condition.
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Linear transport
The idea

LINEAR TRANSPORT EQUATION The algorithm
A little bit of theory
Numerical tests

Space + time discretization

@ EX: 2nd-order centered finite differences 1D
e Compute the entropy residual D; on each cell (x;, xj+1)

E(uf) — E(uf™) E(ufy1) — E(u)
D; := max ( Ar + 51 h ;
E(”I+1) E( ,n+11) ) E(U,P+1) — E(ul")
At i+3 hj

@ Compute the entropy viscosity

. h,min< 1Biv1 3 2E( ") )
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transport
The id
LINEAR TRANSPORT EQUATION The algorithm
A little bit of theory
Numerical tests

Space + time discretization

@ Use RK to solve on next time interval [t”, t" + At]
ui(t=1t")=u

Ujy1 —Uj—1 ujr1 — Uy up— uj_—1
Bouy + B,y SHLZYim1 _ <V;w'+f _ y,."l"> _0
2 2h,- h,' hifl

Centered approximation Centered viscous fluxes

@ The entropy viscosity can be computed on the fly for some
RK techniques.
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Linear transport

LINEAR TRANSPORT EQUATION
A little bit of theory
Numerical tests

Space + time discretization: RK2 midpoint

@ Advance half time step to get w”
1
2

o Compute entropy viscosity on the fly

u? . —uy”
i+1 i—1
A0
i

n __ n
Wi —UI'—

E(Wi'ld) — E(w)

E(Wi’zi-l) - E(Ulnﬂ) 4B E(Will) - E(Win) )
At/2 +3 h;
o Compute u"*!
u ™t = — Atﬁ,ur% W’[Lrl2;iwin—l
nWit — W n wi —wiy
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Linear transport

LINEAR TRANSPORT EQUATION

Numerical tests

Theory for linear steady equations

o Consider
Oru+p-Vu="f, ul-=0.
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LINEAR TRANSPORT EQUATION

A little bit of theory

Numerical tests

Theory for linear steady equations

o Consider

Oru+p-Vu="f, ul-=0.

Let uy, be the finite element approximation with Euler time
approximation and u® entropy viscosity, then uy, converges to u.
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Linear transport
The idea
LINEAR TRANSPORT EQUATION The algorithm

A little bit of theory
Numerical tests

Theory for linear steady equations

o Consider

Oru+p-Vu="f, ul-=0.

Let uy, be the finite element approximation with Euler time
approximation and u® entropy viscosity, then uy, converges to u.

|

Theorem
Let up be the Py finite element approximation with RK2 time
approximation and u® entropy then uy, converges to u.

The results should hold for nonlinear scalar conservation laws with @

Jean-Luc Guermond High-Order Hydrodynamics



LINEAR TRANSPORT EQUATION

Numerical tests

Theory for linear steady equations

Why convergence is so difficult to prove?

@ Key a priori estimate

T
/ v(u)|VulPdx < ¢
0

o Ok in {v(u)(x,t) = 3||8]|h} (non-smooth region)

@ The estimate is useless in smooth region. &%
@ Explicit time stepping makes the viscosity depend on the past.
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LINEAR TRANSPORT EQUATION

A I\tﬂe b\t of theory
Numerical tests

1D Numerical tests, BV solution

@ linear transport

©—300(2x~0.3) if [2x—0.3] < 0.25,
1 if [2x—0.9] < 0.2,
Oru+0xu =0, u(x) = 2
t (1- (329)°)" wpx-16/<02
0 otherwise.

@ Periodic boundary conditions.
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LINEAR TRANSPORT EQUATION

A little bit of theory
Numerical tests

1D Numerical tests, BV solution, Spectral elements

@ Spectral elements in 1D on random meshes.

@ Long time integration, 100 periods.

15 L5 L5

‘4«3] x

‘&r

-0.5

~ Long time integration, t = 100, for ponnomiaio'Sdegrees
k =2,...8, #d.0.f.=200. Galerkin (left); Constant viscosity
(center); Entropy viscosity (right).
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LINEAR TRANSPORT EQUATION

A little bit of theory

Numerical tests

1D Numerical tests, BV solution, Finite differences

@ Second-order finite differences in 1D on uniform and random
meshes.

@ Long time integration, 100 periods.

15 T T 15

1

0.5

0

05 : : 05 '
0 02 0.6 0.8

Long time integra{%ion, t= 106, for 2nd order finite differences
#d.0.f.=200. Uniform mesh (left); Random mesh (right).
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LINEAR TRANSPORT EQUATION

A little bit of theory
Numerical tests

Numerical tests, smooth solution

Q=1{(x,y) €R2 {/x2 +y2 <1} := B(0,1),

Speed: rotation about origin, angular speed 27
u(X,y):% (1—tanh <(X7'° °°s(2ﬂ))2;§(y7r° Si"(zﬂ))2—1) +1),
e a=20.3, n = 0.4
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Linear transport
The idea

LINEAR TRANSPORT EQUATION The algc
A little bit of theory

Numerical tests

2D numerical tests, smooth solution, P; FE

@ [P; finite elements

Py Stab.
12 rate LT rate
2.00E-1 2.5893E-1 - 3.6139E-1 -
1.00E-1 9.7934E-2 1.403 1.3208E-1 1.452
5.00E-2 1.9619E-3 2.320 2.7310E-3 2.274
2.50E-2 3.5360E-4 2.472 5.1335E-3 2.411
1.25E-2 6.4959E-4 2.445 1.0061E-3 2.351
1.00E-2 3.9226E-4 2.261 6.3555E-4 2.058
6.25E-3 1.4042E-4 2.186 2.3829E-4 2.087

Table: P; approximation.
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Linear
The id
LINEAR TRANSPORT EQUATION The rithm

A little bit of theory
Numerical tests

2D numerical tests, smooth solution, spectral elements

001 P // ~ 001 o //‘ a
— - _— .
0,001 = 0001 =
i i = s
1004 [ / A 1004 [
1005 S 1605 / A

2 1e0s

5 teor
8 «

N
Error in L2 norm
S 8

N\

1608 z 1608 A
% y
1609 1609
/ 4
of o

1610 1610
(e p—— [ p——
N=3 N=3

1e-11 Nt —— 111 N=4 —x—
N=6 —5— N=6 —e—
N=12 N=12

1e-12 1e12

‘001 o1 1 001 o1 1
Element size h Element size h

Linear transport problem with smooth initial condition. Errors in
L' (at left) and L? (at right) norms vs h for N = 2,4,6,8,12.
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LINEAR TRANSPORT EQUATION

A little bit of theory

Numerical tests

2D Numerical tests, BV solution

Q={(x,y) € R% \/x2 +y2 <1} := B(0,1),

Speed: rotation about origin, angular speed 27

u(x,y) = X0 (v/(x — rocos@rB))E + (v — rosin(2rt))2),
a=03 rn=04
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Linear transport
The idea

LINEAR TRANSPORT EQUATION The algc
A little bit of theory

Numerical tests

2D Numerical tests, BV solution, P, FE

@ P, finite elements

P, Stab.
12 rate LT rate
2.00E-1 1.0930E-1 - 4.3373E-2 -
1.00E-1 7.3222E-2 0.578 2.3771E-2 0.868
5.00E-2 5.5707E-2 0.394 1.3704E-2 0.795
2.50E-2 4.2522E-2 0.389 8.0365E-3 0.770
1.25E-2 3.2409E-2 0.392 4.6749E-3 0.782
1.00E-2 2.9812E-2 0.374 3.9421E-3 0.764
6.25E-3 2.4771E-2 0.394 2.7200E-3 0.790

Table: P, approximation.
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© NONLINEAR SCALAR CONSERVATION

Johannes
Martinus
Burgers
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alar conservation laws
ce tests, 2D Burgers, P; /P> FE
Leverett, FE

NONLINEAR SCALAR CONSERVATION YV, FeEey Fabia, (FE

2D Nonlinear scalar conservation laws

@ Solve
Oru+ Oxf(u) +0yg(u) =0 ult—o = ug, +BCs.
@ The unique entropy solution satisfies
O0¢E(u) + 0xF(u)+0,G(u) <0

for aII entropy palr E(u = [E'(u

= JE'(u)
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Nonlinear scalar conservation laws
G e tests, 2D Burgers, P; /P> FE

NONLINEAR SCALAR CONSERVATION N e
etrova, Popov problem, FE

2D scalar nonlinear conservation laws

Choose one entropy E(u)
Define entropy residual, Dy(u) := 0:E(u) + 0xF(u) + 0, G(u)
Define local mesh size of cell K: hy = diam(K)/p?

Construct a speed associated with residual on each cell K:

Vi = k|| Dhlloo i/ E(un)

o Compute maximum local wave speed:
Bk = IV (u)* + &'(u)?[|oo,k
@ Define entropy viscosity on each mesh cell K:

.1
VK = hK mln(EﬁK, VK)
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Nonlinear scalar conservation laws
G e tests, 2D Burgers, P; /P> FE
Lev t, FE

NONLINEAR SCALAR CONSERVATION ez, Repey malm), 2

Summary

@ Space approximation: Galerkin 4 entropy viscosity:

/(&uh + Oxf(up) + 8yg(uh))vhdx+2/ vk VupVvpdx =0, Vv
Q K

Galerkin (centered approximation) Entropy viscosity

@ Time approximation: explicit RK
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Nonlinear scalar conservation laws
G e tests, 2D Burgers, P; /P> FE

NONLINEAR SCALAR CONSERVATION N e
etrova, Popov problem, FE

The algorithm + time discretization

EX: 2nd-order centered finite differences 1D

e Compute local speed on on each cell (xj, xj+1)

Bray = 5(F() + F(142))

e Compute the entropy residual D; on each cell (x;, xj+1)
E(uf) — E(u™)

D,' =
max ( At

E(“?+1) - E(“FJ:ll) LB, E(UP+1) - E(“f_l)
At It h;

E(ufyy) — E(u™)

hi

Jean-Luc Guermond High-Order Hydrodynamics
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Nonlinear scalar conservation laws
G e tests, 2D Burgers, P; /P> FE
y Levi , FE

NONLINEAR SCALAR CONSERVATION i, Repey mebikm, FE

The algorithm + time discretization

@ Compute the entropy viscosity

(1
vi' :== himin *Wi+%|

! 2
@ Use RK to solve on next time interval [t”, t" + At]

ui(t=1t")=uf

f(uivr) — fuiz1) (Vp Uil — Ui g
2h;

Orui + A Vi-1
1
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Nonlinear scalar conservation laws

G e tests, 2D Burgers, P; /P> FE
NONLINEAR SCALAR CONSERVATION - Leverett, FE e
Petrova, Popov problem, FE

EX: 1D burgers 4+ 2nd-order Finite Differences

@ Second-order Finite Differences + RK2/RK3/RK4

10x10° T
10x107" ’(
i
toxto2] i ” 4
SIS
Jlht
1%
10x10 \
o | /
.
[
iy
SETEE
toxio>] Ty N
[ [ i
10x10°% 44/‘ “ e 7 \\
0 1 0 01 02 03 04 05 06 07 05 09
Up Vh(uh)|8xuh\

Burgers, t = 0.25, N = 50, 100, and 200 grid points.
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Nonlinear scalar conservation laws
G e tests, 2D Burgers, P; /P> FE
Leverett, FE
Petrova, Popov problem, FE

NONLINEAR SCALAR CONSERVATION

EX: 1D burgers + Fourier

@ Solution method: Fourier + RK4 + entropy viscosity

1 r 102

un vn(un)
Burgers at t = 0.25 with N =50, 100, and 200.
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alar conservation laws
ce tests, 2D Burgers, P; /P> FE
Leverett, FE

NONLINEAR SCALAR CONSERVATION YV, FeEey Fabia, (FE

EX: 1D Nonconvex flux 4+ Fourier (WENO5 + SuperBee

(or minmod 2) fails)

1 : 1

zu(l—u) ifu<s, 0, x e (0,0.25],
flu)y=<14 - 2 w(x) = ( ]

su(u—1)+ 5 ifu>3, 1, x€(0.25,1]
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Nonlinear scalar conservation laws
C s, 2D Burgers, P; /P> FE
NONLINEAR SCALAR CONSERVATION 2 ',FE . e
K va, Popov problem, FE

EX: 1D Nonconvex flux 4+ Fourier (WENO5 + SuperBee
(or minmod 2) fails)

e Consider 9; + Oxf(u) =0, u(x,0) = up(x)

1u(1 - v) ifu<i, 0, x¢€(0,0.25],
flu)=141 3 7 wx)=
su(u—1)+ 5 ifu>3, 1, x€(0.25,1]

Non-convex flux problem
. uy at t = 1 with N = 200,
_0‘10.3 ‘ 6.4 ‘ 6.5‘ 1‘3.6‘ ‘0.7‘ ‘0.8‘ ‘0.9‘ 1 400 800 and 1600
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Nonlinear scalar conservation laws
C s, 2D Burgers, P; /P> FE
B , FE

NONLINEAR SCALAR CONSERVATION N e
Kurg etrova, Popov problem, FE

Convergence tests, 2D Burgers

@ Solve 2D Burgers
L5 L5
Oru + Ox(Eu )+ 8y(§u )=0
@ Subject to the following initial condition

—0.2 if x<05andy > 0.5
-1 if x>05andy>0.5
0.5 if x<0.5andy<0.5
0.8 if x>05andy <05

u(x,y,0) = u°(x,y) =

o Compute solution in (0,1)% at t = 3.

Jean-Luc Guermond High-Order Hydrodynamics



Nonlinear scalar conservation laws
Convergence tests, 2D Burgers, IP; /P> FE
Buckley Leverett, FE

Kurganov, Petrova, Popov problem, FE

NTRODUCTION
LINEAR TRANSPORT EQUATION
NONLINEAR SCALAR CONSERVATION

Convergence tests, 2D Burgers

P; FE, 310*
Initial data 1 , 310" nodes

uc Guermond High-Order Hydrodynamics




Nonlinear scalar conservation laws
Convergence ti
NONLINEAR SCALAR CONSERVATION E“C 2

Convergence tests, 2D Burgers

Py
L2 rate LT rate
5.00E-2 2.3651E-1 - 9.3661E-2 -
2.50E-2 1.7653E-1 0.422 4.9934E-2 0.907
1.25E-2 1.2788E-1 0.465 2.5990E-2 0.942
6.25E-3 9.3631E-2 0.449 1.3583E-2 0.936
3.12E-3 6.7498E-2 0.472 6.9797E-3 0.961

Table: Burgers, P; approximation.
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Nonlinear scalar conservation laws
Convergence ti
NONLINEAR SCALAR CONSERVATION E“C 2

Convergence tests, 2D Burgers

Py
12 rate LT rate
5.00E-2 1.8068E-1 - 5.2531E-2 -
2.50E-2 1.2956E-1 0.480 2.7212E-2 0.949
1.25E-2 9.5508E-2 0.440 1.4588E-2 0.899
6.25E-3 6.8806E-2 0.473 7.6435E-3 0.932

h

Table: Burgers, P, approximation.
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NONLINEAR SCALAR CONSERVATION

Buckley Leverett, P, FE

@ Solve Oru + Oxf(u) + 0yg(u) = 0.

2

f(u) = gt &) = Fu)(1—5(1— u)?)

Non-convex fluxes (composite waves)

1, /x2+y2<05

u(x,y,0) = 0. olse

Jean-Luc Guermond High-Order Hydrodynamics



Nonlinear scalar conservation laws
Convergence tests, 2D Burgers, P1 /P> FE
Buckley Leverett, FE

NONLINEAR SCALAR CONSERVATION Kurganov, Petrova, Popov problem, FE

Buckley Leverett, P, FE

der Hydrodynamics




ar conservation Ia\«vs
s, 2D Burgers, P; /P> FE
NONLINEAR SCALAR CONSERVATION G, (A2
, Petrova, Popov problem, FE

KPP (WENO + superbee limiter fails), P, FE

@ Solve 0:u + Oxf(u) + 0yg(u) = 0.
f(u) = sin(u), g(u) = cos(u)

Non-convex fluxes (composite waves)

7 21,2
sm, VXxc+y <1
u(x,y,0) = {f

77, else

Jean-Luc Guermond High-Order Hydrodynamics



Nonlinear scalar conservation laws
Convergence tests, 2D Burgers, P1 /P> FE

NONLINEAR SCALAR CONSERVATION Bty lava, [

Kurganov, Petrova, Popov problem, FE

KPP (WENO + superbee limiter fails)

0.0075
0.00703
0.00656
0.00609
0.00562
0.00516
0.00469
0.00422
0.00375
0.00328
0.00281
0.00234
0.00186
0.00141
0.000938
0.000469
9.220-20

P, approx Q4 entrop visco.

Guermond Hi,

der Hydrodyn




Euler equations
COMPRESSIBLE EULER EQUATIONS ithm
ests + Fourier
, P1 finite elements

NONLINEAR SCALAR CONSERVATION EQUATIONS

@ COMPRESSIBLE EULER EQUATIONS

Leonhard Euler

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
COMPRESSIBLE EULER EQUATIONS Tk orithm
ests + Fourier
, P1 finite elements

Euler flows

@ Solve compressible Euler equations

Otp+ V-(pu) =0
It(pu) + V-(pu @ u+ pl) =0
8:(E) + V-(u(E + p)) =0

1 p
pe 5Pu” (v—1)e P
Initial data + BCs

@ Use continuous finite elements of degree p.

@ Deviate as little possible from Galerkin.

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

1D-2D Tests + Fourier

2D tests, P; finite elements

The algorithm

]
]
(]
*]

Compute the entropy Sj, = % log(pn/p})
Define entropy residual, Dy := 0:Sp + V-(upSp)
Define local mesh size of cell K: hyx = diam(K)/p?

Construct a speed associated with residual on each cell K:

Vi := hk|| Dpllco,k

Compute maximum local wave speed:
1
Br = l[llull + (v T)2 oo,k

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

1D-2D Tests + Fourier

2D tests, P; finite elements

The algorithm

Use Navier-Stokes regularization: define pux and k.

Entropy viscosity and thermal conductivity on each mesh cell
K:

1
Kk = hg mln(EﬂKthHoo,Ka vk), Kk =Puk

. _ 1
In practice use | P = -

Solution method: Galerkin + entropy viscosity + thermal
conductivity

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations

COMPRESSIBLE EULER EQUATIONS The orithm
1D-2D Tests + Fourier

2D tests, P; finite elements

1D Euler flows + Fourier

@ Solution method: Fourier + RK4 + entropy viscosity

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations

COMPRESSIBLE EULER EQUATIONS
ests + Fourier
, P finite elements

1D Euler flows + Fourier

@ Solution method: Fourier + RK4 + entropy viscosity

T T

5 T y T y y
05 06 07 08 09

©

0 1 2 3 4 5 6 7 8

Figure: Lax shock tube, t = 1.3, 50, 100, 200 points. Shu-Osher shock
tube, t = 1.8, 400, 800 points. Right: Woodward-Collela blast wave,
t = 0.038, 200, 400, 800, 1600 points.

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm
1D-2D Tests + Fourier

2D tests, P; finite elements

2D Euler flows + Fourier

e Domain Q = (-1,1)?

@ Rieman problem with the initial condition:
0<x<05and0<y<05 p=1,p=0.8u=(0,0),
0<x<05and05<y<1l, p=1p=1u=(0.7276,0),

05<x<land0<y<05 p=1p=1u=(0,0.7276),
0<x<05and05<y<1 p=04p=0.5313u=(0,0).

@ Solution at time t = 0.2.

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm
LAGRANGIAN HYDRODYNAMICS 1D-2D Tests + Fourier
2D tests, P; finite elements

2D Euler flows + Fourier (Riemann test case 12)

Euler benchmark, Fourier approximation: Density (at left),
0.528 < pyn < 1.707 and viscosity (at right), 0 < uy < 3.41073, at
t =0.2, N =400. =

Jean-Luc Guermond High-Order Hydrodynamics




Euler equations
COMPRESSIBLE EULER EQUATIONS Th ithm

1D-2D Tests + Fourier

2D tests, IP; finite elements

Riemann problem test case no 12, P; FE

movie, Riemann no 12

Jean-Luc Guermond High-Order Hydrodynamics
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Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

1D-2D Tests + Fourier

2D tests, P; finite elements

Cylinder in a channel, Mach 2, P; FE (By M. Nazarov,
KTH)

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

LAGRANGIAN HYDRODYNAMICS 1D-2D Tests + Fourier
2D tests, P; finite elements

Bubble, density ratio 101, Mach 1.65, P; FE (by M.
Nazarov, KTH)

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

1D-2D Tests + Fourier

2D tests, IP; finite elements

Mach 3 Wind Tunnel with a Step, P; finite elements

@ Mach 3 Wind Tunnel with a Step (Standard Benchmark since
Woodward and Colella (1984))

@ Inflow boundary, density 1.4, pressure 1, and x-velocity 3,
(Mach =3)

Jean-Luc Guermond High-Order Hydrodynamics
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Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

1D-2D Tests + Fourier

2D tests, P; finite elements

Mach 3 Wind Tunnel with a Step, P; finite elements

@ Mach 3 Wind Tunnel with a Step (Standard Benchmark since
Woodward and Colella (1984))

@ Inflow boundary, density 1.4, pressure 1, and x-velocity 3,
(Mach =3)

Flash Code, adaptive PPM,
P; FE, 1.310° nodes ~ 4.910°% nodes

Log(density)
Movie, density field (entropy visc.) Movie, density field (viscous)

Jean-Luc Guermond High-Order Hydrodynamics
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Euler equations
COMPRESSIBLE EULER EQUATIONS

1D-2D Tests + Fourier

2D tests, P; finite elements

Mach 3 Wind Tunnel with a Step, P; finite elements

Viscous flux of entropy Viscosity.

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

1D-2D Tests + Fourier

2D tests, IP; finite elements

Mach 10 Double Mach reflection, P; finite elements

@ Right-moving Mach 10 shock makes 60° angle with x-axis
(Standard Benchmark, Woodward and Colella (1984))

@ Shock interacts with flat plate x € (%,+oo).
@ The un-shocked fluid p=1.4, p=1,andu=0

Jean-Luc Guermond High-Order Hydrodynamics
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Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

1D-2D Tests + Fourier

2D tests, P; finite elements

Mach 10 Double Mach reflection, P; finite elements

@ Right-moving Mach 10 shock makes 60° angle with x-axis
(Standard Benchmark, Woodward and Colella (1984))

@ Shock interacts with flat plate x € (%,+oo).
@ The un-shocked fluid p=1.4, p=1,andu=0

T, 4

P; FE, 4.510° nodes, t = 0.2
Movie, density field

Jean-Luc Guermond High-Order Hydrodynamics
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Euler equations
COMPRESSIBLE EULER EQUATIONS The algorithm

1D-2D Tests + Fourier

2D tests, P; finite elements

Mach 10 Double Mach reflection

Entropy Vis-
cosity

Jean-Luc Guermond High-Order Hydrodynamics



Leonhard Euler
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Euler equations

LAGRANGIAN HYDRODYNAMICS Wzl el et
Numerical tests

EULER IN LAGRANGIAN COORDINATES

@ Solve compressible Euler equations in Lagrangian form

pou+Vp=0
pOre + pV-u =20
Jp = po

Orx = u(x, t)

T=(y-1)e T="~
P
Initial data + BCs

@ Work with p and nonconservative variables u, e.

Jean-Luc Guermond High-Order Hydrodynamics



LAGRANGIAN HYDRODYNAMICS

Eu
We
\[i

imerical tests

EULER IN LAGRANGIAN COORDINATES

@ Weak forms

/ po0ru(9(x0)) 1 (dt(x0)) dxo = —/ Y(x)Vp(x, t) dx
Qo Q¢
_ /Q V(x, )Vi(x)Vu(x, t) dx

/ podee(de(x0))(x(x0)) dxo = — / B(x)p(x, £)V-u(x, 1) dx
Qo Q;

- / L (x, )V () Vu(x, £)[2 dx — / (%, )V (x)V T(x, ¢
Qt

Q, 2




Euler equations
Weak formulation

LAGRANGIAN HYDRODYNAMICS = -
Numerical tests

EULER IN LAGRANGIAN COORDINATES

e Specific entropy s = ﬁ log(p/p?)
@ Entropy residual

D := max(|p0:s|, |s(0ep + pV-u)|)

@ Algorithm similar to Eulerian formulation

Jean-Luc Guermond High-Order Hydrodynamics
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LAGRANGIAN HYDRODYNAMICS Weak fornwu\ation
Numerical tests
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uations
Weak formulation
Numerical tests

LAGRANGIAN HYDRODYNAMICS

LAX TUBE
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LAGRANGIAN HYDRODYNAMICS

1D NOH PROBLEM

Evu equations
Weak formulation
Numerical tests

| 1 1
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Euler equations

LAGRANGIAN HYDRODYNAMICS el (feiimul Eiitesy
Numerical tests

WOODWARD/COLLELA BLAST WAVE

e
o )

Jean-Luc Guermond High-Order Hydrodynamics



Euler equations
Weak formulation

LAGRANGIAN HYDRODYNAMICS .
Numerical tests

TWO WAVE PROBLEM

20

Jr— i
1
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i
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