troduction Theorical Framew O \mathcal{RDS} with \mathcal{NURBS} 000 00 NURBS Mesh generatio

Numerical Results

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Isogeometric Residual Distribution Scheme

Algiane Froehly Rémi Abgrall Cécile Dobrzynski

Incoduction Theorical Framework RCDO with Warebo Wesh generation Numerical	Resi
0 000	
0 00	

Introduction

Theorical Framework

Euler Equations Residual Distribution Schemes (\mathcal{RDS})

\mathcal{RDS} with \mathcal{NURBS}

 \mathcal{NURBS} Generalities Residuals Computation

 \mathcal{NURBS} Mesh generation

Numerical Results

Introduction	Theorical Framework	\mathcal{RDS} with \mathcal{NURBS}	NURBS Mesh generation	Numerical Results
	0	000		
	0	00		

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

Introduction

- Theorical Framework
- \mathcal{RDS} with \mathcal{NURBS}
- \mathcal{NURBS} Mesh generation
- Numerical Results

1						2.5			
	n	t۲	0	а	 0	÷.,	0	n	
J.		u.	U	u	c	u.			

Theorical Framework

RDS with NURBS

 \mathcal{NURBS} Mesh generation

Numerical Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

Problematic

Subsonic flow around 2 cylindres: spurious entropy production

Solution Isogeometric analysis

Introduction	Theorical Framework	\mathcal{RDS} with \mathcal{NURBS}	\mathcal{NURBS} Mesh generation	Numerical Results
	0	000		

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Introduction

Theorical Framework

Euler Equations Residual Distribution Schemes (\mathcal{RDS})

RDS with NURBS

NURBS Mesh generation

Numerical Results

Theorical Framework

RDS with *NURBS* 000 00 NURBS Mesh generation

Numerical Results

Euler Equations

Conservative form

õ

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho \vec{\mathbf{u}} \\ \rho E \end{pmatrix}, \begin{cases} \vec{\nabla} \cdot [\rho \vec{\mathbf{u}}] &= 0 \quad \mathbf{Cons} \\ \vec{\nabla} \cdot [\rho u_i \vec{\mathbf{u}} + p \delta_i] &= 0 \quad \mathbf{Cons} \\ \vec{\nabla} \cdot [(\rho E + \rho) \vec{\mathbf{u}}] &= 0 \quad \mathbf{Cons} \end{cases}$$

- = 0 **Conservation of mass**
- = 0 Conservation of momentum

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

= 0 **Conservation of Energy**

Theorical Framework

RDS with *NURBS* 000 00 \mathcal{NURBS} Mesh generation

Numerical Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Euler Equations

Conservative form

õ

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho \vec{\mathbf{u}} \\ \rho E \end{pmatrix}, \begin{cases} \vec{\nabla} \cdot [\rho \vec{\mathbf{u}}] &= 0 \quad \text{Conservation of mass} \\ \vec{\nabla} \cdot [\rho u_i \vec{\mathbf{u}} + p \delta_i] &= 0 \quad \text{Conservation of momentum} \\ \vec{\nabla} \cdot [(\rho E + p) \vec{\mathbf{u}}] &= 0 \quad \text{Conservation of Energy} \end{cases}$$

Problem to solve

$$\begin{cases} \overrightarrow{\nabla}.\overrightarrow{\mathcal{F}}(\mathbf{U}) = 0 & \forall x \in \Omega \\ \text{weak boundary conditions} & (\mathcal{BC}) \end{cases}$$

Theorical Framework

RDS with NURBS

 \mathcal{NURBS} Mesh generation

Numerical Results

 \mathcal{RDS}

Definitions

• Φ^{T} : total residual over T

$$\Phi^{\mathsf{T}} = \int_{\partial \mathsf{T}} \overrightarrow{\mathcal{F}} (\mathbf{U}^h) \cdot \vec{\mathbf{n}} d\partial \mathsf{T}$$

• Φ_i^{T} : local nodal residual $\sum_{i \in T} \Phi_i^{\mathsf{T}} = \Phi^{\mathsf{T}}$ $\Phi_i^{\mathsf{T}} = \text{ High-order term } + \text{ Stabilization term}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorical Framework

RDS with NURBS 000 \mathcal{NURBS} Mesh generation

Numerical Results

 \mathcal{RDS}

Definitions

• Φ^{T} : total residual over T

$$\Phi^{\mathsf{T}} = \int_{\partial \mathsf{T}} \overrightarrow{\mathcal{F}}(\mathbf{U}^h) \cdot \vec{\mathbf{n}} d\partial \mathsf{T}$$

 \mathcal{RDS} formulation

$$\forall M_i, \sum_{T \ni M_i} \Phi_i^{\mathsf{T}}(\mathbf{U}^h) = 0$$

ъ

-	+	~		4.5	-	

O O \mathcal{RDS} with \mathcal{NURBS}

NURBS Mesh generation

ヘロト ヘ週ト ヘヨト ヘヨト

3

Numerical Results

Introduction

Theorical Framework

RDS with NURBS NURBS Generalities Residuals Computation

NURBS Mesh generation

Numerical Results

・ロト ・ 雪 ト ・ ヨ ト

Numerical Results

э

 \mathcal{N} on \mathcal{U} niform \mathcal{R} ational \mathcal{B} - \mathcal{S} pline Definitions B-Splines basis functions in \mathbb{R}^d defined by :

- their polynomial order in the j^{th} dimension: p_j
- d knot vectors $(\xi_j)_{j=1,d}$

 \mathcal{N} on \mathcal{U} niform \mathcal{R} ational \mathcal{B} - \mathcal{S} pline Definitions B-Splines basis functions in \mathbb{R}^d defined by :

- their polynomial order in the j^{th} dimension: p_j
- d knot vectors $(\xi_j)_{j=1,d}$

 \mathcal{N} on \mathcal{U} niform \mathcal{R} ational \mathcal{B} - \mathcal{S} pline Definitions B-Splines basis functions in \mathbb{R}^d defined by :

- their polynomial order in the j^{th} dimension: p_j
- d knot vectors $(\xi_j)_{j=1,d}$

\mathcal{NURBS} basis functions in \mathbb{R}^d defined by :

- The n_j B-Splines basis functions in the j^{th} dimension
- A set of n_j weighting factors: W_l

B-Splines and \mathcal{NURBS} basis functions for d = 1 $i^{th} \mathcal{NURBS}$ function of order k:

$$M_{i,k}(\xi) = \frac{W_i N_{i,k}(\xi)}{\sum_{l=1,n} W_l N_{l,k}(\xi)}$$

 \mathcal{N} on \mathcal{U} niform \mathcal{R} ational \mathcal{B} - \mathcal{S} pline Definitions \mathcal{NURBS} curves and surfaces extrapolation

$$C(\xi) = \sum_{i=1,n} \tilde{P}_i M_{i,k}(\xi); \quad S(\xi,\eta) = \sum_{i=1,n \times m} \tilde{P}_i \Psi_{i,k}(\xi,\eta)$$

\mathcal{NURBS} adaptation for \mathcal{RDS}

Numerical simplifications and basis functions used

- Same nodal vector for all edges: $\xi = [\underbrace{0, 0, \cdots, \underbrace{k \text{ times}}_{k \text{ times}}, \underbrace{k \text{$
- One unique weight per point
- Definition of B-Spline-like basis for triangular elements : $\binom{k}{j1, j2, j3} \xi^{j1} \eta^{j2} \zeta^{j3}, \ j \in [|1, k|], \ j1 + j2 + j3 = k$

イロト イポト イヨト イヨト

\mathcal{NURBS} adaptation for \mathcal{RDS}

Numerical simplifications and basis functions used

- Same nodal vector for all edges: $\xi = [\underbrace{0, 0, \cdots, \underbrace{k \text{ times}}_{k \text{ times}}, \underbrace{k \text{$
- One unique weight per point
- Definition of B-Spline-like basis for triangular elements

O O \mathcal{RDS} with \mathcal{NURBS} ••• NURBS Mesh generation

(日)、

Numerical Results

э

Residuals computation

Total residual computation

$$\Phi^{\mathsf{T}} = \int_{\partial \mathsf{T}} \overrightarrow{\mathcal{F}}_h \cdot \overrightarrow{\mathbf{n}} \, d\partial \mathsf{T} = \sum_{j=1, n_e} \int_{\Gamma_j} \Big(\sum_{l=1}^{n_{\mathsf{DoFs}}} \overrightarrow{\overrightarrow{\mathcal{F}}}_l \Psi_l(\xi, \eta) \Big) \cdot \overrightarrow{\mathbf{n}}_j(x, y) d\Gamma_j$$

3-points Gauss-Legendre quadrature at order 3 6-points Gauss-Legendre quadrature at order 4

O O \mathcal{RDS} with \mathcal{NURBS} ••• \mathcal{NURBS} Mesh generation

イロト 不得 トイヨト イヨト

3

Numerical Results

Residuals computation

Stabilization term computation

$$D_i^{\mathsf{T}} = \int_{\mathsf{T}} (\vec{\lambda} \cdot \overrightarrow{\nabla \Psi_i}) \bar{\boldsymbol{\tau}} (\vec{\lambda} \cdot \overrightarrow{\nabla \mathbf{U}_h}) d\mathsf{T}$$

7-points Gauss-Legendre quadrature at order 3 13-points Gauss-Legendre quadrature at order 4 \mathcal{RDS} with \mathcal{NURBS} ••• Numerical Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Slip wall Boundary Condition: $\vec{u}.\vec{n} = \vec{0}$

Weak formulation at the i^{th} boundary node

$$\Phi_{b,i,\Gamma} = \int_{\Gamma} \Psi_i^{\mathcal{T}} \overrightarrow{\mathcal{F}}_{slip}(\mathbf{U}_h^n, \vec{\mathbf{n}}) d\Gamma$$

$$\Phi_{b,i,\Gamma} = \sum_{q=1}^{n_{quad}} \left(\tilde{\omega}_q \Psi_i^{\mathcal{T}}(\xi_q) \overrightarrow{\mathcal{F}}_{slip}(\mathbf{U}_h^n(\xi_q), \vec{\mathbf{n}}(\xi_q)) \|\Gamma\| \right)$$

 $(k-1)^2$ -points Newton-Cotes quadrature at order k

Introduction	Theorical Framework	\mathcal{RDS} with \mathcal{NURBS}	NURBS Mesh generation	Numerical Results
	0	000		
	0	00		

Theorical Framework

 \mathcal{RDS} with \mathcal{NURBS}

 \mathcal{NURBS} Mesh generation

Numerical Results

\mathcal{NURBS} Mesh generation

Problematic

• \mathcal{NURBS} mesh needed to use isogeometric analysis

Solution

- Classical meshing of the geometry (piecewise linear)
- Computing the control points and weights needed to extrapolate a \mathcal{NURBS} curve verifying that :
 - \mathcal{G}_0 continuity is preserved (the curve interpolate each P1 point)
 - Each boundary edge is approached by a portion of circle

Theorical Framework

RDS with NURBS

 \mathcal{NURBS} Mesh generation

Numerical Results

\mathcal{NURBS} Mesh generation

From classical mesh to \mathcal{NURBS} mesh

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 のへぐ

Theorical Framework

RDS with NURBS

 \mathcal{NURBS} Mesh generation

Numerical Results

\mathcal{NURBS} Mesh generation

From classical mesh to \mathcal{NURBS} mesh

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

Theorical Framework

RDS with NURBS

 \mathcal{NURBS} Mesh generation

Numerical Results

\mathcal{NURBS} Mesh generation

From classical mesh to \mathcal{NURBS} mesh

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Introduction	Theorical Framework	\mathcal{RDS} with \mathcal{NURBS}	NURBS Mesh generation	Numerical Results
	0	000 00		

Theorical Framework

 \mathcal{RDS} with \mathcal{NURBS}

 \mathcal{NURBS} Mesh generation

Numerical Results

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲目 ● ● ●

 \mathcal{NURBS} Mesh generation

Numerical Results

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Subsonic flow around a cylindre: Ma = 0.38

Boundaries representation

P2 picewise-linear mesh, IsoP2 mesh and Nurbs mesh

Subsonic flow around a cylindre: Ma = 0.38

L2-entropy error during iterations for 8×32 nodes meshes

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Numerical Results

Subsonic flow around a cylindre: Ma = 0.38

Pressure loss distribution along cylindre for 8×32 nodes meshes

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

NURBS Mesh generation

Numerical Results

Subsonic flow around 2 cylindres: Ma = 0.38

 \mathcal{NURBS} Mesh generation

Numerical Results

Subsonic flow around 2 cylindres: Ma = 0.38

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Subsonic flow over a bump: Ma = 0.63, slope=26%

Entropy error on the whole bump meshes

Subsonic flow over a bump: Ma = 0.63, slope=26%

L2-Entropy error along the bump floor

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Done work

- \mathcal{RDS} lsogeometric of order 3 and 4 for triangular, quadrangular and hybrid 2*D*-meshes
- \mathcal{RDS} Isogeometric of order 3 for tetrahedral 3D-mesh
- Automatic generation of $2D \ \mathcal{NURBS}$ meshes

Perspectives

- To adapt Isogeometric analysis to Navier-Stokes equations
- Automatic generation of 3D NURBS meshes