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3GREYC CNRS-ENSICAEN-Université de Caen
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Outline

Setting

ℓ1 recovery: Overview

ℓ1 minimization and geometry of polytopes.
Restricted Isometry Property.
Exact support recovery using LASSO.

Contributions.

Sketch of proof of the main result.
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Setting

Noisy Gaussian measurements of sparse vectors

Linear random measurements y = Ax + w ∈ R
n,

x ∈ R
N , A = (aij)i6n,j6N ∈ R

n×N , aij ∼ N (0, 1/n) and iid,
w ∈ R

n and ‖w‖2 6 ε.

x is sparse ⇔ ‖x‖0 < N is small.

x is weakly sparse (compressible).

Questions

Estimate x from y when n < N, ill-posed inverse problem.

Estimate the support I of x from y .

Stability to noise and robusteness to compressibility.
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Sparse Recovery Algorithms

A large choice of methods

Greedy methods : Matching Pursuit, OMP, Cosamp, MCA ...

Non convex optimization :

min
x∈RN

‖x‖p s.t. y−Ax ∈ C , p ∈ (0, 1),C = {0} or C = Bℓ2
(σ)

Convex optimization :

min
xRN

‖x‖1 s.t. y − Ax ∈ C ,

C = {0} : exact ℓ1 minimization (Basis Pursuit).
C = {z s.t. ‖Atz‖

∞
6 τ} : Dantzig Selector.

C = Bℓ2(0, r) : LASSO/BPDN equivalent to

min
x∈RN

1

2
‖y − Ax‖2

2 + γ ‖x‖1 (LASSO)
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Noiseless observations : Geometry of centrosymmetric polytopes

Donoho [04], Donoho and Tanner [05-07]

Identifiability is a geometrical property.
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x is identifiable if and only if Ax
‖x‖1

∈ ∂A(Bℓ1
).

For x ∈ R
N , I = {i , xi 6= 0}, fx = Conv.Hull(sign (xi) ai )i∈I .

x is identifiable ⇔ fx is an exterior facet of A(Bℓ1
).
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The geometrical viewpoint

Counting k-faces of centro-symmetric polytopes [Donoho 04]

If A is gaussian or USE, there is a function ρN(.) such that
w.o.p. on A, all sparse x with

‖x‖0 6 ρN(n/N)n are ℓ1 − identifiable. (1)

If A is gaussian or USE, x with randomly chosen support and
sign, there is ρF (.) such that w.o.p. on A, most sparse x with

‖x‖0 6 ρF (n/N)n are ℓ1 − identifiable. (2)

No stability to noise.

Sharp phase transition :

ρN(1/2) ∼ 0.089, ρF (1/2) ∼ 0.38

ρN(1/4) ∼ 0.065, ρF (1/4) ∼ 0.25.
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Restricted Isometry Property

Definition of RIP

For A ∈ R
n×N , δmin

S and δmax
S are the smallest real numbers in

(0, 1) such that for any x , ‖x‖0 6 S ,

(1 − δmin
S )‖x‖2

2 6 ‖Ax‖2
2 6 (1 + δmax

S )‖x‖2
2.

Theorem [Fourcart and Lai 08]

If (4
√

2 − 3)δmin
2S + δmax

2S < 4(
√

2 − 1), (RIPFL)

All vectors x such that ‖x‖0 6 S are identifiable.

Stability to noise, consistency if x is only compressible.

There exist C0 and C1 depending on δmin
2S and δmax

2S such that
the solution x∗ of (LASSO) satisfies

‖x∗ − x0‖2 6 C0S
−1/2 ‖x − xS‖1 + C1ε.
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Bounds for gaussian matrices, N = 4000, n = 1000
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If A is a Gaussian matrix with iid entries, then w.o.p. A

satisfies (RIPFL) for S = O
(

n
log(N/n)

)

.

For n/N = 1
4 , (RIPFL) applies up to S = 0.0027n [Blanchard

et al. 09].

but (RIPFL) doesn’t apply if S > 0.005n. [D. et al 09].
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Exact Support and sign pattern recovery with LASSO

Theorem [Candes Plan 07]

Let A ∈ Mn,N(R) which columned are normed and such that

µ(A) 6
c1

lnN
. Let w ∈ R

n such that w(i) ∼ N (0, ε2

n
). Let x0 ∈ R

N

and T = mini∈I |x0(i)|.
For sufficiently small constant c0

if x0 is randomly chosen among vectors such that
|I | 6

c0N

‖A‖2 lnN
, (support : uniform and sign : Rademacher).

if T > 8ε
√

2 lnN
n

and γ = 2ε
√

2 lnN
n

the solution x∗ of

min
x∈RN

1

2
‖y − Ax‖2

2 + γ ‖x‖1 (LASSO)

satisfies Supp(x∗) = Supp(x0) and sign (x∗) = sign (x0) w.o.p.
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Contibutions

Results for Gaussian matrices

Refinement of Theorem [Candes Plan 07] for Gaussian
matrices

without any prior on the distribution of x0 and w .
with explicit and optimal constants.
robustness to compressibility.

Without any hypothesis on T
ε

Supp(x∗) is controlled.
ℓ2 consistency results.

Explicit bounds may be better that the ones derived from RIP.

Justify debiasing.
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Support and sign pattern identification

Theorem 1

Let (a, b) ∈ (0, 1)2, N > n, y = Ax0 + w where A is a Gaussian

matrix and ‖w‖2 6 ε.

If ‖x0‖0 = S 6
ab
2

n
lnN

,

if γ = ε√
1−a

√

2 lnN
n

and if T >
6ε√
1−a

√

2 lnN
n

then w.o.p. Supp(x∗) = Supp(x0) and sign (x∗) = sign (x0) and

‖x∗ − x0‖2 6 ε(

√

a

1 − a
+ 1)
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Support inclusion

Theorem 2

Let (a, b) ∈ (0, 1)2, N > n, y = Ax0 + w where A is a Gaussian

matrix and ‖w‖2 6 ε.

If ‖x0‖0 = S 6
ab
2

n
lnN

,

if γ = ε√
1−a

√

2 lnN
n

,

then w.o.p Supp(x∗) ⊂ Supp(x0) and

‖x∗ − x0‖2 6 ε(

√

a

1 − a
+ 1)
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Numerical experiments

Example with a = 0.95, n = 1000 and N = 4000
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.
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Sketch of proof of Theorem 1

Notations

For a vector x , let’s denote I its support,

AI the associated active matrix and x the restriction of x to I .

We have Ax = AIx .

Let’s denote PA⊥

I
the orthogonal projection on V⊥ with

V = Span{(ai )i∈I}.

Remarks

If A is gaussian, ∀(y , γ) ∈ R
n × R

+∗, the solution x∗ of

min
1

2
‖y − Ax‖2

2 + γ ‖x‖1 (LASSO)

is unique with probability 1 and
(At

I AI ) associated to x∗ is inversible with probability 1.
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Sketch of proof of Theorem 1

A necessary condition

If Supp(x∗) = I = Supp(x0) and sign
(

x∗) = sign (x0) then
the solution of (LASSO) is defined by

x∗ = x0 − γ(At
I AI )

−1sign (x0) + (At
I AI )

−1At
I w . (3)

A sufficient condition

Let’s denote T = mini∈I |x0(i)|, if

∥

∥γ(At
I AI )

−1sign (x0) − (At
I AI )

−1At
I w

∥

∥

∞ < T (SC1)

and

|〈aj , γAI (A
t
I AI )

−1sign (x0) − PA⊥

I
(w)〉| 6 γ, ∀j /∈ I (SC2)

the vector x∗ defined by (3) is the solution of (LASSO).
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Sketch of proof of Theorem 1

SC1 :
∥

∥γ(At
I AI )

−1sign (x0) − (At
I AI )

−1At
I w

∥

∥

∞ < T

If |I | 6 abn
2 lnN

∥

∥(At
I AI )

−1sign (x0)
∥

∥

∞
6 1 + 3

√
ab 6 4 with w.o.p

Properties of Wishart matrices (signs of coefficients and
spectral norm).

∥

∥(At
I AI )

−1At
I w

∥

∥

∞
6 2ε

√

ln N
n

with w.o.p.

Rotation Invariance of (At
I AI )

−1
A

t
I , χ

2 concentration lemmas,
and spectral norm of Wishart matrices.

If γ 6
T
6 and ε 6

T
6

√

n
2 lnN

then condition (SC1) applies :

∥

∥γ(At
I AI )

−1sign (x0) − (At
I AI )

−1At
I w

∥

∥

∞ < T
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Sketch of proof of Theorem 1

SC2 : |〈aj , γAI (A
t
I AI )

−1sign (x0) − PA⊥

I
(w)〉| 6 γ, ∀j /∈ I

If u and aj are independent, then 〈aj , u〉 ∼ N (0,
‖u‖2

n
).

If j /∈ I , u = γAI (A
t
I AI )

−1sign (x0) − PA⊥

I
(w) and aj are

independent.

It follows that w.o.p.

max
j /∈I

|〈aj , u〉| 6

√

2 lnN

n
‖u‖2 (4)

‖u‖2
2 6 γ2

∥

∥AI (A
t
I AI )

−1sign (x0)
∥

∥

2

2
+ ε2 using Pythagore !!!

∥

∥AI (A
t
I AI )

−1sign (x0)
∥

∥

2

2
is bounded using a classical Wishart

concentration lemma.

It follows that if |I | 6 abn
2 lnN

and γ > ε

√

(1−a)n
2 lnN

, condition SC2
applies.
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Take Away Messages

Conclusions

Optimal bounds for exact support recovery with Gaussian
measurements.

Partial support recovery if T
ε is too small.

New bounds for ℓ2 recovery different from RIP.

Robustness to noise and compressibility without RIP.

Going Further

Extension to subgaussain matrices (USE and Bernoulli)

Paper available online.
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