
.
CANUM 2011, Guidel, France

On Godunov type schemes
accurate at any Mach number
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Introduction
When M := u∗

a∗ � 1 and when the initial conditions are well-prepared in the sense


ρ(t = 0, x) = ρ∗(x),
p(t = 0, x) = p∗ +O(M2),
u(t = 0, x) = û(x) +O(M) with ∇ · û(x) = 0,

the solution (ρ, u, p) of the (dimensionless) compressible Euler system



∂tρ +∇ · (ρu) = 0,

∂t (ρu) +∇ · (ρu⊗ u) +
∇p

M2
= 0,

∂t (ρE) +∇ · [(ρE + p)u] = 0

is close to (ρ, u, p) which satisfies the incompressible Euler system


∂tρ + u · ∇ρ = 0, ρ(t = 0, x) = ρ∗(x),

∇ · u = 0 and u(t = 0, x) = û(x),

ρ(t, x)(∂t u + u · ∇u) = −∇Π

(with variable density when ρ′∗(x) 6= 0) and p = p∗.

Idem for the Navier-Stokes syst. when the thermal fluxes are not high.
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Introduction

Nevertheless, when we apply a (2D or 3D) Godunov type scheme

on a mesh that is not triangular, the discrete compressible Euler solution:

I converges with high difficulties to an incompressible solution when ∆x → 0
(M � 1 is given);

I does not converge to an incompressible solution when M → 0 (∆x is given).
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For example, we find in [Guillard et al., 1999] when the mesh is not triangular:
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Introduction

Nevertheless, when the mesh is TRIANGULAR, the results seem to remain accurate:

Iso-Mach, VFRoe scheme, M = 10−2 Iso-press., VFRoe scheme, M = 10−2

WHAT HAPPENS !?!?
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I.1 - From the non-linear case to the linear case

With ρ(t, x) := ρ∗[1 + M
a∗ r(t, x)] (ρ∗ = O(1), a∗ =

√
p′(ρ∗)),

the (dimensionless) barotropic Euler system ∂tρ +∇ · (ρu) = 0,

∂t (ρu) +∇(ρu⊗ u) +
∇p(ρ)

M2
= 0.

is equivalent to

∂t q +H(q) +
L
M

(q) = 0

with



q =

(
r
u

)
,

H(q) =

(
u · ∇r

(u · ∇)u

)
:= (u · ∇)q,

L(q) =


(a∗ + Mr)∇ · u

p′[ρ∗(1 + M
a∗ r)]

a∗(1 + M
a∗ r)

∇r

 .

I H = non-linear transport operator (time scale = 1);

I L/M = non-linear acoustic operator (time scale = M).
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I.1 - From the non-linear case to the linear case
• Linearization without convection: Let us define the linearization of L(q) with

q =

(
r
u

)
,

Lq = a∗

 ∇ · u

∇r


where a∗ = C st

2 such that O(a∗) = 1.

I L/M = linear acoustic operator (time scale = M).

So, we replace the (dimensionless) barotropic Euler system

∂t q +H(q) +
L
M

(q) = 0

with the linear wave equation

∂t q +
L

M
q = 0. (1)

Let us note that (1) may be seen as a linearization of the comp. Euler system
(without convection) with

r(t, x) such that p(t, x) := p∗

[
1 +

M

a∗
r(t, x)

]
.

In the sequel, r will be considered as a pressure perturbation.
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I.1 - From the non-linear case to the linear case

Let us now introduce the sets

(L2(Td ))1+d :=

{
q :=

(
r
u

)
:

∫
Td

r 2dx +

∫
Td
|u|2dx < +∞

}

equipped with the inner product 〈q1, q2〉 =

∫
Td

q1q2dx and


E =

{
q ∈ (L2(Td ))1+d : ∇r = 0 and ∇ · u = 0

}
,

E⊥ =

{
q ∈ (L2(Td ))1+d :

∫
Td

rdx = 0, ∃φ ∈ H1(Td ), u = ∇φ
}

(Td is the torus in Rd , d ∈ {1, 2, 3}). Let us recall that:

Lemma 2.1 (Hodge decomposition)

E⊕ E
⊥ = (L2(Td ))1+d and E ⊥ E

⊥
.

In other words, any q ∈ (L2(Td ))1+d can be decomposed into

q = q̂ + q⊥ where (q̂ := Pq, q⊥) ∈ E× E
⊥
.
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I.1 - From the non-linear case to the linear case
• The low Mach asymptotics and the linear wave equation:

Lemma 2.2
Let q(t, x) be solution of the linear wave equation


∂t q +

L

M
q = 0,

q(t = 0, x) = q0(x).

(2)

Thus, we have q = q1 + q2 with q1 = Pq0 and q2 = (1− P)q =: q⊥ where q2 is

solution of (2) with the initial condition q2(t = 0, x) = (1− P)q0(x).
Moreover, we have

||q0 − Pq0|| = O(M) =⇒ ||q − Pq0||(t ≥ 0) = O(M). (3)
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I.2 - The perturbed linear wave equation

The previous results are obtained by using the properties:

I Conservation of the energy E(t) := 〈q, q〉 = C st .

I E = KerL.

• We can relax these two properties with:

Theorem 2.3
Let q(t, x) be solution of the linear PDE


∂t q +

L
M

q = 0,

q(t = 0) = q0

(4)

supposed to be well-posed in such a way ||q||(t ≥ 0) ≤ C ||q0|| where C does not
depend on M. Then, when L is such that

E ⊆ KerL,

the solution q(t, x) of (4) verifies

||q0 − Pq0|| = O(M) =⇒ ||q − Pq0||(t ≥ 0) = O(M).
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I.2 - The perturbed linear wave equation

Definition 2.4

The solution q(t, x) of


∂t q +

L
M

q = 0,

q(t = 0) = q0

is said to be accurate at low Mach

number in the incompressible regime if and only if the estimate

||q0 − Pq0|| = O(M) =⇒ ||q − Pq0||(t ≥ 0) = O(M) (5)

is satisfied.

(5) is verified (5) is NOT verified (5) is NOT verified

• We deduce from Theorem 2.3 that:

E ⊆ KerL is a sufficient condition to be accurate in the sense of Definition 2.4.

• The low Mach problem can be explained by replacing L with

L = L + δL

where δL = perturbation due to the spatial discretization.
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I.3 - The Godunov scheme applied to the linear wave equation
The Godunov scheme applied to the linear wave equation is given by

d

dt
ri +

a∗

M
·

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij |[(ui + uj ) · nij + ri − rj ] = 0,

d

dt
ui +

a∗

M
·

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij |[ri + rj + κ(ui − uj ) · nij ]nij = 0

with κ := 1. This scheme can be written in the compact form
d

dt
qh +

Lκ,h
M

qh = 0,

qh(t = 0) = q0
h

with qh :=

(
ri

ui

)
(6)

Lemma 2.5

KerLκ=1,h =

{
qh :=

(
rh

uh

)
∈ R3N s.t. ∃c, ∀i : ri = c and (ui − uj ) · nij = 0

}

KerLκ=0,h =

qh :=

(
rh

uh

)
∈ R3N s.t. ∃c, ∀i : ri = c and

∑
Γij⊂∂Ωi

|Γij |
ui + uj

2
· nij = 0

 .

Do we have Eh ⊆ KerLκ,h ??? Let us note that
∑

Γij⊂∂Ωi

|Γij |
ui +uj

2 · nij '
∫

Ωi
∇ · udx.
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I.3 - The Godunov scheme applied to the linear wave equation
In the cartesian and triangular cases: Let us define

E
�
h =


q :=

(
r
u

)
∈ R3Nx Ny such that ∃(a, b, c, (ψi,j )) ∈ R3 × RNx Ny :

ri,j = c, ui,j =

(
a
b

)
+


ψi,j+1−ψi,j−1

2∆y

−
ψi+1,j−ψi−1,j

2∆x




and in the triangular case

E
∆
h =


q :=

(
r
u

)
∈ R3N such that ∃(a, b, c, ψh) ∈ R3 × Vh :

ri = c, ui =

(
a
b

)
+ (∇× ψh)|Ti


where Vh :=

{
ψh ∈ C0(Td ), ψh periodic on Td such that ∀Ti : (ψh)|Ti

∈ P1(Ti )
}

.

We can prove that:
On a triangular mesh : KerLκ=1,h = E∆

h ⊂ KerLκ=0,h,

On a 1D cartesian mesh: KerLκ=1,h = E�
h ⊆ KerLκ=0,h,

On a 2D cartesian mesh: KerLκ=1,h  E�
h ⊆ KerLκ=0,h.
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I.3 - The Godunov scheme applied to the linear wave equation

These results show that at low Mach number1:

I The Godunov scheme is accurate on a triangular mesh.

I The Godunov scheme modified in such a way the pressure gradient is centered is
accurate on cartesian and triangular meshes.

I The Godunov scheme should not be accurate at low Mach number:

−→ It should transfer energy from E to E⊥ in a time t = O(M) !

1With periodic boundary conditions.
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I.4 - Numerical results
• Linear Godunov scheme on a 2D CARTESIAN mesh:

I a∗ = 1 and M = 10−4.
I Explicit Godunov scheme.
I Cartesian mesh with ∆x = ∆y = O(10−2)� M.
I Continuous initial condition: r 0 = 1 and u0 = ∇× ψ with

ψ(x, y) = 1
π

[
sin2(πx) sin2(2πy)− 1

4

]
. Thus: q0 ∈ E.

I Discrete initial condition: q0
h ∈ E�

h that is to say

q0
h =

 ri,j

ui,j

 where


ri,j = 1,

ui,j =


ψi,j+1 − ψi,j−1

2∆y

−
ψi+1,j − ψi−1,j

2∆x

 .

I Results: q(tn)h 6= q0
h since KerLκ=1,h ⊂ E�

h . Moreover, we numerically verify
that: ∃τ = O(M) : ||qh − P

E�
h

qh||(τ) = O(∆x) → spurious acoustic waves.

||r⊥h ||(tn) ||∇φh||(tn)
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II.1 - The continuous case

• We introduce the new definition:

Definition 3.1
The solution q(t, x) of 

∂t q +
L
M

q = 0,

q(t = 0) = q0

is said to be accurate at low Mach number in the incompressible regime iff the estimate

||q0 − Pq0|| = O(M) =⇒ ||q − Pq0||(t = O(M)) = O(M) (7)

is satisfied.

(7) is verified (7) is NOT verified (7) is NOT verified
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II.1 - The continuous case
• 1st order modified equation associated to the Godunov scheme:



Lν := L−MBν ,

Bνq =



νr ∆r

νu
∂2u

∂x2

νv
∂2v

∂y 2


.

(8)

We define ν := (νr , νu) with νu := (νu, νv ).

Godunov scheme: νr = νu = νv = a∗
∆x
2M (for the sake of simplicity: ∆x = ∆y).

νGodunov
u := a∗

∆x
2M (1, 1).

• QUESTION: What can we say about the equation


∂t q +

Lν
M

q = 0,

q(t = 0) = q0

when νu = νGodunov
u or when νu 6= νGodunov

u ???
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II.1 - The continuous case
• We have the following results:

Lemma 3.2

1) In 1D: KerLν = E.

2) In 2D/3D with νu = 0: KerLν = E.

3) In 2D/3D with νu := (νu1
, . . . , νud

) 6= 0 such that νuk
> 0:

KerLν =

{
q :=

(
r
u

)
∈ (L2(T))1+d such that ∇r = 0 and ∂xk

uk = 0

}
 E.

Remember that E ⊆ KerLν is only a sufficient condition to be accurate !

→ We have to be more precise ! What we have to proove:

Let q(t, x) be solution of

 ∂t q +
Lν
M

q = 0,

q(t = 0) = q0
. In 2D/3D:

i) When |νu| = O( 1
M ) (e.g. νu = νGodunov

u ), q(t, x) is not accurate at low Mach numb.

ii) When |νu| = O(1), q(t, x) is accurate at low Mach number that is to say

||q0 − Pq0|| = O(M) =⇒ ||q − Pq0||(t = O(M)) = O(M).

[Work in progress: OK for ∂t q = Bνq knowing that Lν := L−MBν ]
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II.2 - The discrete case
• The previous results incite us to propose the All Mach linear scheme

d

dt

(
r
u

)
i

+
1

|Ωi |
∑

Γij⊂∂Ωi

|Γij |ΦAM
ij = 0 (9)

with the two following expressions for ΦAM
ij which are equivalent in this linear case:

1 - All Mach Godunov scheme = Godunov scheme + pressure correction:

ΦAM
ij = ΦGodunov

ij + (1− θ)
a∗

2M

(
0

[(uj − ui ) · nij ]nij

)
where θ = min(M, 1).

(10)

2 - All Mach Godunov scheme = Godunov scheme + corrected Riemann pressure:

ΦAM
ij =

a∗

M

 (u · n)∗

r∗∗n


ij

(11)

with

r∗∗ij = θr∗ij + (1− θ)
ri + rj

2
= corrected Riemann pressure (12)

where (u · n)∗ is solution of the 1D linear Riemann problem that is to say

(u · n)∗ij =
(ui + uj ) · nij

2
+

ri − rj

2
.

Let us note that r∗∗ replaces r∗ =
ri + rj

2
+

(ui − uj ) · nij

2
.
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III.1 - Accurate Godunov type scheme at any Mach number
We define the All Mach Godunov type scheme in the NON-linear case

d

dt

(
ρ
ρu

)
i

+
1

|Ωi |
∑

Γij⊂∂Ωi

|Γij |ΦAM X
ij = 0 (13)

(X = Godunov type scheme) with the two following expressions:

1 - All Mach Godunov type scheme = Godunov type scheme + pressure correction:

ΦAM X
ij = ΦX

ij + (1− θij )
ρij aij

2

(
0

[(uj − ui ) · nij ]nij

)
where θij = min(Mij , 1).

(14)
Example: X = Roe scheme → (13)(14) defines an All Mach Roe scheme.

2 - All Mach Godunov type sch = Godunov type sch + corrected Riemann pressure:

ΦAM X
ij =

 ρ∗(u · n)∗

ρ∗(u∗ · n)u∗ + p∗∗n


ij

with p∗∗ij = θij p
∗
ij +(1− θij )

pi + pj

2
(15)

where (ρ∗, u∗) is solution of a 1D linearized or non-linearized Riemann problem.
Let us note that p∗∗ replaces p(ρ∗).

Example: X = VFRoe scheme → (13)(15) defines an All Mach VFRoe scheme.

(13)(14) and (13)(15) are NOT equivalent in the non-linear case.
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III.1 - Accurate Godunov type scheme at any Mach number

Conjecture 4.1

These two All Mach Godunov type schemes are stable and accurate at low Mach.

These two schemes are already known. Indeed:

I These two All Mach Godunov type schemes have been proposed
(without any justification) in:

Fillion F., Chanoine A., D.S. and Kumbaro A. (2011). FLICA-OVAP : a new
platform for core thermal-hydraulic studies.
To appear in Nucl. Eng. and Design., 2011.

I The All Mach Roe scheme has been proposed
(and justified with a formal asymptotic expansion for a perfect gas EOS) in:

Rieper F. (2011). A low Mach number fix for Roe’s approximate Riemann
solver. J. Comp. Phys., 230, pp. 5263-5287, 2011.

Moreover, numerical results justify this scheme in this paper.
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III.2 - Asymptotic expansion of the All Mach Roe scheme

We formally justify the All Mach Roe scheme in the non-linear case ∂tρ +∇ · (ρu) = 0,

∂t (ρu) +∇(u⊗ u) +∇p(ρ) = 0
(16)

on any mesh type with an asymptotic expansion (we recall that a2 = p′(ρ)).

• Roe scheme applied to (16):



d

dt
ρi +

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij |
{

(ρi ui + ρj uj ) · nij +
ρij

aij
(uij · nij )(ui − uj ) · nij + aij (ρi − ρj )

}
= 0,

d

dt
(ρi ui ) +

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij | {ρi (ui · nij )ui + ρj (uj · nij )uj + aij (ρi − ρj )(uij + (uij · nij )nij )

+ρij |uij · nij |[(ui − uj ) · tij ]tij +
ρij (uij · nij )

aij
[(ui − uj ) · nij ]uij

+[pi + pj + ρij aij (ui − uj ) · nij ]nij} = 0.

. On Godunov type schemes accurate at any Mach number 27 .
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III.2 - Asymptotic expansion of the All Mach Roe scheme
• All Mach Roe scheme:

We add the pressure correction

(1− θij )
ρij aij

2

(
0

[(uj − ui ) · nij ]nij

)
where θij = min(Mij , 1)

to the Roe flux which allows to obtain the All Mach Roe scheme

d

dt
ρi +

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij |
{

(ρi ui + ρj uj ) · nij +
ρij

aij
(uij · nij )(ui − uj ) · nij + aij (ρi − ρj )

}
= 0,

d

dt
(ρi ui ) +

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij | {ρi (ui · nij )ui + ρj (uj · nij )uj + aij (ρi − ρj )(uij + (uij · nij )nij )

+ρij |uij · nij |[(ui − uj ) · tij ]tij +
ρij (uij · nij )

aij
[(ui − uj ) · nij ]uij

[pi + pj + θijρij aij (ui − uj ) · nij ]nij} = 0.

Let us note that if we choose Mij :=
|uij |
aij

, we have

Mij ≤ 1 : θijρij aij [(ui − uj ) · nij ]nij = ρij |uij |[(ui − uj ) · nij ]nij .

. On Godunov type schemes accurate at any Mach number 28 .
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III.2 - Asymptotic expansion of the All Mach Roe scheme
• Asymptotic expansion: The dimensionless All Mach Roe scheme is given by

d

dt
ρi +

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij |
{

(ρi ui + ρj uj ) · nij + M
ρij

aij
(uij · nij )(ui − uj ) · nij +

aij

M
(ρi − ρj )

}
= 0,

d

dt
(ρi ui ) +

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij |
{
ρi (ui · nij )ui + ρj (uj · nij )uj +

aij

M
(ρi − ρj )(uij + (uij · nij )nij )

+ρij |uij · nij |[(ui − uj ) · tij ]tij + M
ρij (uij · nij )

aij
[(ui − uj ) · nij ]uij

+

[
1

M2
(pi + pj ) +

θij

M
ρij aij (ui − uj ) · nij

]
nij

}
= 0.

(17)

Let us note that O
(
θij
M

)
= 1 (since θij = Mij when Mij ≤ 1 and Mij = O(M)).

Let us suppose that φ ∈ {ρ, p, u} are such that

φ = φ
(0) + Mφ(1) + Mφ(2) + . . . (18)

Then:

I We inject (18) in (17).

I We separate the orders M−2, M−1 and M0.

This gives ...
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III.2 - Asymptotic expansion of the All Mach Roe scheme

ρ
(0) = ρ∗ and p(0) = p(ρ∗) = p∗

and



∑
Γij⊂∂Ωi

|Γij |
[

1

ρ∗a∗
(p

(1)
i − p

(1)
j ) + (u

(0)
i + u

(0)
j ) · nij

]
= 0,

∑
Γij⊂∂Ωi

|Γij |
1

ρ∗a∗
(p

(1)
i + p

(1)
j )nij = 0

with a2
∗ = p′(ρ∗). By defining r (1) := p(1)

ρ∗a∗ , we obtain q :=

(
r (1)

u(0)

)
∈ KerLκ=0,h.

As a consequence, the asymptotic expansion will be valid if the NECESSARY condition

q(t = 0) ∈ KerLκ=0,h is VALID ! (19)

But, let us recall that we have proven that

KerLκ=0,h =

q :=

(
r
u

)
∈ R3N s.t. ∃c : ri = c and

∑
Γij⊂∂Ωi

|Γij |
ui + uj

2
· nij = 0


which seems to be a good approximation of E.

More precisely, in the cartesian and triangular cases, we have proven that

E
�
h ⊆ KerLκ=0,h and E

∆
h ⊂ KerLκ=0,h.

As a consequence, when the initial condition belongs to E�
h OR E∆

h ,
necessary condition (19) is verified at least in the cartesian OR triangular cases !
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III.3 - Linear stability analysis of the All Mach Roe scheme

The All Mach Roe scheme applied to the linear system


∂t q + Hq +

L

M
q = 0, (a)

q(t = 0, x) = q0(x). (b)

is given by



d

dt
ri +

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij | {(u∗ · nij )[ri + rj + (ui − uj ) · nij ]

+
a∗

M
[(ui + uj ) · nij + ri − rj ]

}
= 0,

d

dt
ui +

1

2|Ωi |
∑

Γij⊂∂Ωi

|Γij | {(u∗ · nij )[(ui + uj ) + (ri − rj )nij ] + |u∗ · nij |[(ui − uj ) · tij ]tij

+
a∗

M
[ri + rj + θ(ui − uj ) · nij ]nij

}
= 0.

(20)

Remark: r in (20) and ρ in the dimensionless non-linear Roe scheme (17) are linked

through dρ =
ρ∗

a∗
Mdr .
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III.3 - Linear stability analysis of the All Mach Roe scheme
Let us define the energy

Eh =
∑

i

|Ωi |(r 2
i + |ui |2).

We have the following L2-stability result:

Proposition 4.1

i) When θ :=
|u∗|
a∗

M:

d

dt
Eh ≤ 0. (21)

ii) When θ := 0:

d

dt
Eh ≤ −

∑
Γij

|Γij |(u∗ · nij )(ri − rj )[(ui − uj ) · nij ]. (22)

Remarks:

I θ :=
|u∗|
a∗

M = Mach number since a∗/M = sound velocity.

I Inequality (21) justifies the choice θij = min(Mij , 1) from a stability pt of view.

I When θ := 0 (in that case, the pressure gradient is centered),
inequality (22) shows that we may observe instabilities (except when u∗ := 0).
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III.4 - Numerical results

• When the mesh is quadrangular:

Iso-Mach, Roe scheme, M = 10−2 Iso-pressure, Roe scheme, M = 10−2

Iso-Mach, low Mach Roe scheme, M = 10−2 Iso-pressure, low Mach Roe scheme, M = 10−2
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III.4 - Numerical results

• When the mesh is quadrangular:

Iso-Mach, low Mach Roe scheme, M = 10−3 Iso-Mach, low Mach VFRoe scheme, M = 10−2
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III.4 - Numerical results

• When the mesh is triangular:

Iso-Mach, low Mach VFRoe sch., M = 10−2
Iso-pr., low Mach VFRoe sch., M = 10−2

Iso-Mach, VFRoe scheme, M = 10−2 Iso-press., VFRoe scheme, M = 10−2
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Thank you for your attention !
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