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Classical periodic and stochastic
homogenization
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Periodic setting : Introduction to homogenization (I)

Consider the family (uε)ε>0 of solutions to the following PDEs :





− div
(
A
(

x
ε

)
∇uε

)
= f in D,

uε = 0 on ∂D,

with A(y) = [aij(y)] ∈
(
L∞(Rd)

)d×d
is a Q-periodic function (Q = [0, 1]d)

such that :

∃γ > 0, ∀xi ∈ ξ ∈ R
d, ∀y ∈ R

d ξTA(y)ξ ≥ γ|ξ|2,

and f ∈ L2 (D).

Up to extraction of a subsequence, the limit u∗ in the weak sense of
(uε)ε>0 as ε→ 0 can be shown to satisfy the following equation :





− div (A⋆∇u⋆) = f in D,
u⋆ = 0 on ∂D.
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Periodic setting : Introduction to homogenization (II)

A∗ is the homogenized matrix, which reflects the properties of some limit
material. Its definition involves solutions wp of the so-called corrector
problems : 




div [A (y) (p+ ∇wp)] = 0,

wp is periodic,

Definition of the homogenized matrix :

general matrix :

[A⋆]ij =

∫

Q

(ei + ∇wei
)T A (ej + ∇wei

) dy,

symmetric matrix :

[A⋆]ij =

∫

Q

(ei + ∇wei
)
T
Aejdy.
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Stochastic setting : Underlying hypotheses, ergodic results (I)

Consider the family (uε)ε>0 of solutions to the following SPDEs :





− div
(
A
(

x
ε
, ω
)
∇uε (·, ω)

)
= f in D,

uε (·, ω) = 0 on ∂D,

with A(y, ω) stationnary such that :

∃γ > 0, ∀xi ∈ ξ ∈ R
d, ∀ ∈ R

d ξTA(y)ξ ≥ γ|ξ|2, almost surely

and f ∈ L2 (D).

The deterministic limit in the weak sense u⋆ of (uε)ε>0 as ε→ 0 can be
shown to satisfy a deterministic elliptic equation.
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Stochastic setting : Underlying hypotheses, ergodic results (II)

The computation of A∗ involves solutions wp of the stochastic corrector
problems : 




div [A (y, ω) (p+ ∇wp)] = 0,

∇wp is stationary,

E

(∫
Q
∇wp(y, ·)dy

)
= 0.

Definition of the deterministic homogenized matrix :

[A⋆]ij = E

(∫

Q

(ei + ∇wei
)T A (ej + ∇wei

) dy

)
,

Numerical computation of A⋆ is thus quite a difficult task.

Discretization of a SPDE posed on the whole space R
d.
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Variance reduction for general
stochastic homogenization
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Variance issues: the origin of randomness in stochastic homogenization

Our Goal: approximating A⋆

First step: the truncated corrector problem





−div
(
A(·, ω)

(
p+ ∇wN

p (·, ω)
))

= 0 on R
d,

wN
p (·, ω) is QN -periodic.

where QN = [−N,N ].

Second step : defining the approximated homogenized matrix A⋆
N

[A⋆
N ]ij (ω) =

1

|QN |

∫

QN

(
ei + ∇wN

ei
(y, ω)

)T
A(y, ω)

(
ej + ∇wN

ej
(y, ω)

)
dy

The randomness originates from truncation
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Variance issues: Monte Carlo methods (I)

Underlying assumption: E (A⋆
N ) ≈ A⋆

Monte Carlo method for computations of E (A⋆
N )

Definition of estimators associated to M = 2M realizations

µM

(
[A⋆

N ]
ij

)
=

1

M

M∑

m=1

[
A⋆,m

N

]
ij
,

σM

(
[A⋆

N ]
ij

)
=

1

M − 1

M∑

m=1

([
A⋆,m

N

]
ij
− µM

(
[A⋆

N ]ij

))2

.

Properties of µM

(
[A⋆

N ]
ij

)
:

Strong law of large numbers
Central Limit Theorem

√
M
(
µM

(
[A⋆

N ]ij

)
− E

(
[A⋆

N ]ij

))
L−→

M→+∞

√
Var

(
[A⋆

N ]
ij

)
N (0, 1)
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Variance issues: Monte Carlo methods (II)

The context of numerical practice

E (A⋆
N ) is in the confidence interval

µM

(
[A⋆

N ]ij

)
± 1.96

√
σM

(
[A⋆

N ]
ij

)

√
M

.

Precision of the estimation depends on Var
(
[A⋆

N ]
ij

)

Our approach:

Defining new estimators of A⋆
N with smaller variance than µM

(
[A⋆

N ]
ij

)
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Variance issues: antithetic variables (I)

We give ourselves M i.i.d. copies (Am(x, ω))1≤m≤M of A(x, ω)

Defining

an antithetic initial field

Bm(x, ω) = T (Am(x, ω)) , 1 ≤ m ≤ M,

an antithetic corrector problem whose solution is denoted vp

We finally build an antithetic homogenized matrix

[
B⋆,m

N

]
ij

(ω) =
1

|QN |

∫

QN

(
ei + ∇vN,m

ei
(·, ω)

)T
Bm(·, ω)

(
ej + ∇vN,m

ej
(·, ω)

)
.
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Variance issues: antithetic variables (II)

We introduce a new random variable

Ã⋆,m
N (ω) :=

1

2

(
A⋆,m

N (ω) +B⋆,m
N (ω)

)
.

It is

unbiaised

E

(
Ã⋆,m

N

)
= E

(
A⋆,m

N

)

convergent

Ã⋆,m
N −→

N→+∞
A⋆ almost surely,

because B is ergodic.

Ã⋆
N requires the solution of 2 correctors problems instead of 1 for the classical

estimator !
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Variance issues: antithetic variables (III)

We define new estimators with identical properties

µM

([
Ã⋆

N

]

ij

)
=

1

M
M∑

m=1

[
Ã⋆,m

N

]

ij
,

σM

([
Ã⋆

N

]

ij

)
=

1

M− 1

M∑

m=1

([
Ã⋆,m

N

]

ij
− µM

([
Ã⋆

N

]

ij

))2

.

Efficiency criteria

Equal computational costs

M = 2M realizations of A⋆
N vs M of Ã⋆

N

Theoretic condition

Cov
(
[A⋆

N ]ij , [B
⋆
N ]ij

)
≤ 0.
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Results
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Theoretic validation (I)

Hypotheses on the initial field A

A deterministic function of uniform r.v on finite-size cells
There exists an integer n and a function A, defined on QN ×R

n,
such that

∀x ∈ QN , A(x, ω) = A(x,X1(ω), . . . , Xn(ω)) a.s.,

where {Xk(ω)}1≤k≤n are independent scalar random variables,
which are all distributed according to the uniform law U [0, 1]

Monotonicity in the sense of symmetric matrices

For all x ∈ QN , and any vector ξ ∈ Rd, the map

(x1, . . . , xn) ∈ R
n 7→ ξTA(x, x1, . . . , xn)ξ

is non-decreasing with respect to each of its arguments.
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Theoretic validation (II)

Proposition 0.1 We assume that A(x, ω) satisfies the above hypothe-
ses. We define on QN the field

B(x, ω) := A(x, 1 −X1(ω), . . . , 1 −Xn(ω)),

antithetic to A(·, ω). We associate to this field the antithetic corrector
problem (replacing A by B), the solution of which is denoted by vN

p , and
the matrix B⋆

N (ω), defined from vN
p . Then,

∀ξ ∈ R
d, Cov

(
ξTA⋆

Nξ, ξ
TB⋆

Nξ
)
≤ 0

Otherwise stated, Ã⋆
N is an unbiased estimator of E (A⋆

N ), and

Var
(
ξT Ã⋆

Nξ
)
≤ 1

2
Var

(
ξTA⋆

Nξ
)
.
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Theoretic validation (III)

This result guarantees the efficiency of the technique for

a wide range of initial fields characterized by
1. different local behaviours
2. different correlation structures
3. different isotropy properties

a wide range of outputs including
1. diagonal terms [A⋆

N ]
ii

2. eigenvalues of A⋆
N

3. eigenvalues of LA⋆
N

= −div (A⋆
N∇·)
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Numerical experiment: Test cases

The case of an isotropic initial field with no correlation

A(x, ω) =
∑

k∈Zd

1Q+k(x)ak(ω)Id =
∑

k∈Zd

1Q+k(x)f (Xk(ω)) Id.

Values ak and ak′ of A on two distinct cells Q+ k and Q+ k′ are
independent.

A is invariant under rotations of angle π/2

The law of A is determined by that of a0

case (i): a0 ∼ U([α, β]); f(x) = α+ (β − α)x

case (ii): a0 ∼ B(1/2), P (a0 = α) = 1/2 and P (a0 = β) = 1/2;

f(x) = α+ (β − α)1{ 1

2
≤x≤1}.

In the sequel, α = 3, β = 20.
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Numerical experiment: case (i) (I)

One realization of A and its couterpart B when a0 ∼ U([α, β])
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Numerical experiment: case (i) (II)

Estimated means µ100 (A⋆
N ) and µ50

(
Ã⋆

N

)
and respective confidence

intervals.
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Numerical experiment: case (ii) (I)

One realization of A and its couterpart B when a0 ∼ B( 1
2 )
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Numerical experiment: case (ii) (II)

Estimated means µ100 (A⋆
N ) and µ50

(
Ã⋆

N

)
and respective confidence

intervals.
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Numerical experiment: Summary

Ratio of the widths of confidence intervals

R ([A⋆
N ]11) =

σ100

(
[A⋆

N ]11
)

2σ50

([
Ã⋆

N

]

11

) .

Numerical values in the isotropic case

N a0 ∼ B(1/2) a0 ∼ B(1/3) a0 ∼ U ([α, β])

5 5.34 2.06 6.31

10 3.91 1.56 6.46

20 5.41 2.92 10.2

40 3.07 2.31 6.67

60 4.41 2.47 6.16

80 4.49 1.95 5.68

100 4.28 2.99 7.89
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Weakly stochastic cases
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Perturbations of the periodic framework

Linear perturbations

First model:

Aη(x, ω) = Aper(x) + ηA1(x, ω) +O(η2), in
(
L∞

(
Ω × R

d
))d×d

where A(y) is a periodic function satisfying the same conditions of
boundedness and coercivity as above.

Second model:

Aη(x, ω) = Aper(x) +Bη(x, ω) +O(η2), in
(
L∞

(
R

d;Lp(Ω)
))d×d

Perturbations of alternative models

Aη(x, ω) = Aper

(
Φ−1

η (x, ω)
)
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The Blanc Le Bris Lions framework
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Presentation and main results

Consider the family (uε)ε>0 of solutions to the following SPDEs :





− div
(
A
(
Φ−1

(
x
ε
, ω
))

∇uε (·, ω)
)

= f in D,
uε (·, ω) = 0 on ∂D,

where A(y) is a periodic function satisfying the same conditions of
boundedness and coercivity as above.

Φ(x, ω) is a stationnary stochastic diffeomorphism :





EssInf
ω∈Ω, x∈Rd

[det(∇Φ(x, ω))] = ν > 0,

EssSup
ω∈Ω, x∈Rd

(|∇Φ(x, ω)|) = M <∞,

∇Φ(x, ω)is stationnary.
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Presentation and main results

Main results proved within the seminal paper :

The deterministic limit in the weak sense u⋆ of (uε)ε>0 as ε→ 0

satisfies a deterministic elliptic equation.

A new corrector problem :





div
[
A
(
Φ−1(y, ω)

)
(p+ ∇wp)

]
= 0,

wp(y, ω) = w̃p

(
Φ−1(y, ω), ω

)
, ∇w̃p is stationnary,

E

(∫
Φ(Q,·)

∇wp(y, ·)dy
)

= 0,

A new definition of the homogenized matrix :

[A⋆]ij = det
(
E

(∫
Q
∇Φ(z, ·)dz

))−1

E

(∫
Φ(Q,·)

(ei + ∇wei
(y, ·))T A

(
Φ−1(y, ·)

)
ej dy

)
.
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The perturbative result (I)

Consider now the family (Φη)
η≥0 of stochastic stationnary

diffeomorphism, satisfying :

Φ(x, ω) = x+ ηΨ(x, ω) +O(η2),

when η → 0 in C1(Rd, L∞(Ω)).

The gradient of the corrector wp = w̃p

(
Φ−1(x, ω)

)
possesses an

analogous expansion :

∇w̃p(x, ω) = ∇w0
p(x) + η∇w1

p(x, ω) +O(η2)

in L2 (Q× Ω).

Introducing such an expansion into the formula of A⋆ leads to :

A⋆ = A0 + ηA1 +O(η2),

The equations satisfied by w0
p and w1

p are known.
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The perturbative result (II)

Deterministic cell problem satisfied by w0 :





− div
[
A (p+ ∇w0

p)
]

= 0,

w0
p is Q-periodic.

Stochastic cell problem satisfied by w1 :





− div
[
A∇w1

p

]
= div

[
−A∇Ψ∇w0

p − (∇ΨT − (div Ψ)Id)A (p+ ∇w0
p)
]
,

∇w1
p is stationnary and E

(∫
Q
∇w1

p

)
= 0.

First terms of A⋆’s expansion :

A0
ij =

∫
Q

(
ei + ∇w0

ei

)T
Aej

A1
ij = −

∫
Q

E(div Ψ)A0
ij +

∫
Q

(ei + ∇w0
ei

)TAej E(div Ψ)

+
∫

Q

(
E(∇w1

ei
) − E(∇Ψ)∇w0

ei

)T
Aej .
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The perturbative result (III)

In order to compute A1 the knowledge of the deterministic w1
ei

= E(∇w1
ei

)

is only required.

w1
ei

= E(∇w1
ei

) is the unique periodic solution to the deterministic cell
problem :

− div
[
A∇w1

p

]
= div

[
−AE(∇Ψ)∇w0

p − (E(∇ΨT ) − E(div Ψ)Id)A (p+ ∇w0
p)
]
.

Numerical strategy : instead of tackling the very general stochastic
problem, one deals with two independent deterministic problems.

Do these results still hold when dealing with approximation spaces ?
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A discretized version of BLL results
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Discretization of the corrector problem (I)

After domain truncation and introduction of finite element spaces, one
obtains the following discrete formulation





Find w̃h,N
p (·, ω) ∈ V per

h (QN ) such that, for all ṽh ∈ V per
h (QN ),

∫
QN

det (∇Φ) (∇ṽh)
T

(∇Φ)
−T

A
(
p+ (∇Φ)

−1 ∇w̃h,N
p (·, ω)

)
= 0, a.s.

The chosen method is thus a Monte-Carlo Method Finite Elements
Method.

At each realization ω corresponds a divergence-form deterministic
elliptic equation on the bounded domain QN , whose solution
existence is guaranteed by Lax-Milgram Lemma.

No discretization of the random space Ω (Galerkin Method)
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Discretization of the corrector problem (II)

Thanks to the approximated corrector w̃h,N
p (·, ω), one can compute an

approximated random tensor

(
Ah,N

⋆

)
ij

(ω) =

1

|QN |

∫

QN

det(∇Φ)
(
ei + (∇Φ)−1 ∇w̃h,N

ei

)T
Aej .

det

(
1

|QN |

∫

QN

∇Φ

)

Ah,N
⋆ (ω) is random due to the loss of ergodicity resulting from the

discretization procedure.

What do the former results become within this discretized framework ?

One introduces the formal expansion : w̃h,N
p = w0,h,N

p + ηw1,h,N
p +O(η2)
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Discretization of the corrector problem (III)

Introducing such a developement within the discrete corrector problem

w0,h,N
p = w0,h

p is deterministic. It does not depend on N .





Find w0,h
p ∈ V per

h (Q) such that, for all vh ∈ V per
h (Q),

∫
Q

(∇vh)T A (p+ ∇w0,h
p ) = 0,

w1,h,N
p is stochastic. It does depend on N :





Find w1,h,N
p (·, ω) ∈ V per

h (QN ) such that, for all vh ∈ V per
h (QN ),

∫
QN

(∇vh)T A ∇w1,h,N
p =

∫
QN

(∇vh)T A∇Ψ∇w0,h
p

+
∫

QN

(
∇ΨT − (div Ψ) Id

)
A
(
p+ ∇w0,h

p

)
.
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Discretization of the corrector problem (IV)

First terms of the expansion

[
A0,h

]
ij

=
∫

Q

(
ei + ∇w0,h

ei

)T
A

[
A1,h,N

]
ij

= −(A0,h)ij
1

|QN |
∫

QN
div Ψ

+ 1
|QN |

∫
QN

(ei + ∇w0,h
ei

)TAej div Ψ

+ 1
|QN |

∫
QN

(
∇w1,h,N

ei
−∇Ψ∇w0,h

ei

)T
Aej .

Does the expansion
(
Ah,N

⋆

)

ij
(ω) = (A0,h)ij + η(A1,h,N )ij hold ?
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Main result

The discrete expansion

Proposition 0.2 Suppose Φ(x, ω) = x+ηΨ(x, ω)+O(η2) when η → 0,
in C1(Rd, L∞(Ω)), with ∇Ψ stationary. A constant C exists such that,
for small values of parameter η ,

η−2
∣∣∇w̃h,N

p (x, ω) −∇w0,h
p (x) − η∇w1,h,N

p (x, ω)
∣∣ ≤ C,

where w̃h,N
p , w0,h

p et w1,h,N
p are respectively solutions of the discrete,

order 0 and order 1 corrector problems. In addition we have

η−2
∣∣Ah,N

⋆ (ω) −A0,h − ηA1,h,N (ω)
∣∣ ≤ C,

Sketch of the proof

uniform bounds in η thanks to the domain boundedness.

passing to the limit int the variatonal equation which corresponds to
the discrete corrector problem.
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Numerical experiments
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The random media

Reference periodic structure

∀x ∈ Q, A(x) = aper(x) Id2, aper(x1, x2) = β+(α−β) sin2(πx1) sin2(πx2).

Stochastic diffeomorphism :

Two independant family of i.i.d random variables (Xk)k∈Z et (Yk)k∈Z,
who follow a uniform law U([a, b])

Φη(x) = x+ ηΨ(x, ω), with Ψ(x, ω) = (ψX(x1, ω), ψY (x2, ω)) and

ψX(x1, ω) =
∑

k∈Z

1[k,k+1[(x1)

(
k−1∑

q=0

Xq(ω) + 2Xq(ω)

∫ x1

k

sin2(2πt) dt

)
,

Parameters

α = 10 β = 1 a = 5.75 b = −2.25
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Reference and deformed structure

(a) Periodic structure (b) Periodic structure through diffeomorphism

Φη(x, ω), η = 0.05
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Several realizations
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E
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