Problèmes de variance en homogénéisation stochastique

Xavier Blanc, Ronan Costaouec, Claude Le Bris, Frédéric Legoll

Université Paris-Est, CERMICS, École Nationale des Ponts et Chaussées INRIA Rocquencourt, MICMAC team-project Université Paris-Est, Institut Navier, LAMI, École Nationale des Ponts et Chaussées. Classical periodic and stochastic homogenization

- Periodic setting
- Stochastic setting : Underlying hypotheses, ergodic results.
- Variance reduction for general stochastic homogenization
 - Where does the randomness come from ?
 - The technique of antithetic variables
 - Theoretic validation and numerical experiment
- Weakly stochastic cases
 - Hypotheses and existence of an expansion
 - Variance control for the approximate expansion

Classical periodic and stochastic homogenization

Periodic setting : Introduction to homogenization (I)

• Consider the family $(u_{\varepsilon})_{\varepsilon>0}$ of solutions to the following PDEs :

$$\begin{cases} -\operatorname{div}\left(\boldsymbol{A}\left(\frac{x}{\varepsilon}\right)\nabla u_{\varepsilon}\right) = f \quad \text{in} \quad \mathcal{D}, \\ u_{\varepsilon} = 0 \quad \text{on} \quad \partial \mathcal{D}, \end{cases}$$

with $A(y) = [a_{ij}(y)] \in (L^{\infty}(\mathbb{R}^d))^{d \times d}$ is a *Q*-periodic function ($Q = [0, 1]^d$) such that :

$$\exists \gamma > 0, \ \forall x_i \in \xi \in \mathbb{R}^d, \forall y \in \mathbb{R}^d \ \xi^T A(y) \xi \ge \gamma |\xi|^2,$$

and $f \in L^2(\mathcal{D})$.

• Up to extraction of a subsequence, the limit u_* in the weak sense of $(u_{\varepsilon})_{\varepsilon>0}$ as $\varepsilon \to 0$ can be shown to satisfy the following equation :

$$\begin{cases} -\operatorname{div}\left(A^{\star}\nabla u_{\star}\right) = f \quad \text{in} \quad \mathcal{D}, \\ u_{\star} = 0 \quad \text{on} \quad \partial \mathcal{D}. \end{cases}$$

Periodic setting : Introduction to homogenization (II)

A* is the homogenized matrix, which reflects the properties of some limit material. Its definition involves solutions w_p of the so-called corrector problems :

 $\begin{cases} \operatorname{div} \left[A\left(y\right) \left(p+\nabla w_{p}\right) \right] =0,\\ w_{p} \text{ is periodic,} \end{cases}$

- Definition of the homogenized matrix :
 - general matrix :

$$[A^{\star}]_{ij} = \int_{Q} \left(e_i + \nabla w_{e_i} \right)^T A \left(e_j + \nabla w_{e_i} \right) dy,$$

symmetric matrix :

$$[A^{\star}]_{ij} = \int_Q \left(e_i + \nabla w_{e_i} \right)^T A e_j dy.$$

Stochastic setting : Underlying hypotheses, ergodic results (I)

• Consider the family $(u_{\varepsilon})_{\varepsilon>0}$ of solutions to the following SPDEs :

$$\begin{cases} -\operatorname{div}\left(\boldsymbol{A}\left(\frac{x}{\varepsilon},\omega\right)\nabla u_{\varepsilon}\left(\cdot,\omega\right)\right) = f \quad \text{in} \quad \mathcal{D}, \\ u_{\varepsilon}\left(\cdot,\omega\right) = 0 \quad \text{on} \quad \partial \mathcal{D}, \end{cases}$$

with $A(y, \omega)$ stationnary such that :

 $\exists \gamma > 0, \ \forall x_i \in \xi \in \mathbb{R}^d, \forall \in \mathbb{R}^d \ \xi^T A(y) \xi \ge \gamma |\xi|^2, \text{almost surely}$

and $f \in L^2(\mathcal{D})$.

• The deterministic limit in the weak sense u_{\star} of $(u_{\varepsilon})_{\varepsilon>0}$ as $\varepsilon \to 0$ can be shown to satisfy a deterministic elliptic equation.

Stochastic setting : Underlying hypotheses, ergodic results (II)

The computation of A* involves solutions w_p of the stochastic corrector problems :

$$\begin{array}{l} \operatorname{div}\left[A\left(y,\omega\right)\left(p+\nabla w_{p}\right)\right]=0, \\ \nabla w_{p} \text{ is stationary}, \\ \mathbb{E}\left(\int_{Q}\nabla w_{p}(y,\cdot)dy\right)=0. \end{array} \end{array}$$

Definition of the deterministic homogenized matrix :

$$[A^{\star}]_{ij} = \mathbb{E}\left(\int_{Q} \left(e_{i} + \nabla w_{e_{i}}\right)^{T} A\left(e_{j} + \nabla w_{e_{i}}\right) dy\right),$$

- Numerical computation of A^* is thus quite a difficult task.
- Discretization of a SPDE posed on the whole space \mathbb{R}^d .

Variance reduction for general stochastic homogenization

Variance issues: the origin of randomness in stochastic homogenization

- Our Goal: approximating A^*
- First step: the truncated corrector problem

$$\begin{cases} -\operatorname{div}\left(A(\cdot,\omega)\left(p+\nabla w_p^N(\cdot,\omega)\right)\right) = 0 \quad \text{on} \quad \mathbb{R}^d, \\ w_p^N(\cdot,\omega) \text{ is } Q_N \text{-periodic.} \end{cases}$$

where $Q_N = [-N, N]$.

Second step : defining the approximated homogenized matrix A_N^{\star}

$$[A_N^\star]_{ij}(\omega) = \frac{1}{|Q_N|} \int_{Q_N} \left(e_i + \nabla w_{e_i}^N(y,\omega) \right)^T A(y,\omega) \left(e_j + \nabla w_{e_j}^N(y,\omega) \right) \, dy$$

The randomness originates from truncation

Variance issues: Monte Carlo methods (I)

- Underlying assumption: $\mathbb{E}(A_N^{\star}) \approx A^{\star}$
- Monte Carlo method for computations of $\mathbb{E}(A_N^{\star})$
 - Definition of estimators associated to $M = 2\mathcal{M}$ realizations

$$\mu_M \left(\begin{bmatrix} A_N^{\star} \end{bmatrix}_{ij} \right) = \frac{1}{M} \sum_{\mathbf{m}=1}^M \begin{bmatrix} A_N^{\star,\mathbf{m}} \end{bmatrix}_{ij},$$

$$\sigma_M \left(\begin{bmatrix} A_N^{\star} \end{bmatrix}_{ij} \right) = \frac{1}{M-1} \sum_{\mathbf{m}=1}^M \left(\begin{bmatrix} A_N^{\star,\mathbf{m}} \end{bmatrix}_{ij} - \mu_M \left(\begin{bmatrix} A_N^{\star} \end{bmatrix}_{ij} \right) \right)^2.$$

- Properties of $\mu_M\left([A_N^\star]_{ij}\right)$:
 - Strong law of large numbers
 - Central Limit Theorem

$$\sqrt{M} \left(\mu_M \left([A_N^{\star}]_{ij} \right) - \mathbb{E} \left([A_N^{\star}]_{ij} \right) \right) \xrightarrow[M \to +\infty]{} \sqrt{\mathbb{V} \mathrm{ar} \left([A_N^{\star}]_{ij} \right)} \mathcal{N}(0, 1)$$

Variance issues: Monte Carlo methods (II)

- The context of numerical practice
- $\mathbb{E}(A_N^{\star})$ is in the confidence interval

$$\mu_M\left([A_N^\star]_{ij}\right) \pm 1.96 \frac{\sqrt{\sigma_M\left([A_N^\star]_{ij}\right)}}{\sqrt{M}}.$$

• Precision of the estimation depends on $\mathbb{V}ar\left(\left[A_{N}^{\star}\right]_{ij}\right)$

Our approach:

Defining new estimators of A_N^{\star} with smaller variance than $\mu_M\left(\left[A_N^{\star}\right]_{ij}\right)$

Variance issues: antithetic variables (I)

- We give ourselves \mathcal{M} i.i.d. copies $(A^{\mathbf{m}}(x,\omega))_{1 \leq \mathbf{m} \leq \mathcal{M}}$ of $A(x,\omega)$
- Defining
 - an antithetic initial field

$$B^{\mathbf{m}}(x,\omega) = T(A^{\mathbf{m}}(x,\omega)), \quad 1 \le \mathbf{m} \le \mathcal{M},$$

- an antithetic corrector problem whose solution is denoted v_p
- We finally build an antithetic homogenized matrix

$$\left[B_N^{\star,\mathbf{m}}\right]_{ij}(\omega) = \frac{1}{|Q_N|} \int_{Q_N} \left(e_i + \nabla v_{e_i}^{N,\mathbf{m}}(\cdot,\omega)\right)^T B^{\mathbf{m}}(\cdot,\omega) \left(e_j + \nabla v_{e_j}^{N,\mathbf{m}}(\cdot,\omega)\right).$$

Variance issues: antithetic variables (II)

We introduce a new random variable

$$\widetilde{A}_N^{\star,\mathbf{m}}(\omega) := \frac{1}{2} \left(A_N^{\star,\mathbf{m}}(\omega) + B_N^{\star,\mathbf{m}}(\omega) \right).$$

🍠 It is

unbiaised

$$\mathbb{E}\left(\widetilde{A}_{N}^{\star,\mathbf{m}}\right) = \mathbb{E}\left(A_{N}^{\star,\mathbf{m}}\right)$$

convergent

$$\widetilde{A}_N^{\star,\mathbf{m}} \xrightarrow[N \to +\infty]{} A^{\star} \text{ almost surely},$$

because B is ergodic.

 \widetilde{A}_N^{\star} requires the solution of 2 correctors problems instead of 1 for the classical estimator !

Variance issues: antithetic variables (III)

We define new estimators with identical properties

$$\mu_{\mathcal{M}} \left(\left[\widetilde{A}_{N}^{\star} \right]_{ij} \right) = \frac{1}{\mathcal{M}} \sum_{\mathbf{m}=1}^{\mathcal{M}} \left[\widetilde{A}_{N}^{\star,\mathbf{m}} \right]_{ij},$$

$$\sigma_{\mathcal{M}} \left(\left[\widetilde{A}_{N}^{\star} \right]_{ij} \right) = \frac{1}{\mathcal{M}-1} \sum_{\mathbf{m}=1}^{\mathcal{M}} \left(\left[\widetilde{A}_{N}^{\star,\mathbf{m}} \right]_{ij} - \mu_{\mathcal{M}} \left(\left[\widetilde{A}_{N}^{\star} \right]_{ij} \right) \right)^{2}.$$

- Efficiency criteria
 - Equal computational costs

 $M = 2\mathcal{M}$ realizations of A_N^{\star} vs \mathcal{M} of \widetilde{A}_N^{\star}

Theoretic condition

$$\mathbb{C}\mathsf{ov}\left(\left[A_N^\star\right]_{ij},\left[B_N^\star\right]_{ij}\right) \le 0.$$

Results

Theoretic validation (I)

- Hypotheses on the initial field A
 - A deterministic function of uniform r.v on finite-size cells There exists an integer n and a function \mathcal{A} , defined on $Q_N \times \mathbb{R}^n$, such that

$$\forall x \in Q_N, \quad A(x,\omega) = \mathcal{A}(x, X_1(\omega), \dots, X_n(\omega))$$
 a.s.,

where $\{X_k(\omega)\}_{1 \le k \le n}$ are independent scalar random variables, which are all distributed according to the uniform law $\mathcal{U}[0,1]$

Monotonicity in the sense of symmetric matrices

For all $x \in Q_N$, and any vector $\xi \in \mathbb{R}^d$, the map

$$(x_1,\ldots,x_n) \in \mathbb{R}^n \mapsto \xi^T \mathcal{A}(x,x_1,\ldots,x_n) \xi$$

is non-decreasing with respect to each of its arguments.

Proposition 0.1 We assume that $A(x, \omega)$ satisfies the above hypotheses. We define on Q_N the field

 $B(x,\omega) := \mathcal{A}(x, 1 - X_1(\omega), \dots, 1 - X_n(\omega)),$

antithetic to $A(\cdot, \omega)$. We associate to this field the antithetic corrector problem (replacing *A* by *B*), the solution of which is denoted by v_p^N , and the matrix $B_N^{\star}(\omega)$, defined from v_p^N . Then,

 $\forall \xi \in \mathbb{R}^d, \quad \mathbb{C}ov\left(\xi^T A_N^{\star}\xi, \xi^T B_N^{\star}\xi\right) \le 0$

Otherwise stated, \widetilde{A}_N^{\star} is an unbiased estimator of $\mathbb{E}(A_N^{\star})$, and

$$\operatorname{\mathbb{V}ar}\left(\xi^T \widetilde{A}_N^{\star} \xi\right) \leq \frac{1}{2} \operatorname{\mathbb{V}ar}\left(\xi^T A_N^{\star} \xi\right).$$

Theoretic validation (III)

- This result guarantees the efficiency of the technique for
 - a wide range of initial fields characterized by
 - 1. different local behaviours
 - 2. different correlation structures
 - 3. different isotropy properties
 - a wide range of outputs including
 - 1. diagonal terms $[A_N^{\star}]_{ii}$
 - 2. eigenvalues of A_N^{\star}
 - 3. eigenvalues of $L_{A_N^{\star}} = -\operatorname{div} \left(A_N^{\star} \nabla \cdot \right)$

Numerical experiment: Test cases

The case of an isotropic initial field with no correlation

$$A(x,\omega) = \sum_{k \in \mathbb{Z}^d} \mathbf{1}_{Q+k}(x) a_k(\omega) \mathsf{Id} = \sum_{k \in \mathbb{Z}^d} \mathbf{1}_{Q+k}(x) f(X_k(\omega)) \mathsf{Id}.$$

- Values a_k and $a_{k'}$ of A on two distinct cells Q + k and Q + k' are independent.
- A is invariant under rotations of angle $\pi/2$
- The law of A is determined by that of a_0
 - case (i): $a_0 \sim \mathcal{U}([\alpha, \beta]); f(x) = \alpha + (\beta \alpha)x$
 - case (ii): $a_0 \sim \mathcal{B}(1/2)$, $\mathbb{P}(a_0 = \alpha) = 1/2$ and $\mathbb{P}(a_0 = \beta) = 1/2$;

$$f(x) = \alpha + (\beta - \alpha) \mathbf{1}_{\left\{\frac{1}{2} \le x \le 1\right\}}.$$

• In the sequel, $\alpha = 3, \beta = 20$.

Numerical experiment: case (i) (l)

• One realization of A and its couterpart B when $a_0 \sim \mathcal{U}([\alpha, \beta])$

Numerical experiment: case (i) (II)

• Estimated means $\mu_{100}(A_N^{\star})$ and $\mu_{50}(\widetilde{A}_N^{\star})$ and respective confidence intervals.

Numerical experiment: case (ii) (I)

• One realization of A and its couterpart B when $a_0 \sim \mathcal{B}(\frac{1}{2})$

Numerical experiment: case (ii) (II)

• Estimated means $\mu_{100}(A_N^{\star})$ and $\mu_{50}(\widetilde{A}_N^{\star})$ and respective confidence intervals.

Numerical experiment: Summary

Ratio of the widths of confidence intervals

$$R\left([A_{N}^{\star}]_{11}\right) = \frac{\sigma_{100}\left([A_{N}^{\star}]_{11}\right)}{2\sigma_{50}\left(\left[\widetilde{A}_{N}^{\star}\right]_{11}\right)}.$$

Numerical values in the isotropic case

N	$a_0 \sim \mathcal{B}(1/2)$	$a_0 \sim \mathcal{B}(1/3)$	$a_0 \sim \mathcal{U}\left([\alpha, \beta]\right)$
5	5.34	2.06	6.31
10	3.91	1.56	6.46
20	5.41	2.92	10.2
40	3.07	2.31	6.67
60	4.41	2.47	6.16
80	4.49	1.95	5.68
100	4.28	2.99	7.89

Weakly stochastic cases

Linear perturbations

First model:

$$A_{\eta}(x,\omega) = A_{\text{per}}(x) + \eta A_{1}(x,\omega) + O(\eta^{2}), \text{ in } \left(L^{\infty}\left(\Omega \times \mathbb{R}^{d}\right)\right)^{d \times d}$$

where A(y) is a periodic function satisfying the same conditions of boundedness and coercivity as above.

Second model:

$$A_{\eta}(x,\omega) = A_{\text{per}}(x) + B_{\eta}(x,\omega) + O(\eta^2), \text{ in } \left(L^{\infty}\left(\mathbb{R}^d; L^p(\Omega)\right)\right)^{d \times d}$$

Perturbations of alternative models

$$A_{\eta}(x,\omega) = A_{\text{per}}\left(\Phi_{\eta}^{-1}(x,\omega)\right)$$

The Blanc Le Bris Lions framework

Presentation and main results

• Consider the family $(u_{\varepsilon})_{\varepsilon>0}$ of solutions to the following SPDEs :

$$\begin{cases} -\operatorname{div}\left(A\left(\Phi^{-1}\left(\frac{x}{\varepsilon},\omega\right)\right)\nabla u_{\varepsilon}\left(\cdot,\omega\right)\right) = f \quad \text{in} \quad \mathcal{D}, \\ u_{\varepsilon}\left(\cdot,\omega\right) = 0 \quad \text{on} \quad \partial \mathcal{D}, \end{cases}$$

where A(y) is a periodic function satisfying the same conditions of boundedness and coercivity as above.

• $\Phi(x,\omega)$ is a stationnary stochastic diffeomorphism :

$$\begin{cases} \operatorname{EssInf}_{\omega \in \Omega, \, x \in \mathbb{R}^d} \left[\det(\nabla \Phi(x, \omega)) \right] = \nu > 0, \\ \operatorname{EssSup}_{\omega \in \Omega, \, x \in \mathbb{R}^d} \left(|\nabla \Phi(x, \omega)| \right) = M < \infty, \\ \nabla \Phi(x, \omega) \text{is stationnary.} \end{cases}$$

Presentation and main results

- Main results proved within the seminal paper :
 - The deterministic limit in the weak sense u_{\star} of $(u_{\varepsilon})_{\varepsilon>0}$ as $\varepsilon \to 0$ satisfies a deterministic elliptic equation.
 - A new corrector problem :

$$\begin{cases} \operatorname{div} \left[A \left(\Phi^{-1}(y, \omega) \right) (p + \nabla w_p) \right] = 0, \\ w_p(y, \omega) = \widetilde{w}_p \left(\Phi^{-1}(y, \omega), \omega \right), \quad \nabla \widetilde{w}_p \text{ is stationnary}, \\ \mathbb{E} \left(\int_{\Phi(Q, \cdot)} \nabla w_p(y, \cdot) dy \right) = 0, \end{cases}$$

• A new definition of the homogenized matrix :

$$[A^{\star}]_{ij} = \det \left(\mathbb{E} \left(\int_{Q} \nabla \Phi(z, \cdot) dz \right) \right)^{-1}$$
$$\mathbb{E} \left(\int_{\Phi(Q, \cdot)} \left(e_{i} + \nabla w_{e_{i}}(y, \cdot) \right)^{T} A \left(\Phi^{-1}(y, \cdot) \right) e_{j} dy \right).$$

The perturbative result (I)

• Consider now the family $(\Phi_{\eta})_{\eta \ge 0}$ of stochastic stationnary diffeomorphism, satisfying :

$$\Phi(x,\omega) = x + \eta \Psi(x,\omega) + O(\eta^2),$$

when $\eta \to 0$ in $C^1(\mathbb{R}^d, L^\infty(\Omega))$.

• The gradient of the corrector $w_p = \tilde{w}_p \left(\Phi^{-1}(x, \omega) \right)$ possesses an analogous expansion :

$$\nabla \widetilde{w}_p(x,\omega) = \nabla w_p^0(x) + \eta \nabla w_p^1(x,\omega) + O(\eta^2)$$

in $L^2(Q \times \Omega)$.

• Introducing such an expansion into the formula of A^* leads to :

$$A^{\star} = A^0 + \eta A^1 + O(\eta^2),$$

• The equations satisfied by w_p^0 and w_p^1 are known.

SMAI Guidel, May 26, 2011 - p. 30/44

The perturbative result (II)

• Deterministic cell problem satisfied by w^0 :

$$-\operatorname{div}\left[A\left(p+\nabla w_p^0\right)\right]=0,$$

$$w_p^0 \text{ is } Q\text{-periodic.}$$

• Stochastic cell problem satisfied by w^1 :

$$-\operatorname{div}\left[A\,\nabla w_p^1\right] = \operatorname{div}\left[-A\,\nabla \Psi\,\nabla w_p^0 - (\nabla \Psi^T - (\operatorname{div}\Psi)\mathsf{Id})\,A\,(p + \nabla w_p^0)\right],$$
$$\nabla w_p^1 \text{ is stationnary and } \mathbb{E}\left(\int_Q \nabla w_p^1\right) = 0.$$

• First terms of A^* 's expansion :

$$\begin{aligned} A_{ij}^{0} &= \int_{Q} \left(e_{i} + \nabla w_{e_{i}}^{0} \right)^{T} A e_{j} \\ A_{ij}^{1} &= -\int_{Q} \mathbb{E}(\operatorname{div} \Psi) A_{ij}^{0} + \int_{Q} (e_{i} + \nabla w_{e_{i}}^{0})^{T} A e_{j} \mathbb{E}(\operatorname{div} \Psi) \\ &+ \int_{Q} \left(\mathbb{E}(\nabla w_{e_{i}}^{1}) - \mathbb{E}(\nabla \Psi) \nabla w_{e_{i}}^{0} \right)^{T} A e_{j}. \end{aligned}$$

The perturbative result (III)

- In order to compute A^1 the knowledge of the deterministic $\overline{w}_{e_i}^1 = \mathbb{E}(\nabla w_{e_i}^1)$ is only required.
- $\overline{w}_{e_i}^1 = \mathbb{E}(\nabla w_{e_i}^1)$ is the unique periodic solution to the deterministic cell problem :

 $-\operatorname{div}\left[A\,\nabla\overline{w}_{p}^{1}\right] = \operatorname{div}\left[-A\,\mathbb{E}(\nabla\Psi)\,\nabla w_{p}^{0} - \left(\mathbb{E}(\nabla\Psi^{T}) - \mathbb{E}(\operatorname{div}\Psi)\mathsf{Id}\right)A\left(p + \nabla w_{p}^{0}\right)\right]$

Numerical strategy : instead of tackling the very general stochastic problem, one deals with two independent deterministic problems.

Do these results still hold when dealing with approximation spaces ?

A discretized version of **BLL** results

Discretization of the corrector problem (I)

 After domain truncation and introduction of finite element spaces, one obtains the following discrete formulation

 $\begin{cases} \text{Find } \widetilde{w}_{p}^{h,N}(\cdot,\omega) \in V_{h}^{\text{per}}(Q_{N}) \text{ such that, for all } \widetilde{v}_{h} \in V_{h}^{\text{per}}(Q_{N}), \\ \int_{Q_{N}} \det\left(\nabla\Phi\right) \left(\nabla\widetilde{v}_{h}\right)^{T} \left(\nabla\Phi\right)^{-T} A\left(p + \left(\nabla\Phi\right)^{-1} \nabla\widetilde{w}_{p}^{h,N}(\cdot,\omega)\right) = 0, \text{ a.s.} \end{cases}$

- The chosen method is thus a Monte-Carlo Method Finite Elements Method.
 - At each realization
 ω corresponds a divergence-form deterministic elliptic equation on the bounded domain Q_N, whose solution existence is guaranteed by Lax-Milgram Lemma.
 - No discretization of the random space Ω (Galerkin Method)

Discretization of the corrector problem (II)

• Thanks to the approximated corrector $\widetilde{w}_p^{h,N}(\cdot,\omega)$, one can compute an approximated random tensor

$$\left(A_{\star}^{h,N}\right)_{ij}(\omega) = \frac{\frac{1}{|Q_N|} \int_{Q_N} \det(\nabla\Phi) \left(e_i + (\nabla\Phi)^{-1} \nabla \widetilde{w}_{e_i}^{h,N}\right)^T A e_j.}{\det\left(\frac{1}{|Q_N|} \int_{Q_N} \nabla\Phi\right)}$$

- $A^{h,N}_{\star}(\omega)$ is random due to the loss of ergodicity resulting from the discretization procedure.
- What do the former results become within this discretized framework ?
- One introduces the formal expansion : $\widetilde{w}_p^{h,N} = w_p^{0,h,N} + \eta w_p^{1,h,N} + O(\eta^2)$

- Introducing such a development within the discrete corrector problem
 - $w_p^{0,h,N} = w_p^{0,h}$ is deterministic. It does not depend on N.

Find
$$w_p^{0,h} \in V_h^{\text{per}}(Q)$$
 such that, for all $v_h \in V_h^{\text{per}}(Q)$,
 $\int_Q (\nabla v_h)^T A (p + \nabla w_p^{0,h}) = 0$,

• $w_p^{1,h,N}$ is stochastic. It does depend on N :

$$\begin{cases} \text{Find } w_p^{1,h,N}(\cdot,\omega) \in V_h^{\text{per}}(Q_N) \text{ such that, for all } v_h \in V_h^{\text{per}}(Q_N), \\ \int_{Q_N} (\nabla v_h)^T A \nabla w_p^{1,h,N} = \int_{Q_N} (\nabla v_h)^T A \nabla \Psi \nabla w_p^{0,h} \\ + \int_{Q_N} (\nabla \Psi^T - (\operatorname{div} \Psi) \operatorname{Id}) A (p + \nabla w_p^{0,h}). \end{cases} \end{cases}$$

First terms of the expansion

$$\begin{bmatrix} A^{0,h} \end{bmatrix}_{ij} = \int_{Q} \left(e_{i} + \nabla w_{e_{i}}^{0,h} \right)^{T} A \begin{bmatrix} A^{1,h,N} \end{bmatrix}_{ij} = -(A^{0,h})_{ij} \frac{1}{|Q_{N}|} \int_{Q_{N}} \operatorname{div} \Psi + \frac{1}{|Q_{N}|} \int_{Q_{N}} (e_{i} + \nabla w_{e_{i}}^{0,h})^{T} A e_{j} \operatorname{div} \Psi + \frac{1}{|Q_{N}|} \int_{Q_{N}} \left(\nabla w_{e_{i}}^{1,h,N} - \nabla \Psi \nabla w_{e_{i}}^{0,h} \right)^{T} A e_{j}.$$

• Does the expansion $\left(A^{h,N}_{\star}\right)_{ij}(\omega) = (A^{0,h})_{ij} + \eta(A^{1,h,N})_{ij}$ hold ?

Main result

The discrete expansion

Proposition 0.2 Suppose $\Phi(x, \omega) = x + \eta \Psi(x, \omega) + O(\eta^2)$ when $\eta \to 0$, in $C^1(\mathbb{R}^d, L^{\infty}(\Omega))$, with $\nabla \Psi$ stationary. A constant *C* exists such that, for small values of parameter η ,

 $\eta^{-2} \left| \nabla \widetilde{w}_p^{h,N}(x,\omega) - \nabla w_p^{0,h}(x) - \eta \nabla w_p^{1,h,N}(x,\omega) \right| \le C,$

where $\widetilde{w}_{p}^{h,N}$, $w_{p}^{0,h}$ et $w_{p}^{1,h,N}$ are respectively solutions of the discrete, order 0 and order 1 corrector problems. In addition we have

$$\eta^{-2} |A^{h,N}_{\star}(\omega) - A^{0,h} - \eta A^{1,h,N}(\omega)| \le C,$$

- Sketch of the proof
 - uniform bounds in η thanks to the domain boundedness.
 - passing to the limit int the variational equation which corresponds to the discrete corrector problem.

Numerical experiments

Reference periodic structure

 $\forall x \in Q, \ A(x) = a_{\text{per}}(x) \, \text{Id}_2, \quad a_{\text{per}}(x_1, x_2) = \beta + (\alpha - \beta) \sin^2(\pi x_1) \sin^2(\pi x_2).$

- Stochastic diffeomorphism :
 - Two independent family of i.i.d random variables $(X_k)_{k\in\mathbb{Z}}$ et $(Y_k)_{k\in\mathbb{Z}}$, who follow a uniform law $\mathcal{U}([a, b])$
 - $\Phi_{\eta}(x) = x + \eta \Psi(x, \omega)$, with $\Psi(x, \omega) = (\psi_X(x_1, \omega), \psi_Y(x_2, \omega))$ and

$$\psi_X(x_1,\omega) = \sum_{k\in\mathbb{Z}} \mathbb{1}_{[k,k+1[}(x_1)\left(\sum_{q=0}^{k-1} X_q(\omega) + 2X_q(\omega)\int_k^{x_1} \sin^2(2\pi t)\,dt\right),$$

Parameters

$$\alpha = 10 \ \beta = 1 \ a = 5.75 \ b = -2.25$$

(a) Periodic structure

(b) Periodic structure through diffeomorphism $\Phi_\eta(x,\omega), \eta=0.05$

References

- Variance reduction
 - R. Costaouec, C. Le Bris et F. Legoll, Variance reduction in stochastic homogenization: proof of concept, using antithetic variables, Boletin Soc. Esp. Mat. Apl., vol. 50, 9-27 (2010).
 - X. Blanc, R. Costaouec, C. Le Bris et F. Legoll, Variance reduction in stochastic homogenization: the technique of antithetic variables, MPRF, to appear.
- Weakly stochastic
 - R. Costaouec, C. Le Bris and F. Legoll, Approximation numérique d'une classe de problèmes en homogénéisation stochastique (Numerical approximation of a class of problems in stochastic homogenization), C. R. Acad. Sci. Paris (2010).
 - R. Costaouec, Asymptotic expansion of the homogenized matrix in two weakly stochastic homogenization settings, submitted.