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Classical periodic and stochastic
homogenization



Periodic setting : Introduction to homogenization (1)

# Consider the family (u.).~q of solutions to the following PDEs :

—div (A (%2)Vu:) =f in D,
u. =0 on 0D,

with A(y) = [a;;(y)] € (L (R%))"*" is a Q-periodic function (Q = [0, 1]%)
such that :

Iy >0, Vo, € £ € RE Wy € R €T A(y)¢ > (¢,

and f € L? (D).

# Up to extraction of a subsequence, the limit u, in the weak sense of
(us)es>0 @s € — 0 can be shown to satisfy the following equation :

—div(A*Vu,) = f Iin D,
uy =0 on O0OD.
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Periodic setting : Introduction to homogenization (II)

o A*isthe homogenized matrix, which reflects the properties of some limit
material. Its definition involves solutions w,, of the so-called corrector
problems :

div [A () (p + V)] = 0,
w, IS periodic,

# Definition of the homogenized matrix :
s general matrix :

Al = [ (et Vue)T Ale; + V) dy.
Q
s Symmetric matrix :

[A™];; = /Q (e + Vue,)' Ae;dy.

SMAI Guidel, May 26, 2011 — p. 5/44




Stochastic setting : Underlying hypotheses, ergodic results (I)

# Consider the family (u.).~q of solutions to the following SPDEs :

—diV(A (f,w) Vug(-,w)):f in D,
ue ((,w) =0 on 9D,

with A(y,w) stationnary such that :
Iy >0, Va; € £ e REV e RY €T A(y)¢ > ~[€|?, almost surely

and f € L? (D).

# The deterministic limit in the weak sense u, of (u:).~o as e — 0 can be
shown to satisfy a deterministic elliptic equation.
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Stochastic setting : Underlying hypotheses, ergodic results (1)

o The computation of A* involves solutions w,, of the stochastic corrector
problems :

[ div[A(y,w) (p+ V)] =0,
¢ Vuw, Is stationary,
E (fQ Vuw,(y, )dy) = 0.

# Definition of the deterministic homogenized matrix :

(A%, =E (/Q (ei + Vwe,)" A(ej + Vuwe,) dy) ,

o Numerical computation of A* is thus quite a difficult task.

» Discretization of a SPDE posed on the whole space R€.
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Variance reduction for general
stochastic homogenization



Variance issues: the origin of randomness in stochastic homogenization

o Our Goal: approximating A*

» First step: the truncated corrector problem

—div (A(-,w) (p+ Vw) (-,w))) =0 on R

wy) (-,w) is Qn-periodic.

where Qn = [— N, N|.

o Second step : defining the approximated homogenized matrix A%,

1

[A}(V]z’j (w) = m o

(e; + ng(y, w))T Ay, w) (ej + Vwé\;(y, w)) dy

# The randomness originates from truncation
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Variance issues: Monte Carlo methods (1)

# Underlying assumption: E (A%) ~ A*
o Monte Carlo method for computations of E (A%/)
s Definition of estimators associated to M = 2. M realizations

MM ([A}(V]U) — % 2221 [Aj\’fm} ij
OM ([A}(V]z]) — Ml_ 1 2:31 ([A}K\}mhj — UM ([ 7\7]@]>>2

s Properties of uy, ([Ajv] | )

(¥}
s Strong law of large numbers

s Central Limit Theorem

VM (par (1A%, ) = E (143);))  —=(/Var ([43],) MO, 1)

M——+oco
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Variance issues: Monte Carlo methods (ll)

# The context of numerical practice

o [E (A% ) isin the confidence interval

\/UM ([Afvhj>

VM

L ([A?V]Z.j) +1.96

» Precision of the estimation depends on Var ([Ajv]z.j)

Our approach:

Defining new estimators of A%, with smaller variance than g, ([Aj\,]ij)
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Variance issues: antithetic variables ()

» We give ourselves M i.i.d. copies (A™(z,w)); << Of Az, w)

# Defining
s an antithetic initial field

B"(z,w) =T (A"™(r,w)), 1<m <M,
s an antithetic corrector problem whose solution is denoted v,

# We finally build an antithetic homogenized matrix

1

BN L-j (w) = Onl on

(e + Vo™ (- w)) | B™(-,w) (ej + Vol w)) .
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Variance issues: antithetic variables (II)

# We introduce a new random variable

AV () = 5 (A (@) + By™(w)) -

1
2
® ltis
s Unbiaised
E(Ay™) =E(A3™)
s convergent

~

A" . A almost surely,
——+00

because B is ergodic.

A% requires the solution of 2 correctors problems instead of 1 for the classical
estimator !
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Variance issues: antithetic variables (l11)

o We define new estimators with identical properties

MM<:EN:ij> = %i{g}%’m].,
e (10],) = w2 ([, - ([3],))

» Efficiency criteria

s Equal computational costs
M = 2M realizations of A%, vs M of A%
s Theoretic condition

Cov ([44],; . [BX],;) <0
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Results
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Theoretic validation (1)

o Hypotheses on the initial field A

s A deterministic function of uniform r.v on finite-size cells
There exists an integer n and a function A, defined on QQ 5 x R",

such that

Ve € Qn, Alr,w)=A(r,X1(w),..., X,(w)) a.s.,

where { X (w)}, <<, are independent scalar random variables,
which are all distributed according to the uniform law &/ [0, 1]

s Monotonicity in the sense of symmetric matrices

For all z € Qu, and any vector ¢ € R?, the map

(T1,...,2n) ER" = L Az, 21, ..., 2,)E

IS non-decreasing with respect to each of its arguments.
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Theoretic validation (I1)

Proposition 0.1 We assume that A(x,w) satisfies the above hypothe-
ses. We define on @) the field

B(z,w) = A(z,1 - Xj(w),...,1 = X,(w)),

antithetic to A(-,w). We associate to this field the antithetic corrector
problem (replacing A by B), the solution of which is denoted by vjf, and
the matrix By (w), defined from v’. Then,

ve e RY, Cov (¢TARE €TBRE) <0
Otherwise stated, A% is an unbiased estimator of E (A%), and

< —Var (¢" AR €).

DO |
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Theoretic validation (l11)

# This result guarantees the efficiency of the technique for

s awide range of initial fields characterized by
1. different local behaviours
2. different correlation structures
3. different isotropy properties

s a wide range of outputs including
1. diagonal terms [A%/]
2. eigenvalues of A%
3. eigenvalues of Lo« = —div (A} V")

X!
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Numerical experiment: Test cases

# The case of an isotropic initial field with no correlation

Aw,w) = 3 Torp(@ar(@)ld = 3 1gur(e)f (Xe(w)Id.

kcZd kezd

s Values a; and a; of A on two distinct cells Q + k£ and Q + &’ are
iIndependent.

s A s invariant under rotations of angle 7 /2
s The law of A is determined by that of ag

o case (i) ap ~U([e, A]); f(x) =a+ (0—a)x
s case (i) ag ~ B(1/2),P(ag=a)=1/2and P(ag = ) = 1/2;
fz) =a+ (8 —a)ly

<z<1}

N[

# Inthe sequel, a = 3, 5 = 20.
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Numerical experiment: case (i) (I)

# One realization of A and its couterpart B when ag ~ U (|, §])
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Numerical experiment: case (i) ()

~

o Estimated means 100 (A% ) and /5 (A7V> and respective confidence

intervals.
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Numerical experiment: case (ii) ()

# One realization of A and its couterpart B when ag ~ B(%)
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Numerical experiment: case (i) (I1)

~

o Estimated means 100 (A% ) and /5 (A7V> and respective confidence
intervals.
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Numerical experiment. Summary

# Ratio of the widths of confidence intervals

R(A)) = 2 EEN]}B |

# Numerical values in the isotropic case

N | ag~B(1/2) ag~B(1/3) ag~U([a,[])
5] 5.34 2.06 6.31
10 3.91 1.56 6.46
20 541 2.92 10.2
40 3.07 2.31 6.67
60 4.41 2.47 6.16
80 4.49 1.95 5.68
100 4.28 2.99 7.89
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Weakly stochastic cases



Perturbations of the periodic framework

# Linear perturbations
s First model:

Ap(@,0) = Aper (@) + nA1 (z,0) + O(), in (L™ (2 x RY))™

where A(y) is a periodic function satisfying the same conditions of
boundedness and coercivity as above.

s Second model:

. dxd
Ay(2,0) = Aper() + By(z,w) + O(%), in (L (R% LP(Q)))"
® Perturbations of alternative models

Ap(z,w) = Aper (@, (z,w))

n
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The Blanc Le Bris Lions framework



Presentation and main results

# Consider the family (u.).~q of solutions to the following SPDEs :
—div (A (27! (£,w)) Vue (,w)) = f in D,

e

ue ((,w) =0 on 9D,

where A(y) is a periodic function satisfying the same conditions of
boundedness and coercivity as above.

# &(z,w) is a stationnary stochastic diffeomorphism :

EssInf [det(V® —v >0,
w€§§erle[ et(Ve(z,w))] =v

EssSup (|[V®(z,w)|) = M < o,
we, zeRd

| V&(z,w)is stationnary.

2/
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Presentation and main results

# Main results proved within the seminal paper :

s The deterministic limit in the weak sense u, of (u:)e~paSe — 0
satisfies a deterministic elliptic equation.

s A new corrector problem :

(v [A4 (87 (5,)) (0 + V)] =0
wy(y,w) = wp, (2 (y,w),w), Vu, is stationnary,

| E (fcb(Q,.) Vwy(y, )dy) =0,

N\

s A new definition of the homogenized matrix :

[A4],, = det (IE (fQ V(2 -)dz>>_1
E (faq.) (e + Ve, ()" A (@71 (y,) e dy)
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The perturbative result (1)

» Consider now the family (®,), ., of stochastic stationnary
diffeomorphism, satisfying :

d(x,w) =+ nU(x,w) + O(n?),

when n — 0in C1(RY, L>(Q)).

» The gradient of the corrector w, = w, (®?~'(z,w)) possesses an
analogous expansion :

Vw,(x,w) = ng(x) + Ww;(a:,w) +O0(n?)

in L2 (Q x Q).

# Introducing such an expansion into the formula of A* leads to :
A* = A% Al + O(n?),

» The equations satisfied by w) and w, are known.
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The perturbative result (Il)

» Deterministic cell problem satisfied by w" :

—div [A (p+ Vw))| =0,
w, is Q-periodic.

# Stochastic cell problem satisfied by w! :

—div [AVw!] = div [-A VT V) — (VI — (div ¥)Id) A (p + V)],
Vw)) is stationnary and E (fQ szl)) = 0.

# First terms of A*'s expansion :

T
A = [o (e +Vuwy,) Ae;
Aj; —fQ (div W) A3 +fQ (e; + Vw) )T Ae; E(div W)
+ Jo (E(V E(VI)Vul )" Ae;.
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The perturbative result (111)

» In order to compute A' the knowledge of the deterministic w. = E(Vw. )
IS only required.

s w. = E(Vw. ) is the unique periodic solution to the deterministic cell

€4

problem :
—div [AV@!] = div [~AE(VY) Vol — (B(VET) — E(div ¥)Id) 4 (p + V)]

# Numerical strategy : instead of tackling the very general stochastic
problem, one deals with two independent deterministic problems.

Do these results still hold when dealing with approximation spaces ?
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A discretized version of BLL results



Discretization of the corrector problem ()

# After domain truncation and introduction of finite element spaces, one
obtains the following discrete formulation

Find w/-N(-,w) € VP (Qy) such that, for all v;, € V' (Qn),
Jo,, det (V) (Vi)' (Ve)~" A (p +(V®) T valN (., w)) =0, a.s.

#® The chosen method is thus a Monte-Carlo Method Finite Elements
Method.

s At each realization w corresponds a divergence-form deterministic
elliptic equation on the bounded domain ) 5, whose solution
existence is guaranteed by Lax-Milgram Lemma.

s No discretization of the random space (2 (Galerkin Method)
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Discretization of the corrector problem (II)

# Thanks to the approximated corrector @QW(-, w), One can compute an
approximated random tensor

det(V®) (e; + (VO) ' vl V)" Ae;.

det (L VCID)
Q| Jou

» AZ’N(w) is random due to the loss of ergodicity resulting from the
discretization procedure.

(Ah,N)ij (w) _ m N

*

#» What do the former results become within this discretized framework ?

» One introduces the formal expansion : w" = wS"N 4 pw!mN + O(n?)
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Discretization of the corrector problem (lI)

# Introducing such a developement within the discrete corrector problem
wy N = w)" is deterministic. It does not depend on N.

Find w)" € V" (Q) such that, for all v, € V" (Q),
Jo (Vo)™ A (p+ Vudh) =0,

wy ™ is stochastic. It does depend on N :

y

Find wl "N (-, w) € VP (Qn) such that, for all v;, € VP (Qn),
3 Jo, (Vun)t AVwlmN = [ (V) AVE Vb
o, (VI = (div®)Id) A (p + Vup") .
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Discretization of the corrector problem (1V)

# First terms of the expansion

[AP] = [ (e + V)T A
1 .
[Al’h’N] ij = _(AO,h)ij m fQN div ¥
— QlN Jo, (€ + Vuwld T Ae; div®
+ QlN fQN (Vw;;h’N — VY ngz?h)TAej.

» Does the expansion (A’,Z’N> (w) = (A%M); + (ALY, hold ?
iJ
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Main result

# The discrete expansion

Proposition 0.2 Suppose ®(z,w) = z+n¥(z,w)+O(n*) when n — 0,
in C1(R?, L>°()), with V¥ stationary. A constant C' exists such that,
for small values of parameter n

n-? ‘VGS’N(x,w) — V’wg’h(:ﬁ) — nV’wIl)’h’N(x,w)‘ <C,

where @V, w)" et w, N are respectively solutions of the discrete,
order O and order 1 corrector problems. In addition we have

2 AP (w) — AP — ALY (w)| < O,

o Sketch of the proof
s uniform bounds in n thanks to the domain boundedness.

s passing to the limit int the variatonal equation which corresponds to
the discrete corrector problem.
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Numerical experiments



The random media

# Reference periodic structure

Ve € Q, A(x) = aper(2) 1da,  aper(21,T2) = B+ (a—0) Sin2(7m:1) Sin2(7mc2).

# Stochastic diffeomorphism :

» Two independant family of i.i.d random variables (X )rcz €t (Yi)rez,
who follow a uniform law ¢/ ([a, b))

s &, (z) =2+ Y (z,w), With ¥(z,w) = (Yx(21,w), Yy (z2,w)) and

x(z1,w Z L py1((T1) (Z )+ 2X,( )/ sin® (27t dt) :
k

o Parameters
a=10 =1 a=5.75 b= —-2.25
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Reference and deformed structure

(a) Periodic structure (b) Periodic structure through diffeomorphism
P, (x,w), n =0.05
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Expansion Error and A_2 Estimate

—4.4

4.6

Error

~48
5.0

-5.29

-5.4 I I I I I I I I I I
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.12

eta

SMAI Guidel, May 26, 2011 — p. 42/44
T —



References

# Variance reduction
» R. Costaouec, C. Le Bris et F. Legoll, Variance reduction in stochastic
homogenization: proof of concept, using antithetic variables, Boletin
Soc. Esp. Mat. Apl., vol. 50, 9-27 (2010).
» X. Blanc, R. Costaouec, C. Le Bris et F. Legoll, Variance reduction in
stochastic homogenization: the technique of antithetic variables,
MPREF, to appear.

» Weakly stochastic
s R. Costaouec, C. Le Bris and F. Legoll, Approximation numérique
d’'une classe de problemes en homogéneéisation stochastique
(Numerical approximation of a class of problems in stochastic
homogenization), C. R. Acad. Sci. Paris (2010).

» R. Costaouec, Asymptotic expansion of the homogenized matrix in
two weakly stochastic homogenization settings, submitted.

SMAI Guidel, May 26, 2011 — p. 43/44




	�ootnotesize Outline
	�ootnotesize 
	�ootnotesize Periodic setting : Introduction to homogenization (I)
	�ootnotesize Periodic setting : Introduction to homogenization (II)
	�ootnotesize Stochastic setting : Underlying hypotheses, ergodic results (I)
	�ootnotesize Stochastic setting : Underlying hypotheses, ergodic results (II)
	�ootnotesize 
	�ootnotesize Variance issues: the origin of randomness in stochastic homogenization
	�ootnotesize Variance issues: Monte Carlo methods (I)
	�ootnotesize Variance issues: Monte Carlo methods (II)
	�ootnotesize Variance issues: antithetic variables (I)
	�ootnotesize Variance issues: antithetic variables (II)
	�ootnotesize Variance issues: antithetic variables (III)
	�ootnotesize 
	�ootnotesize Theoretic validation (I)
	�ootnotesize Theoretic validation (II)
	�ootnotesize Theoretic validation (III)
	�ootnotesize Numerical experiment: Test cases
	�ootnotesize Numerical experiment: case (i)
(I)
	�ootnotesize Numerical experiment: case (i)
(II)
	�ootnotesize Numerical experiment: case (ii)
(I)
	�ootnotesize Numerical experiment: case (ii)
(II)
	�ootnotesize Numerical experiment: Summary
	�ootnotesize 
	�ootnotesize Perturbations of the periodic framework
	�ootnotesize 
	�ootnotesize Presentation and main results
	�ootnotesize Presentation and main results
	�ootnotesize The perturbative result (I)
	�ootnotesize The perturbative result (II)
	�ootnotesize The perturbative result (III)
	�ootnotesize 
	�ootnotesize Discretization of the corrector problem (I)
	�ootnotesize Discretization of the corrector problem (II)
	�ootnotesize Discretization of the corrector problem (III)
	�ootnotesize Discretization of the corrector problem (IV)
	�ootnotesize Main result
	�ootnotesize 
	�ootnotesize The random media
	�ootnotesize Reference and deformed structure
	�ootnotesize Several realizations
	�ootnotesize References

