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Description of the game

We investigate a stochastic differential game defined by{
dXt = f (Xt ,ut , vt )dt + σ(Xt ,ut , vt )dBt , t ∈ [t0,T ],
Xt0 = x0,

where
B is a d-dimensional standard Brownian motion
f : IRN × U × V → IRN and σ : IRn × U × V → IRN×d are
Lipschitz continuous and bounded,
the processes u (controlled by Player I) and v (controlled
by Player II) take their values in some compact sets U and
V .

The solution to (*) is denoted by t → X t0,x0,u,v
t .
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The payoffs

Let g : IRN → IR be the terminal payoff,

Player I minimises the payoff E[g(XT )]

Player II maximises the payoff E[g(XT )].
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Problems

Describe the fact that the players chose their controls

simultaneously
by observing each other

Compute (or characterize) their best payoffs.

Compute (or characterize) their optimal strategies.
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Strategies

A strategy for Player I is a Borel measurable map
α : [t0,T ]× L0([t0,T ],V )× C0([t0,T ], IRN)→ U such that
there is τ > 0 with

v1 = v2 and f1 = f2 on [t0, t ]
⇒ α(s, v1, f1) = α(s, v2, f2) for s ∈ [t0, t0 + τ ]

The set of strategies for Player I is denoted by A(t0).

The set of strategies for Player II is defined symmetrically
and denoted by B(t0).
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Playing pure strategies together

Lemma

For all (t0, x0) ∈ [0,T ]× IRN , for all (α, β) ∈ A(t0)× B(t0), there
exists a unique couple of controls (u, v) that satisfies

(∗) (u, v) = (α(·, v ,B· − Bt0), β(·,u,B· − Bt0)) on [t0,T ].

Notation :
X t0,x0,α,β

T = X t0,x0,u,v
T

where (u, v) is given by (∗).
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Upper and lower value functions

The upper value function is

V +(t0, x0) = inf
α∈A(t0)

sup
β∈B(t0)

E
[
g(X t0,x0,α,β

T )
]

while the lower value function is

V−(t0, x0) = sup
β∈B(t0)

inf
α∈A(t0)

E
[
g(X t0,x0,α,β

T )
]
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Isaacs’ condition

We assume that Isaacs’condition holds : for all
(t , x) ∈ [0,T ]× IRN , ξ ∈ IRN , and all A ∈ SN :

H(x , ξ,A) :=

inf
u

sup
v
{〈f (x ,u, v), ξ〉+

1
2

Tr(Aσ(x ,u, v)σ∗(x ,u, v))}

= sup
v

inf
u
{〈f (x ,u, v), ξ〉+

1
2

Tr(Aσ(x ,u, v)σ∗(x ,u, v))}
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Existence of a value

Theorem (Fleming-Souganidis, 1989)
Under Isaacs’ condition, the game has a value :

V +(t , x) = V−(t , x) ∀(t , x) ∈ [0,T ]× IRN .

The value V := V + = V− is the unique viscosity solution to the
(backward) Hamilton-Jacobi equation{

∂tw + H(x ,Dw ,D2w) = 0 in (0,T )× IRN

w = g in {T} × IRN
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Idea of proof (1)

Assume for simplicity that V + and V− are smooth.

Lemma (Dynamic programming)

For (t0, x0) ∈ [0,T ]× IRN and h > 0,

V +(t0, x0) = inf
α∈A(t0)

sup
β∈B(t0)

E
[
V +

(
t0 + h,X t0,x0,α,β

t0+h

)]
and

V−(t0, x0) = sup
β∈B(t0)

inf
α∈A(t0)

E
[
V−

(
t0 + h,X t0,x0,α,β

t0+h

)]
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Idea of proof (2)

From dynamic programming :

0 = inf
α∈A(t0)

sup
β∈B(t0)

E
[
V +

(
t0 + h,X t0,x0,α,β

t0+h

)
− V +(t0, x0)

]

≈ inf
α

sup
β

E

[
h ∂tV + +

∫ t0+h

t0
〈DV +, f (α, β)〉+

1
2

Tr(σσ∗(α, β)D2V +)ds

]
Divide by h and let h→ 0 :

0 = ∂tV ++ inf
u∈U

sup
v∈V

{
〈DV +, f (x0,u, v)〉+

1
2

Tr(σσ∗(x0,u, v)D2V +)

}
= ∂tV +(t0, x0) + H(x0,DV +(t0, x0),D2V +(t0, x0)) .
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Sketch of proof (3)

So V + and V− are both solutions to the Hamilton-Jacobi
equation{

∂tw + H(x ,Dw ,D2w) = 0 in (0,T )× IRN

w = g in {T} × IRN

Uniqueness of the solution⇒ V + = V−.
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Comments

Differential games were first investigated by Pontryagin
and Isaacs in the mid-50ies.

First proof of existence of a value : Fleming, 1961

The Hamilton-Jacobi equation has to be understood in the
viscosity sense
(introduced by Crandall-Lions, 1981)

The above proof was made rigorous in
Evans-Souganidis, 1984 (deterministic D.G.)
Fleming-Souganidis, 1989 (stochastic D.G.)
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Dynamics and payoffs

As before the stochastic differential game is defined by{
dXt = f (Xt ,ut , vt )dt + σ(Xt ,ut , vt )dBt , t ∈ [t0,T ],
Xt0 = x0,

Let

gi : IRN → IR a family of terminal payoffs,
i = 1, . . . , I,

p ∈ ∆(I) be a probability on {1, . . . , I}.
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Organization of the game

The game is played in two steps :
At initial time t0 the index i is chosen at random according
to probability p.
Index i is communicated to Player I only.
Then
- Player I tries to minimise the terminal payoff E[gi(XT )]
- Player II tries to maximise the terminal payoff E[gi(XT )].
Players observe each other.

This is a continuous-times version of a game introduced in the
late 60s by Aumann and Maschler.
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Upper- and lower value functions

The upper value function is

V +(t0, x0,p) = inf
(αi )∈(Ar (t0))I

sup
β∈Br (t0)

∑
i

piE
[
gi(X

t0,x0,αi ,β
T )

]
while the lower value function is

V−(t0, x0,p) = sup
β∈Br (t0)

inf
(αi )∈(Ar (t0))I

∑
i

piE
[
gi(X

t0,x0,αi ,β
T )

]
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Existence of a value

Theorem (C.-Rainer, 2009)
Under Isaacs’ condition, the game has a value :
∀(t , x ,p) ∈ [0,T ]× IRN ×∆(I)

V +(t , x ,p) = V−(t , x ,p) .
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Convexity of the value functions

Proposition

For all (t , x) ∈ [0,T ]× IRn, the maps (p,q)→ V±(t , x ,p) are
convex in p.

Proof : Obvious for V− :

V−(t0, x0,p) = sup
β∈Br (t0)

inf
(αi )∈(Ar (t0))I

∑
i

piE
[
gi(X

t0,x0,αi ,β
T )

]
= sup

β∈Br (t0)

∑
i

pi inf
α∈Ar (t0))

E
[
gi(X

t0,x0,αi ,β
T )

]
For V + : “splitting method" (Aumann-Maschler).
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Fenchel conjugate of V−

We introduce the Fenchel conjugate of V− :

V−∗(t , x , p̂) = sup
p∈∆(I)

(
p.p̂ − V−(t , x ,p,q)

)
Then V−∗(t , x , p̂) = sup

p

(
p.p̂ − sup

β
inf
(αi )

∑
i

piE [gi ]

)
= sup

p
inf
β

sup
(αi )

∑
i

pi (p̂i − E [gi ])

“ = ” inf
β

sup
p

sup
(αi )

∑
i

pi (p̂i − E [gi ])

Lemma

V−∗(t , x , p̂) = inf
β∈Br (t))

sup
α∈A(t)

max
i∈{1,...,I}

{
p̂i − E

[
gi(X

t ,x ,α,β
T )

]}
.
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An inequation for V−

As a consequence : for all 0 ≤ t0 ≤ t1 ≤ T , x0 ∈ IRN , p̂ ∈ IRI ,

V−∗(t0, x0, p̂) ≤ inf
β∈B(t0)

sup
α∈A(t0)

E[V−∗(t1,X
t0,x0,α,β
t1 , p̂)]

Corollary

For any p̂ ∈ IRI , (t , x)→ V−∗(t , x , p̂) is a subsolution in
viscosity sense of

∂tw − H(x ,−Dw ,−D2w) ≥ 0

Hence V− is a supersolution to

(HJ) min
{
∂tw + H(x ,Dw ,D2w) , λmin(D2

ppw)
}
≤ 0

in (0,T )× IRN ×∆(I).
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Analysis of V +

V + satisfies the subdynamic programming :

V +(t0, x0,p) = inf
(αi )∈(Ar (t0))I

sup
β∈Br (t0)

∑
i

piE
[
gi(X

t0,x0,αi ,β
T )

]
≤ inf

α∈Ar (t0)
sup

β∈Br (t0)

E
[
V +(t1,X

t0,x0,αi ,β
t1 ,p)

]

Corollary

V + is a subsolution of

(HJ) min
{
∂tw + H(x ,Dw ,D2w) , λmin(D2

ppw)
}
≥ 0

in (0,T )× IRN ×∆(I) .
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Summary

We have V− ≤ V + by construction.

We have seen that
(i) V− is a supersolution of (HJ)

(ii) V + is a subsolution of (HJ)

(iii) V−(T , x ,p,q) = V +(T , x ,p,q) =
∑

i pigi (x)

Comparison principle for (HJ)⇒ V + ≤ V−.

Hence the value V + = V− is the unique viscosity solution to

(HJ)

{
min

{
∂tw + H(x ,Dw ,D2w) , λmin(D2

ppw)
}

= 0
w =

∑
i pigi in {T} × IRN ×∆(I)
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Rules of the game

No dynamics

At time t0, i is chosen by nature in {1, . . . , I} according to
probability p,
the choice of i is communicated to Player 1 only,
Player 1 minimizes the integral payoff∫ T

t0
`i(s,u(s), v(s))ds.

Player 2 maximizes it.

Isaacs’ condition takes the form

H(t ,p) = inf
u∈U

sup
v∈V

I∑
i=1

pi`i(t ,u, v) = sup
v∈V

inf
u∈U

I∑
i=1

pi`i(t ,u, v)
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Existence of a value

We already know that :

Under Isaacs’ condition, the game has a value

V(t0,p) = inf
(αi )∈(Ar (t0))I

sup
β∈Br (t0)

I∑
i=1

piEαiβ

[∫ T

t0
`i(s, αi(s), β(s))ds

]

= sup
β∈Br (t0)

inf
(αi )∈(Ar (t0))I

I∑
i=1

piEαiβ

[∫ T

t0
`i(s, αi(s), β(s))ds

]
Furthermore V is the unique viscosity solution of :{

min
{
∂tw + H(t ,p) ; λmin

(
∂2w
∂p2

)}
= 0 in [0,T ]×∆(I)

w(T ,p) = 0 in ∆(I)
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Optimal strategy : a representation theorem

Let P(t0,p0) be the set of càdlàg martingale processes
p : [t−0 ,T ]→ ∆(I) such that

p(t−0 ) = p0 and p(T ) ∈ {e1, . . . ,eI} ,

where {e1, . . . ,eI} is the canonical basis of IRI .

Theorem
∀(t0,p0) ∈ [0,T ]×∆(I)

V(t0,p0) = min
p∈P(t0,p0)

E

[∫ T

t0
H(s,p(s))ds

]

Recall that H(t ,p) = infu∈U supv∈V
∑I

i=1 pi`i(t ,u, v).
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Optimal strategy for Player I

Let u∗ = u∗(t ,p) be a Borel measurable selection of

argminu∈U(max
v∈V

I∑
i=1

pi`i(t ,u, v)) .

For (t0,p0) ∈ [0,T ]×∆(I) fixed, let p be optimal for

min
p∈P(t0,p0)

E

[∫ T

t0
H(s,p(s))ds

]
.

Finally, ∀i ∈ {1, . . . , I}, let us define

ui(s)
d
= u∗(s,p(s))|{p(T )=ei}.
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Theorem

The random control (ui) ∈ (Ur (t0))I is optimal for V(t0,p0).
Namely

V(t0,p0) = sup
β∈B(t0)

I∑
i=1

(p0)iEui

[∫ T

t0
`i(s,ui(s), β(ui)(s))ds

]
.
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Example 1 : Stationary case

If the `i = `i(u, v) do not depend on time, then

Proposition

V(t ,p) = (T − t)VexH(p) ∀p ∈ ∆(I) .

Proof :
Let w(t ,p) = (T − t)VexH(p). Then w(T ,p) = 0 and

∂tw(t ,p) = −VexH(p) .

If λmin

(
∂2w
∂p2

)
(t ,p) > 0, then VexH(p) = H(p).

Hence

min
{
∂tw + H(t ,p) ; λmin

(
∂2w
∂p2

)}
= 0
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Example 1 (continued)

For p ∈ ∆(I), let (λk ) ∈ ∆(I), pk ∈ ∆(I) (k = 1, . . . , I) such that∑
k

λkpk = p and VexH(p) =
∑

k

λkH(pk ) .

Proposition

The martingale p ∈ P(t0,p) constant and equal to pk with
probability λk on [t0,T ) is optimal.

Proof :

E

[∫ T

t0
H(ps)ds

]
= (T − t0)

∑
k

λkH(pk )

= (T − t0)VexH(p) = V(t0,p) .
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Example 2 : I = 2

We assume that I = 2. Then ∆(I) ≈ [0,1].

Assumption on H : There are h1 : [0,T ]→ [0,1] continuous
non increasing and h2 : [0,T ]→ [0,1] continuous
nondecreasing such that

Vex(H)(t ,p) < H(t ,p)⇔ p ∈ (h1(t),h2(t))

Proposition

V(t ,p) =

∫ T

t
VexH(s,p)ds ∀(t ,p) ∈ [0,T ]×∆(I) .
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Example 2 continued

T

1

t

p

h1

h2

Vex(H)<H
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Example 2 continued

Proof :
Let w(t ,p) =

∫ T
t VexH(s,p)ds. Then w(t , ·) is convex and

∂tw(t ,p) = −VexH(t ,p)

Moreover if λmin

(
∂2w
∂p2

)
(t ,p) > 0 then p /∈ (p1(t),p2(t)),

i.e., Vex(H)(t ,p) = H(t ,p).
Hence

min
{
∂tw + H(t ,p) ; λmin

(
p,
∂2w
∂p2

)}
= 0
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Example 2 continued

Proposition

If p0 ∈ (h1(t0),h2(t0)), there is a unique optimal martingale p.
The process p is purely discontinuous and satisfies

p(t) ∈ {h1(t),h2(t)} ∀t ∈ [t0,T ) .

In particular, if s < t < T

P [p(t) = h1(t) | p(s) = h1(s)] =
h2(t)− h1(s)

h2(t)− h1(t)
.
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Example 3 : I = 2

We suppose that H(t ,p) = λ(t)p(1− p) with λ Lipschitz and
there exists 0 < a < b < T with

λ > 0 in [0,b), λ < 0 on (b,T ] and
∫ T

a
λ(s)ds = 0

Proposition

V(t ,p) =

{
0 if t ∈ [0,a]

p(1− p)
∫ T

t λ(s)ds if t ∈ [a,T ]

Hence

V(t ,p) 6=
∫ T

t
VexH(s,p)ds on (a,b)
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Extensions

Characterization of the optimal martingale.

Case where the unknown i is a continuous r.v.

Representation formula for differential games with
non-degenerate diffusion
(via BSDE arguments). C. Grün

Analysis of games in which the information is relieved to
Player I progressively.
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Deterministic differential game with finite horizon

We now consider a deterministic differential game{
dXt = f (Xt ,ut , vt )dt
xt0 = x0

The trajectory associated to (u, v) is denoted by X t0,x0,u,v
· .

Main assumption on the game : Player II does not observe
anything.
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Rules of the game

At time t0, the initial state x0 is drawn at random according
to a probability µ0 on IRN .

Player I is informed on the initial state x0, Player II just
knows µ0.

Player I observes x(t) and v(t). He minimizes g(X t0,x0,u,v
T ).

Player II observes nothing but has perfect recall about his
own control v . He maximizes g(X t0,x0,u,v

T ).
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The value functions

The lower value function is :

V−(t0, µ0) = sup
v∈Vr (t0)

inf
(αx )∈(Ar (t0))IRN

∫
IRN

E
[
g(X t0,x ,αx ,v

T )
]

dµ0(x)

The upper value function is :

V+(t0, µ0) = inf
(αx )∈(Ar (t0))IRN

sup
v∈Vr (t0)

∫
IRN

E
[
g(X t0,x ,αx ,v

T )
]

dµ0(x)
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Framework

We work on the set of Borel probability measures

P2 := {µ/
∫

IRN
|x |2dµ(x) <∞}

endowed with the Wasserstein distance :

d2(µ, ν) = min
π∈Π(µ,ν)

∫
IR2N
|x − y |2dπ(x , y)

We consider the Hamiltonian

H(µ,p) = sup
v∈∆(V )

∫
IRN

inf
u∈∆(U)

∫
U×V
〈f (x ,u, v),p(x)〉du(u)dv(v)dµ(x)

(for p ∈ L2
µ(IRN , IRN), µ ∈ P2)
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Existence of the value

Theorem (C., Souquière)

For all (t , µ) :
V+(t , µ) = V−(t , µ)

Moreover V+ = V− is the unique viscosity solution of
∂tw +H(µ,Dµw) = 0 in (0,T )× P2

w(T , µ) =

∫
IRN

g(x)dµ(x) in P2
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Idea of proof (1)

Proposition (Dynamic programming principle)

The upper value function satisfies :

V+(t0, µ0) = inf
(αx )∈(Ar (t0))IRN

sup
v∈Vr (t0)

V+(t1, µt1) .

where µt1 is is the information of player II on the state of the system,
knowing the strategy of his opponent :∫

IRN
ϕ(x)dµt1 (x) =

∫
IRN

E
[
ϕ(X t0,x,α)x ,v

t1 )
]

dµ0(x)

for any ϕ ∈ Cb(IRN , IR).
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Idea of proof (2)

The rest of the proof relies on

P.D.E. characterization of V+.

Comparison principle for (HJ) related to the “Euclidean
structure" of P2.
(See also Feng-Kurtz (2006), C.-Quincampoix (2007),
Gangbo-Nguyen-Adrian (2008), Feng-Katsoulakis (2009),
Lasry-Lions.)

Sion’s min-max Theorem for the equality V+ = V−.
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Conclusion

Differential games with imperfect information :
- well understood for simple information structure.
- a lot remains to be done in more general settings.

Differential games with lack of observation : almost
completely open.

Nonzero sum differential games with lack of information :
open.
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Thank you for your attention !

P. Cardaliaguet Jeux en temps continu



Solving classical differential games
Games with imperfect information

Differential games with imperfect observation

Solution of the HJ Equation

Definition (Subsolution of the HJ Equation)

V : [t0,T ]× P2 → IR, Lipschitz continuous, is a subsolution to
(HJ) if, for any test function φ(t , µ) of the form

φ(t , µ) =
α

2
d2(µ̄, µ) + ηd(ν̄, µ) + ψ(t)

(where ψ ∈ C1(IR, IR), α, η > 0, ν̄, µ̄ ∈ P2) such that
V− φ has a local maximum at (ν̄, t̄), one has :

ψ′(̄t) +H(ν̄,−αpy ) ≥ −‖f‖∞η

where, for a fixed π̄ ∈ Πopt(µ̄, ν̄), py ∈ L2
ν̄(IRN , IRN) is defined by :∫

IRN 〈ξ(y), x − y〉d π̄(x , y) =
∫

IRN 〈ξ(y),py (y)〉d ν̄(y) ∀ξ ∈ L2
ν̄
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Solution of the HJ Equation

Definition (Supersolution of the HJ Equation)

V : [t0,T ]× P2 → IR, Lipschitz continuous, is a supersolution to
(HJ) if, for any test function φ(t , µ) of the form

φ(t , µ) = −α
2

d2(µ̄, µ)− ηd(ν̄, µ) + ψ(t)

(where ψ ∈ C1(IR, IR), α, η > 0 and µ̄, ν̄ ∈ P2) such that
V− φ has a local minimum at (ν̄, t̄) ∈ (0,T )× P2, one has :

ψ′(̄t) +H(ν̄, αpy ) ≤ ‖f‖∞η .

A solution of (HJ) is a subsolution and a supersolution.
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Solution of the HJ Equation

Lemma (Comparison principle)
Let w1 be some subsolution of (HJ) and w2 some supersolution
such that w2(T , µ) ≥ w1(T , µ).
Then for all (t , µ) ∈ [t0,T ]× µ ∈ P2 :

w2(t , µ) ≥ w1(t , µ)

The definition comes from Cardaliaguet-Quincampoix
(2007) (cf. also Gangbo-Nguyen-Adrian (2008),
Feng-Katsoulakis (2009), Lasry-Lions).
The proof of the comparison principle is an adaptation of
Crandall, Lions (1986).
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