Problèmes d'information dans les jeux en temps continu

P. Cardaliaguet

Paris-Dauphine

Based on joint works with C. Rainer and A. Souquière (Brest)

SMAI 2011. Guidel, 23-27 Mai 2011

< < >> < </>

Description of the game

We investigate a stochastic differential game defined by

$$\begin{cases} dX_t = f(X_t, u_t, v_t)dt + \sigma(X_t, u_t, v_t)dB_t, t \in [t_0, T], \\ X_{t_0} = x_0, \end{cases}$$

where

- B is a d-dimensional standard Brownian motion
- $f : \mathbb{R}^N \times U \times V \to \mathbb{R}^N$ and $\sigma : \mathbb{R}^n \times U \times V \to \mathbb{R}^{N \times d}$ are Lipschitz continuous and bounded,
- the processes u (controlled by Player I) and v (controlled by Player II) take their values in some compact sets U and V.

The solution to (*) is denoted by $t \to X_t^{t_0, x_0, u, v}$.

・ロト ・ 『 ト ・ ヨ ト

The payoffs

Let $g : \mathbb{R}^N \to \mathbb{R}$ be the terminal payoff,

- Player I minimises the payoff $\mathbf{E}[g(X_T)]$
- Player II maximises the payoff $\mathbf{E}[g(X_T)]$.

◆□ > ◆□ > ◆豆 > ◆豆 > -

э.

Problems

- Describe the fact that the players chose their controls
 - simultaneously
 - by observing each other
- Compute (or characterize) their best payoffs.
- Compute (or characterize) their optimal strategies.

イロト イポト イヨト イヨト

Outline

Solving classical differential games

- Formalisation
- Existence of the value
- 2 Games with imperfect information
 - Description of the game
 - Existence and characterization of the value
 - Illustration through a simple game

3 Differential games with imperfect observation

< 🗇 ▶

Outline

ormalisation xistence of the value

Solving classical differential games

- Formalisation
- Existence of the value

2 Games with imperfect information

- Description of the game
- Existence and characterization of the value
- Illustration through a simple game

3 Differential games with imperfect observation

I → [] → I → [] →

Outline

Formalisation Existence of the value

- Existence of the value
- 2 Games with imperfect information
 - Description of the game
 - Existence and characterization of the value
 - Illustration through a simple game

3 Differential games with imperfect observation

▲ (目) ▶ (● (目) ▶

Strategies

Formalisation Existence of the value

 A strategy for Player I is a Borel measurable map
 α : [t₀, T] × L⁰([t₀, T], V) × C⁰([t₀, T], ℝ^N) → U such that
 there is τ > 0 with

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{v}_2 \text{ and } f_1 = f_2 \text{ on } [t_0, t] \\ \Rightarrow \quad \alpha(\mathbf{s}, \mathbf{v}_1, f_1) &= \alpha(\mathbf{s}, \mathbf{v}_2, f_2) \text{ for } \mathbf{s} \in [t_0, t_0 + \tau] \end{aligned}$$

The set of strategies for Player I is denoted by $\mathcal{A}(t_0)$.

• The set of strategies for Player II is defined symmetrically and denoted by $\mathcal{B}(t_0)$.

イロン 不得 とくほ とくほとう

Formalisation Existence of the value

Playing pure strategies together

Lemma

For all $(t_0, x_0) \in [0, T] \times \mathbb{R}^N$, for all $(\alpha, \beta) \in \mathcal{A}(t_0) \times \mathcal{B}(t_0)$, there exists a unique couple of controls (u, v) that satisfies

(*)
$$(u, v) = (\alpha(\cdot, v, B_{\cdot} - B_{t_0}), \beta(\cdot, u, B_{\cdot} - B_{t_0})) \text{ on } [t_0, T].$$

Notation :

$$X_T^{t_0,x_0,\alpha,\beta} = X_T^{t_0,x_0,u,v}$$

where (u, v) is given by (*).

イロト イポト イヨト イヨト

Formalisation Existence of the value

Upper and lower value functions

The upper value function is

$$V^+(t_0, x_0) = \inf_{\alpha \in \mathcal{A}(t_0)} \sup_{\beta \in \mathcal{B}(t_0)} \mathsf{E}\left[g(X_{\mathcal{T}}^{t_0, x_0, \alpha, \beta})\right]$$

while the lower value function is

$$V^{-}(\mathit{t}_{0}, \mathit{x}_{0}) = \sup_{\beta \in \mathcal{B}(\mathit{t}_{0})} \inf_{\alpha \in \mathcal{A}(\mathit{t}_{0})} \mathsf{E}\left[g(X_{\mathcal{T}}^{\mathit{t}_{0}, \mathit{x}_{0}, \alpha, \beta})\right]$$

イロン 不同 とくほ とくほ とう

ъ

Outline

Formalisation Existence of the value

- Formalisation
- Existence of the value

2) Games with imperfect information

- Description of the game
- Existence and characterization of the value
- Illustration through a simple game

3 Differential games with imperfect observation

< ロ > < 同 > < 三 >

Formalisation Existence of the value

Isaacs' condition

We assume that Isaacs'condition holds : for all $(t, x) \in [0, T] \times \mathbb{R}^N$, $\xi \in \mathbb{R}^N$, and all $A \in S_N$:

$$H(x,\xi,A) := \lim_{u} \sup_{v} \{ \langle f(x,u,v), \xi \rangle + \frac{1}{2} \operatorname{Tr}(A\sigma(x,u,v)\sigma^{*}(x,u,v)) \} \\ = \sup_{v} \inf_{u} \{ \langle f(x,u,v), \xi \rangle + \frac{1}{2} \operatorname{Tr}(A\sigma(x,u,v)\sigma^{*}(x,u,v)) \}$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Formalisation Existence of the value

Existence of a value

Theorem (Fleming-Souganidis, 1989)

Under Isaacs' condition, the game has a value :

$$V^+(t,x) = V^-(t,x) \qquad orall (t,x) \in [0,T] imes {
m I\!R}^N$$
 .

The value $V := V^+ = V^-$ is the unique viscosity solution to the (backward) Hamilton-Jacobi equation

$$\begin{cases} \partial_t w + H(x, Dw, D^2 w) = 0 & \text{in } (0, T) \times \mathbb{R}^N \\ w = g & \text{in } \{T\} \times \mathbb{R}^N \end{cases}$$

くロト (過) (目) (日)

Formalisation Existence of the value

Idea of proof (1)

Assume for simplicity that V^+ and V^- are smooth.

Lemma (Dynamic programming)

For $(t_0, x_0) \in [0, T] \times \mathbb{R}^N$ and h > 0,

$$V^{+}(t_{0}, x_{0}) = \inf_{\alpha \in \mathcal{A}(t_{0})} \sup_{\beta \in \mathcal{B}(t_{0})} \mathbf{E} \left[V^{+} \left(t_{0} + h, X^{t_{0}, x_{0}, \alpha, \beta}_{t_{0} + h} \right) \right]$$

and

$$V^{-}(t_0, x_0) = \sup_{\beta \in \mathcal{B}(t_0)} \inf_{\alpha \in \mathcal{A}(t_0)} \mathbf{E} \left[V^{-} \left(t_0 + h, X_{t_0 + h}^{t_0, x_0, \alpha, \beta} \right) \right]$$

ヘロト 人間 とくほとくほとう

3

Formalisation Existence of the value

Idea of proof (2)

From dynamic programming :

$$0 = \inf_{\alpha \in \mathcal{A}(t_0)} \sup_{\beta \in \mathcal{B}(t_0)} \mathbf{E} \left[V^+ \left(t_0 + h, X_{t_0 + h}^{t_0, x_0, \alpha, \beta} \right) - V^+(t_0, x_0) \right]$$

$$\approx \inf_{\alpha} \sup_{\beta} \mathbf{E} \left[h \,\partial_t V^+ + \int_{t_0}^{t_0 + h} \langle DV^+, f(\alpha, \beta) \rangle + \frac{1}{2} \mathrm{Tr}(\sigma \sigma^*(\alpha, \beta) D^2 V^+) ds \right]$$

Divide by h and let $h \rightarrow 0$:

$$0 = \partial_t V^+ + \inf_{u \in U} \sup_{v \in V} \left\{ \langle DV^+, f(x_0, u, v) \rangle + \frac{1}{2} \operatorname{Tr}(\sigma \sigma^*(x_0, u, v) D^2 V^+) \right\}$$

= $\partial_t V^+(t_0, x_0) + H(x_0, DV^+(t_0, x_0), D^2 V^+(t_0, x_0))$.

ヘロン ヘアン ヘビン ヘビン

3

Formalisation Existence of the value

Sketch of proof (3)

So V^+ and V^- are both solutions to the Hamilton-Jacobi equation

$$\begin{cases} \partial_t w + H(x, Dw, D^2 w) = 0 & \text{in } (0, T) \times \mathbb{R}^N \\ w = g & \text{in } \{T\} \times \mathbb{R}^N \end{cases}$$

Uniqueness of the solution $\Rightarrow V^+ = V^-$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Formalisation Existence of the value

Sketch of proof (3)

So V^+ and V^- are both solutions to the Hamilton-Jacobi equation

$$\begin{cases} \partial_t w + H(x, Dw, D^2 w) = 0 & \text{in } (0, T) \times \mathbb{R}^N \\ w = g & \text{in } \{T\} \times \mathbb{R}^N \end{cases}$$

Uniqueness of the solution $\Rightarrow V^+ = V^-$.

イロト イポト イヨト イヨト

3

Comments

Formalisation Existence of the value

- Differential games were first investigated by Pontryagin and Isaacs in the mid-50ies.
- First proof of existence of a value : Fleming, 1961
- The Hamilton-Jacobi equation has to be understood in the viscosity sense (introduced by Crandall-Lions, 1981)
- The above proof was made rigorous in
 - Evans-Souganidis, 1984 (deterministic D.G.)
 - Fleming-Souganidis, 1989 (stochastic D.G.)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Description of the game Existence and characterization of the value Ilustration through a simple game

< 🗇 🕨

Outline

Solving classical differential games

- Formalisation
- Existence of the value

2 Games with imperfect information

- Description of the game
- Existence and characterization of the value
- Illustration through a simple game

3 Differential games with imperfect observation

Description of the game Existence and characterization of the value Illustration through a simple game

< 🗇 🕨

Outline

Solving classical differential games

- Formalisation
- Existence of the value

2 Games with imperfect information

- Description of the game
- Existence and characterization of the value
- Illustration through a simple game

3 Differential games with imperfect observation

Description of the game Existence and characterization of the value Illustration through a simple game

イロト 不得 とくほ とくほとう

ъ

Dynamics and payoffs

As before the stochastic differential game is defined by

$$\begin{cases} dX_t = f(X_t, u_t, v_t)dt + \sigma(X_t, u_t, v_t)dB_t, t \in [t_0, T], \\ X_{t_0} = x_0, \end{cases}$$

Let

•
$$g_i : \mathbb{R}^N \to \mathbb{R}$$
 a family of terminal payoffs,
 $i = 1, ..., I$,

• $p \in \Delta(I)$ be a probability on $\{1, \ldots, I\}$.

Description of the game Existence and characterization of the value Illustration through a simple game

イロト イポト イヨト イヨト

Organization of the game

The game is played in two steps :

- At initial time t₀ the index i is chosen at random according to probability p.
 Index i is communicated to Player I only.
- Then
 - Player I tries to minimise the terminal payoff $\mathbf{E}[g_i(X_T)]$
 - Player II tries to maximise the terminal payoff $\mathbf{E}[g_i(X_T)]$.
- Players observe each other.

This is a continuous-times version of a game introduced in the late 60s by Aumann and Maschler.

Description of the game Existence and characterization of the value Illustration through a simple game

くロト (過) (目) (日)

ъ

Upper- and lower value functions

The upper value function is

$$V^+(t_0, x_0, p) = \inf_{(\alpha_i) \in (\mathcal{A}_r(t_0))^l} \sup_{\beta \in \mathcal{B}_r(t_0)} \sum_i p_i \mathsf{E}\left[g_i(X_T^{t_0, x_0, \alpha_i, \beta})\right]$$

while the lower value function is

$$V^{-}(t_0, x_0, p) = \sup_{\beta \in \mathcal{B}_r(t_0)} \inf_{(\alpha_i) \in (\mathcal{A}_r(t_0))^{I}} \sum_i p_i \mathsf{E}\left[g_i(X_T^{t_0, x_0, \alpha_i, \beta})\right]$$

Description of the game Existence and characterization of the value Illustration through a simple game

▲ @ ▶ ▲ ⊇ ▶

Outline

- Solving classical differential games
 - Formalisation
 - Existence of the value
- 2 Games with imperfect information
 - Description of the game
 - Existence and characterization of the value
 - Illustration through a simple game
- 3 Differential games with imperfect observation

Existence of a value

Description of the game Existence and characterization of the value Illustration through a simple game

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Theorem (C.-Rainer, 2009)

Under Isaacs' condition, the game has a value : $\forall (t, x, p) \in [0, T] \times \mathbb{R}^N \times \Delta(I)$

$$V^+(t,x,p)=V^-(t,x,p).$$

Description of the game Existence and characterization of the value Illustration through a simple game

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Convexity of the value functions

Proposition

For all $(t, x) \in [0, T] \times \mathbb{R}^n$, the maps $(p, q) \to V^{\pm}(t, x, p)$ are convex in p.

Proof : Obvious for V^- :

For V^+ : "splitting method" (Aumann-Maschler).

Description of the game Existence and characterization of the value Illustration through a simple game

Fenchel conjugate of V^-

We introduce the Fenchel conjugate of V^- :

$$V^{-*}(t, x, \hat{p}) = \sup_{p \in \Delta(l)} \left(p.\hat{p} - V^{-}(t, x, p, q) \right)$$

Then
$$V^{-*}(t, x, \hat{p}) = \sup_{p} \left(p.\hat{p} - \sup_{\beta} \inf_{(\alpha_i)} \sum_{i} p_i \mathbf{E}[g_i] \right)$$
$$= \sup_{p} \inf_{\beta} \sup_{(\alpha_i)} \sum_{i} p_i \left(\hat{p}_i - \mathbf{E}[g_i] \right)$$
$$" = " \inf_{\beta} \sup_{p} \sup_{(\alpha_i)} \sum_{i} p_i \left(\hat{p}_i - \mathbf{E}[g_i] \right)$$

Lemma

$$V^{-*}(t,x,\hat{p}) = \inf_{\beta \in \mathcal{B}_{r}(t)} \sup_{\alpha \in \mathcal{A}(t)} \max_{i \in \{1,...,l\}} \left\{ \hat{p}_{i} - \mathsf{E}\left[g_{i}(X_{T}^{t,x,\alpha,\beta})\right] \right\}.$$

Description of the game Existence and characterization of the value Illustration through a simple game

An inequation for V^-

As a consequence : for all
$$0 \le t_0 \le t_1 \le T, x_0 \in \mathbb{R}^N, \hat{p} \in \mathbb{R}^I,$$

 $V^{-*}(t_0, x_0, \hat{p}) \le \inf_{\beta \in \mathcal{B}(t_0)} \sup_{\alpha \in \mathcal{A}(t_0)} \mathbb{E}[V^{-*}(t_1, X_{t_1}^{t_0, x_0, \alpha, \beta}, \hat{p})]$

Corollary

For any $\hat{p} \in \mathbb{R}^{l}$, $(t, x) \to V^{-*}(t, x, \hat{p})$ is a subsolution in viscosity sense of

$$\partial_t w - H(x, -Dw, -D^2w) \ge 0$$

Hence V^- is a supersolution to

$$(HJ) \qquad \min\left\{\partial_t w + H(x, Dw, D^2w) \ , \ \lambda_{\min}(D^2_{
hop}w)
ight\} \leq 0$$

in $(0, T) \times \mathbb{R}^N \times \Delta(I)$.

Description of the game Existence and characterization of the value Illustration through a simple game

ヘロア 人間 アメヨア 人口 ア

æ –

Analysis of V^+

V^+ satisfies the subdynamic programming :

Corollary

 V^+ is a subsolution of

$$HJ) \qquad \min\left\{\partial_t w + H(x, Dw, D^2w) \ , \ \lambda_{\min}(D_{pp}^2w)\right\} \geq 0$$

in $(0, T) \times \mathbb{R}^N \times \Delta(I)$.

Description of the game Existence and characterization of the value Illustration through a simple game

<ロト <回 > < 注 > < 注 > 、

Summary

- We have $V^- \leq V^+$ by construction.
- We have seen that
 - (i) V^- is a supersolution of (HJ)
 - (ii) V^+ is a subsolution of (HJ)

(iii)
$$V^{-}(T, x, p, q) = V^{+}(T, x, p, q) = \sum_{i} p_{i}g_{i}(x)$$

• Comparison principle for (HJ) \Rightarrow $V^+ \leq V^-$.

Hence the value $V^+ = V^-$ is the unique viscosity solution to

$$(HJ) \begin{cases} \min \left\{ \partial_t w + H(x, Dw, D^2 w), \lambda_{\min}(D_{pp}^2 w) \right\} = 0 \\ w = \sum_i p_i g_i \quad \text{in } \{T\} \times \mathbb{R}^N \times \Delta(I) \end{cases}$$

Description of the game Existence and characterization of the value Illustration through a simple game

▲ @ ▶ ▲ ⊇ ▶

Outline

Solving classical differential games

- Formalisation
- Existence of the value

2 Games with imperfect information

- Description of the game
- Existence and characterization of the value
- Illustration through a simple game

3 Differential games with imperfect observation

Description of the game Existence and characterization of the value Illustration through a simple game

Rules of the game

No dynamics

- At time t₀, *i* is chosen by nature in {1,..., *l*} according to probability *p*,
- the choice of *i* is communicated to Player 1 only,
- Player 1 minimizes the integral payoff

$$\int_{t_0}^T \ell_i(s, u(s), v(s)) ds.$$

• Player 2 maximizes it.

Isaacs' condition takes the form

$$H(t,p) = \inf_{u \in U} \sup_{v \in V} \sum_{i=1}^{l} p_i \ell_i(t,u,v) = \sup_{v \in V} \inf_{u \in U} \sum_{i=1}^{l} p_i \ell_i(t,u,v)$$

Description of the game Existence and characterization of the value Illustration through a simple game

Existence of a value

We already know that :

Under Isaacs' condition, the game has a value

$$\mathbf{V}(t_0, p) = \inf_{(\alpha_i) \in (\mathcal{A}_r(t_0))^I} \sup_{\beta \in \mathcal{B}_r(t_0)} \sum_{i=1}^I p_i \mathbf{E}_{\alpha_i \beta} \left[\int_{t_0}^T \ell_i(s, \alpha_i(s), \beta(s)) ds \right]$$
$$= \sup_{\beta \in \mathcal{B}_r(t_0)} \inf_{(\alpha_i) \in (\mathcal{A}_r(t_0))^I} \sum_{i=1}^I p_i \mathbf{E}_{\alpha_i \beta} \left[\int_{t_0}^T \ell_i(s, \alpha_i(s), \beta(s)) ds \right]$$

Furthermore ${\bm V}$ is the unique viscosity solution of :

$$\begin{cases} \min\left\{\partial_t w + H(t, p); \lambda_{\min}\left(\frac{\partial^2 w}{\partial p^2}\right)\right\} = 0 \quad \text{in } [0, T] \times \Delta(I) \\ w(T, p) = 0 \quad \text{in } \Delta(I) \end{cases}$$

(日)

Optimal strategy : a representation theorem

Let $\mathcal{P}(t_0, p_0)$ be the set of càdlàg martingale processes $\mathbf{p} : [t_0^-, T] \to \Delta(I)$ such that

$$\mathbf{p}(t_0^-) = \mathbf{p}_0$$
 and $\mathbf{p}(T) \in {\mathbf{e}_1, \dots, \mathbf{e}_l}$,

where $\{e_1, \ldots, e_l\}$ is the canonical basis of \mathbb{R}^l .

Theorem

 $\forall (t_0, p_0) \in [0, T] \times \Delta(I)$

$$\boldsymbol{V}(t_0, p_0) = \min_{\boldsymbol{\mathsf{p}} \in \mathcal{P}(t_0, p_0)} \mathbf{\mathsf{E}}\left[\int_{t_0}^T H(s, \boldsymbol{\mathsf{p}}(s)) ds\right]$$

Recall that $H(t, p) = \inf_{u \in U} \sup_{v \in V} \sum_{i=1}^{I} p_i \ell_i(t, u, v)$.

Description of the game Existence and characterization of the value Illustration through a simple game

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Optimal strategy for Player I

Let $u^* = u^*(t, p)$ be a Borel measurable selection of

$$\operatorname{argmin}_{u \in U}(\max_{v \in V} \sum_{i=1}^{I} p_i \ell_i(t, u, v)).$$

For $(t_0, p_0) \in [0, T] \times \Delta(I)$ fixed, let $\overline{\mathbf{p}}$ be optimal for

$$\min_{\mathbf{p}\in\mathcal{P}(t_0,p_0)} \mathbf{E}\left[\int_{t_0}^T H(s,\overline{\mathbf{p}}(s))ds\right]$$

Finally, $\forall i \in \{1, \ldots, I\}$, let us define

$$\overline{\boldsymbol{u}}_i(\boldsymbol{s}) \stackrel{d}{=} \boldsymbol{u}^*(\boldsymbol{s}, \overline{\boldsymbol{p}}(\boldsymbol{s}))|_{\{\overline{\boldsymbol{p}}(T)=\boldsymbol{e}_i\}}.$$

 Solving classical differential games
 Description of the game

 Games with imperfect information
 Existence and characterization of the value

 Differential games with imperfect observation
 Illustration through a simple game

Theorem

The random control $(\overline{u}_i) \in (\mathcal{U}_r(t_0))^l$ is optimal for $\mathbf{V}(t_0, p_0)$. Namely

$$\mathbf{V}(t_0, p_0) = \sup_{\beta \in \mathcal{B}(t_0)} \sum_{i=1}^{l} (p_0)_i E_{\overline{u}_i} \left[\int_{t_0}^{T} \ell_i(s, \overline{u}_i(s), \beta(\overline{u}_i)(s)) ds \right].$$

イロト 不得 とくほと くほとう

= 990

Description of the game Existence and characterization of the value Illustration through a simple game

ъ

Example 1 : Stationary case

If the $\ell_i = \ell_i(u, v)$ do not depend on time, then

Proposition

$$\mathbf{V}(t, p) = (T - t) \operatorname{Vex} \mathcal{H}(p) \qquad \forall p \in \Delta(I) \;.$$

Proof :

• Let
$$w(t, p) = (T - t) \operatorname{Vex} H(p)$$
. Then $w(T, p) = 0$ and

$$\partial_t w(t,p) = -\operatorname{Vex} H(p)$$
.

If
$$\lambda_{\min}\left(\frac{\partial^2 w}{\partial p^2}\right)(t,p) > 0$$
, then $\operatorname{Vex} H(p) = H(p)$.
Hence

$$\min\left\{\partial_t w + H(t, p); \lambda_{\min}\left(\frac{\partial^2 w}{\partial p^2}\right)\right\} = 0$$

Description of the game Existence and characterization of the value Illustration through a simple game

・ロット (雪) () () () ()

Example 1 (continued)

For $p \in \Delta(I)$, let $(\lambda_k) \in \Delta(I)$, $p^k \in \Delta(I)$ (k = 1, ..., I) such that

$$\sum_{k} \lambda_{k} \boldsymbol{p}^{k} = \boldsymbol{p} \quad \text{and} \quad \operatorname{Vex} \boldsymbol{H}(\boldsymbol{p}) = \sum_{k} \lambda_{k} \boldsymbol{H}(\boldsymbol{p}^{k}) \; .$$

Proposition

The martingale $\mathbf{p} \in \mathcal{P}(t_0, p)$ constant and equal to p^k with probability λ^k on $[t_0, T)$ is optimal.

Proof :

$$\mathbf{E}\left[\int_{t_0}^{T} H(\mathbf{p}_s) ds\right] = (T - t_0) \sum_k \lambda_k H(p^k)$$

= $(T - t_0) \operatorname{Vex} H(p) = \mathbf{V}(t_0, p) .$

Description of the game Existence and characterization of the value Illustration through a simple game

ヘロト 人間 ト ヘヨト ヘヨト

æ

Example 2 : I = 2

We assume that I = 2. Then $\Delta(I) \approx [0, 1]$.

Assumption on *H* : There are $h_1 : [0, T] \rightarrow [0, 1]$ continuous non increasing and $h_2 : [0, T] \rightarrow [0, 1]$ continuous nondecreasing such that

$$Vex(H)(t,p) < H(t,p) \Leftrightarrow p \in (h_1(t),h_2(t))$$

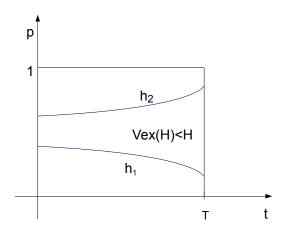
Proposition
$$\mathbf{V}(t, p) = \int_t^T \operatorname{Vex} H(s, p) ds$$
 $\forall (t, p) \in [0, T] \times \Delta(I)$.

Description of the game Existence and characterization of the value Illustration through a simple game

(目)

ъ

Example 2 continued



Description of the game Existence and characterization of the value Illustration through a simple game

イロン 不得 とくほ とくほ とうほ

Example 2 continued

Proof :

• Let $w(t,p) = \int_t^T \operatorname{Vex} H(s,p) ds$. Then $w(t,\cdot)$ is convex and

$$\partial_t w(t,p) = -\operatorname{Vex} H(t,p)$$

Moreover if $\lambda_{\min}\left(\frac{\partial^2 w}{\partial p^2}\right)(t,p) > 0$ then $p \notin (p_1(t), p_2(t))$, i.e., Vex(H)(t,p) = H(t,p).

Hence

$$\min\left\{\partial_t w + H(t, p) ; \lambda_{\min}\left(p, \frac{\partial^2 w}{\partial p^2}\right)\right\} = 0$$

Description of the game Existence and characterization of the value Illustration through a simple game

イロト イポト イヨト イヨト

Example 2 continued

Proposition

If $p_0 \in (h_1(t_0), h_2(t_0))$, there is a unique optimal martingale **p**. The process **p** is purely discontinuous and satisfies

$$\mathbf{p}(t) \in \{h_1(t), h_2(t)\} \quad \forall t \in [t_0, T) .$$

In particular, if s < t < T

$$\mathbf{P}[\mathbf{p}(t) = h_1(t) \mid \mathbf{p}(s) = h_1(s)] = \frac{h_2(t) - h_1(s)}{h_2(t) - h_1(t)}$$

Description of the game Existence and characterization of the value Illustration through a simple game

ヘロン ヘアン ヘビン ヘビン

∃ <2 <</p>

Example 3 : *I* = 2

We suppose that $H(t, p) = \lambda(t)p(1 - p)$ with λ Lipschitz and there exists 0 < a < b < T with

$$\lambda > 0$$
 in $[0, b)$, $\lambda < 0$ on $(b, T]$ and $\int_{a}^{T} \lambda(s) ds = 0$

Proposition

$$\mathbf{V}(t, p) = \begin{cases} 0 & \text{if } t \in [0, a] \\ p(1-p) \int_t^T \lambda(s) ds & \text{if } t \in [a, T] \end{cases}$$

Hence

$$\mathbf{V}(t,p) \neq \int_{t}^{T} \operatorname{Vex} H(s,p) ds$$
 on (a,b)

Extensions

Description of the game Existence and characterization of the value Illustration through a simple game

イロト イポト イヨト イヨト

- Characterization of the optimal martingale.
- Case where the unknown *i* is a continuous r.v.
- Representation formula for differential games with non-degenerate diffusion (via BSDE arguments). C. Grün
- Analysis of games in which the information is relieved to Player I progressively.

Outline

Solving classical differential games

- Formalisation
- Existence of the value

2 Games with imperfect information

- Description of the game
- Existence and characterization of the value
- Illustration through a simple game

3 Differential games with imperfect observation

▲ (目) ▶ (● (目) ▶

Deterministic differential game with finite horizon

We now consider a deterministic differential game

$$\begin{cases} dX_t = f(X_t, u_t, v_t)dt \\ x_{t_0} = x_0 \end{cases}$$

The trajectory associated to (u, v) is denoted by $X_{\cdot}^{t_0, x_0, u, v}$.

Main assumption on the game : Player II does not observe anything.

イロト 不得 とくほ とくほとう

Rules of the game

- At time t₀, the initial state x₀ is drawn at random according to a probability μ₀ on ℝ^N.
- Player I is informed on the initial state x₀, Player II just knows μ₀.
- Player I observes x(t) and v(t). He minimizes $g(X_T^{t_0,x_0,u,v})$.
- Player II observes nothing but has perfect recall about his own control v. He maximizes g(X^{t₀,x₀,u,v}_T).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The value functions

The lower value function is :

$$\mathbf{V}^{-}(t_{0},\mu_{0}) = \sup_{\boldsymbol{v}\in\mathcal{V}_{r}(t_{0})}\inf_{(\alpha^{x})\in(\mathcal{A}_{r}(t_{0}))^{\mathbb{R}^{N}}}\int_{\mathbb{R}^{N}}\mathbf{E}\left[g(X_{T}^{t_{0},x,\alpha^{x},\boldsymbol{v}})\right]d\mu_{0}(x)$$

The upper value function is :

$$\mathbf{V}^{+}(t_{0},\mu_{0}) = \inf_{(\alpha^{x})\in(\mathcal{A}_{r}(t_{0}))^{\mathbb{R}^{N}}} \sup_{v\in\mathcal{V}_{r}(t_{0})} \int_{\mathbb{R}^{N}} \mathbf{E}\left[g(X_{T}^{t_{0},x,\alpha^{x},v})\right] d\mu_{0}(x)$$

イロト イポト イヨト イヨト

3

Framework

We work on the set of Borel probability measures

$$\mathcal{P}_2 := \{ \mu / \int_{\mathbb{R}^N} |x|^2 d\mu(x) < \infty \}$$

endowed with the Wasserstein distance :

$$\mathbf{d}^{2}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{2N}} |x-y|^{2} d\pi(x,y)$$

We consider the Hamiltonian

$$\mathcal{H}(\mu, \mathbf{p}) = \sup_{\mathbf{v} \in \Delta(V)} \int_{\mathbb{R}^N} \inf_{\mathbf{u} \in \Delta(U)} \int_{U \times V} \langle f(x, u, v), \mathbf{p}(x) \rangle d\mathbf{u}(u) d\mathbf{v}(v) d\mu(x)$$

(for $\mathbf{p} \in L^2_{\mu}(\mathbb{R}^N, \mathbb{R}^N), \ \mu \in \mathcal{P}_2$)

イロト イポト イヨト イヨト

Existence of the value

Theorem (C., Souquière)

For all (t, μ) :

$$\mathbf{V}^+(t,\mu) = \mathbf{V}^-(t,\mu)$$

Moreover $\mathbf{V}^+ = \mathbf{V}^-$ is the unique viscosity solution of

$$\begin{cases} \partial_t w + \mathcal{H}(\mu, D_\mu w) = 0 & \text{ in } (0, T) \times \mathcal{P}_2 \\ w(T, \mu) = \int_{\mathbb{R}^N} g(x) d\mu(x) & \text{ in } \mathcal{P}_2 \end{cases}$$

イロト イポト イヨト イヨト

3

Idea of proof (1)

Proposition (Dynamic programming principle)

The upper value function satisfies :

$$\mathbf{V}^+(t_0,\mu_0) = \inf_{(\alpha^x) \in (\mathcal{A}_r(t_0))^{\mathbb{R}^N}} \sup_{\mathbf{v} \in \mathcal{V}_r(t_0)} \mathbf{V}^+(t_1,\mu_{t_1}) .$$

where μ_{t_1} is is the information of player II on the state of the system, knowing the strategy of his opponent :

$$\int_{\mathbb{R}^N} \varphi(\mathbf{x}) d\mu_{t_1}(\mathbf{x}) = \int_{\mathbb{R}^N} \mathbf{E} \left[\varphi(X_{t_1}^{t_0, \mathbf{x}, \alpha)^x, \mathbf{v}}) \right] d\mu_0(\mathbf{x})$$

for any $\varphi \in \mathcal{C}_{b}(\mathbb{R}^{N},\mathbb{R})$.

<ロト <回 > < 注 > < 注 > 、

Idea of proof (2)

The rest of the proof relies on

- P.D.E. characterization of V⁺.
- Comparison principle for (HJ) related to the "Euclidean structure" of *P*₂.
 (See also Feng-Kurtz (2006), C.-Quincampoix (2007), Gangbo-Nguyen-Adrian (2008), Feng-Katsoulakis (2009), Lasry-Lions.)
- Sion's min-max Theorem for the equality $V^+ = V^-$.

イロン イ理 とく ヨン イヨン

Conclusion

- Differential games with imperfect information :
 - well understood for simple information structure.
 - a lot remains to be done in more general settings.
- Differential games with lack of observation : almost completely open.
- Nonzero sum differential games with lack of information : open.

▲ □ ▶ ▲ 三 ▶ .

Thank you for your attention !

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

Definition (Subsolution of the HJ Equation)

 $V : [t_0, T] \times \mathcal{P}_2 \to \mathbb{R}$, Lipschitz continuous, is a subsolution to (HJ) if, for any test function $\phi(t, \mu)$ of the form

$$\phi(t,\mu) = \frac{\alpha}{2} \mathbf{d}^2(\bar{\mu},\mu) + \eta \mathbf{d}(\bar{\nu},\mu) + \psi(t)$$

(where $\psi \in C^1(\mathbb{R}, \mathbb{R})$, $\alpha, \eta > 0$, $\overline{\nu}, \overline{\mu} \in \mathcal{P}_2$) such that $\mathbf{V} - \phi$ has a local maximum at $(\overline{\nu}, \overline{t})$, one has :

$$\psi'(\bar{t}) + \mathcal{H}(\bar{
u}, -lpha \mathbf{p}_{y}) \geq - \|f\|_{\infty} \eta$$

where, for a fixed $\bar{\pi} \in \Pi_{\text{opt}}(\bar{\mu}, \bar{\nu})$, $\mathbf{p}_{y} \in L^{2}_{\bar{\nu}}(\mathbb{R}^{N}, \mathbb{R}^{N})$ is defined by : $\int_{\mathbb{R}^{N}} \langle \xi(y), x - y \rangle d\bar{\pi}(x, y) = \int_{\mathbb{R}^{N}} \langle \xi(y), \mathbf{p}_{y}(y) \rangle d\bar{\nu}(y) \quad \forall \xi \in L^{2}_{\bar{\nu}}$

ヘロト ヘアト ヘビト ヘビト

э

Definition (Subsolution of the HJ Equation)

 $V : [t_0, T] \times \mathcal{P}_2 \to \mathbb{R}$, Lipschitz continuous, is a subsolution to (HJ) if, for any test function $\phi(t, \mu)$ of the form

$$\phi(t,\mu) = \frac{\alpha}{2} \mathbf{d}^2(\bar{\mu},\mu) + \eta \mathbf{d}(\bar{\nu},\mu) + \psi(t)$$

(where $\psi \in C^1(\mathbb{R}, \mathbb{R})$, $\alpha, \eta > 0$, $\bar{\nu}, \bar{\mu} \in \mathcal{P}_2$) such that $\mathbf{V} - \phi$ has a local maximum at $(\bar{\nu}, \bar{t})$, one has :

$$\psi'(\bar{t}) + \mathcal{H}(\bar{\nu}, -\alpha \mathbf{p}_{y}) \ge - \|f\|_{\infty} \eta$$

where, for a fixed $\bar{\pi} \in \Pi_{\text{opt}}(\bar{\mu}, \bar{\nu})$, $\mathbf{p}_{y} \in L^{2}_{\bar{\nu}}(\mathbb{R}^{N}, \mathbb{R}^{N})$ is defined by : $\int_{\mathbb{R}^{N}} \langle \xi(y), x - y \rangle d\bar{\pi}(x, y) = \int_{\mathbb{R}^{N}} \langle \xi(y), \mathbf{p}_{y}(y) \rangle d\bar{\nu}(y) \quad \forall \xi \in L^{2}_{\bar{\nu}}$

ヘロト 人間 ト ヘヨト ヘヨト

э

Solution of the HJ Equation

Definition (Supersolution of the HJ Equation)

 $\mathbf{V} : [t_0, T] \times \mathcal{P}_2 \to \mathbb{R}$, Lipschitz continuous, is a supersolution to (HJ) if, for any test function $\phi(t, \mu)$ of the form

$$\phi(t,\mu) = -\frac{\alpha}{2} \mathbf{d}^2(\bar{\mu},\mu) - \eta \mathbf{d}(\bar{\nu},\mu) + \psi(t)$$

(where $\psi \in C^1(\mathbb{R}, \mathbb{R})$, $\alpha, \eta > 0$ and $\overline{\mu}, \overline{\nu} \in \mathcal{P}_2$) such that $\mathbf{V} - \phi$ has a local minimum at $(\overline{\nu}, \overline{t}) \in (0, T) \times \mathcal{P}_2$, one has :

$$\psi'(\overline{t}) + \mathcal{H}(\overline{\nu}, \alpha \mathbf{p}_{\mathcal{Y}}) \leq \|f\|_{\infty} \eta$$
.

A solution of (HJ) is a subsolution and a supersolution.

・ロト ・回ト ・ヨト ・ヨト

Lemma (Comparison principle)

Let w_1 be some subsolution of (HJ) and w_2 some supersolution such that $w_2(T, \mu) \ge w_1(T, \mu)$. Then for all $(t, \mu) \in [t_0, T] \times \mu \in \mathcal{P}_2$:

 $\textit{w}_{2}(t,\mu)\geq\textit{w}_{1}(t,\mu)$

- The definition comes from Cardaliaguet-Quincampoix (2007) (cf. also Gangbo-Nguyen-Adrian (2008), Feng-Katsoulakis (2009), Lasry-Lions).
- The proof of the comparison principle is an adaptation of Crandall, Lions (1986).

ヘロト ヘアト ヘビト ヘビト

Lemma (Comparison principle)

Let w_1 be some subsolution of (HJ) and w_2 some supersolution such that $w_2(T, \mu) \ge w_1(T, \mu)$. Then for all $(t, \mu) \in [t_0, T] \times \mu \in \mathcal{P}_2$:

 $w_2(t,\mu) \geq w_1(t,\mu)$

- The definition comes from Cardaliaguet-Quincampoix (2007) (cf. also Gangbo-Nguyen-Adrian (2008), Feng-Katsoulakis (2009), Lasry-Lions).
- The proof of the comparison principle is an adaptation of Crandall, Lions (1986).

・ロト ・ 理 ト ・ ヨ ト ・

Lemma (Comparison principle)

Let w_1 be some subsolution of (HJ) and w_2 some supersolution such that $w_2(T, \mu) \ge w_1(T, \mu)$. Then for all $(t, \mu) \in [t_0, T] \times \mu \in \mathcal{P}_2$:

 $w_2(t,\mu) \geq w_1(t,\mu)$

- The definition comes from Cardaliaguet-Quincampoix (2007) (cf. also Gangbo-Nguyen-Adrian (2008), Feng-Katsoulakis (2009), Lasry-Lions).
- The proof of the comparison principle is an adaptation of Crandall, Lions (1986).

ヘロン 人間 とくほ とくほ とう