Géométrie des fronts de diffusion 000000 000000000000 00000 Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Universalité de certaines interfaces aléatoires : Inhomogénéité et SLE(6)

Pierre Nolin (Courant Institute)

31 Août 2010

Géométrie des fronts de diffusion 000000 0000000000000 00000 Conclusion

Inhomogénéité et universalité

Systèmes physiques pour lesquels l'inhomogénéité joue un rôle central : modèles de fronts de diffusion par exemple (Gouyet, Rosso, Sapoval, 1985).

(Fig. J.F. Gouyet)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Inhomogénéité et universalité

• Interface fractale, de dimension $D_f = 1.76 \pm 0.02$.

- Interface fractale, de dimension $D_f = 1.76 \pm 0.02$.
- Interface localisée où p(z) (densité de particules au site z) est proche de p_c (paramètre critique de percolation).

- Interface fractale, de dimension $D_f = 1.76 \pm 0.02$.
- Interface localisée où p(z) (densité de particules au site z) est proche de p_c (paramètre critique de percolation).
- Divers exposants critiques (amplitude des fluctuations, longueur...) qui semblent liés à ceux de la percolation usuelle : par exemple, $D_f \simeq 7/4$ est la dimension des interfaces pour la percolation en régime critique.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Pour les simulations, approximation que les statuts des différents sites (occupés / vacants) sont indépendants les uns des autres
 - \rightsquigarrow processus de percolation inhomogène de paramètre p(z) : modèle de *percolation en gradient*.

- Pour les simulations, approximation que les statuts des différents sites (occupés / vacants) sont indépendants les uns des autres
 - \rightsquigarrow processus de percolation inhomogène de paramètre p(z) : modèle de *percolation en gradient*.
- Ici :
 - étude de la percolation en gradient.
 - \Rightarrow propriétés des fronts de diffusion.

Géométrie des fronts de diffusion 000000 0000000000000 00000

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Percolation presque-critique

Géométrie des fronts de diffusion 000000 0000000000000 00000 Conclusion

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Percolation par sites

Percolation par sites sur le réseau triangulaire :

Géométrie des fronts de diffusion 000000 0000000000000 00000 Conclusion

Percolation par sites

 \rightsquigarrow images de ce type :

Existence d'une transition de phase à $p_c = 1/2$

La percolation possède une transition de phase, à $p_c=1/2~{\rm sur}$ le réseau triangulaire :

- Si *p* < 1/2 : pas d'amas infini (régime *sous-critique*),
- Si p > 1/2: un *unique* amas infini (régime *sur-critique*).

Si p = 1/2 : régime *critique*, pas de cluster infini.

Géométrie des fronts de diffusion 000000 0000000000000 00000 Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Régime sous-critique

En régime sous-critique (p < 1/2),

 \rightsquigarrow longueur caractéristique $\xi(p)$.

Géométrie des fronts de diffusion 000000 0000000000000 00000 Conclusion

Régime sur-critique

En régime sur-critique (p > 1/2),

Géométrie des fronts de diffusio 000000 000000000000 00000

Régime critique

Au point critique $p = p_c = 1/2$, "pas de longueur caractéristique" :

Percolation presque-critique

Deux ingrédients principaux :

(1) Étude de la percolation critique (Lawler, Schramm, Smirnov, Werner, 1999–2001)

(2) Techniques de renormalisation (Kesten, 1987)

 \Rightarrow Description de la percolation près du point critique.

Géométrie des fronts de diffusion 000000 0000000000000 00000 Conclusion

Percolation presque-critique

$$p = p_c \qquad \left[\text{ régime critique } \right] \qquad \text{e.g. } \mathbb{P}_{p_c} \left(\underbrace{(\begin{array}{c} 0 \\ 0 \end{array})}_{(N \to \infty)}^{N} \right) = N^{-5/4+o(1)} \\ (N \to \infty) \\ \text{renormalisation} \\ (\text{Kesten 1987}) \\ p \simeq p_c \quad \left[\text{ régime presque-critique } \right] \qquad \text{e.g. } \xi(p) = |p - p_c|^{-4/3+o(1)} \\ (p \to p_c) \end{array}$$

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 - のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Invariance conforme au point critique

Limites d'échelle : limites continues, pour $\delta \searrow 0$.

Comment y donner un sens? interfaces par exemple.

 \rightsquigarrow décrites par SLE(6).

Géométrie des fronts de diffusion

Conclusion

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Application : géométrie des fronts de diffusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Percolation en gradient

Bande $[0, \ell_N] \times [0, N]$, paramètre de percolation p(y) décroissant linéairement en y:

Géométrie des fronts de diffusion

Conclusion

Percolation en gradient

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Heuristique

Localisation dans une "bande critique" autour de $p = p_c = 1/2$: bande dans laquelle la percolation est presque-critique.

Géométrie des fronts de diffusion

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Heuristique

Pour la largeur σ_N de la bande critique,

$$\sigma_N = \xi (1/2 \pm \sigma_N/2N).$$

Comme
$$\xi(p) = |p - 1/2|^{-4/3 + o(1)}$$
 $(p \to 1/2)$,
 $\sigma_N = (\sigma_N/2N)^{-4/3 + o(1)}$,

d'où

$$\sigma_N = N^{4/7 + o(1)}.$$

Conclusion

Longueur du front

Pour la longueur L_N de l'interface :

$$L_N \approx (\sigma_N)^{D_f} \times (\ell_N / \sigma_N)$$

Comme $\sigma_N \approx N^{4/7}$ et $D_f = 7/4$,

$$L_N \approx (N^{4/7})^{7/4} \times (\ell_N / N^{4/7}) = N^{3/7} \ell_N.$$

Asymétrie discrète

Mais on a aussi :

Proposition

Pour une boîte de taille $\sigma_N/2$ à hauteur $N/2 + \sigma_N$: elle contient $\approx (N^{4/7})^{7/4} = N$ sites sur le front, mais

$$\mathbb{E} \Big[\# \textit{sites blancs} - \# \textit{sites noirs} \Big] pprox \textit{N}^{4/7} \gg \sqrt{\textit{N}}$$

 \rightsquigarrow A la limite d'échelle, différent du regime critique : l'interface tourne plus d'un côté.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Description du modèle

- On commence à l'instant *t* = 0 avec un grand nombre *n* de particules situées à l'origine,
- et on les laisse faire des marches aléatoires indépendantes.

A chaque instant t, sites occupés = contenant au moins une particule (regroupés en amas).

Conclusion

Évolution pour n = 10000 particules : t = 10

Géométrie des fronts de diffusion

Conclusion

Évolution pour n = 10000 particules : t = 100

Géométrie des fronts de diffusion

Conclusion

Évolution pour n = 10000 particules : t = 500

Géométrie des fronts de diffusion

Conclusion

Évolution pour n = 10000 particules : t = 1000

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶ ④�?

Géométrie des fronts de diffusion

Conclusion

Évolution pour n = 10000 particules : $t = 1463 = \lambda_{\max} n$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Géométrie des fronts de diffusion

Conclusion

 $t = 1463 = \lambda_{\max} n \text{ (zoom)}$

Géométrie des fronts de diffusion

Conclusion

Évolution pour n = 10000 particules : t = 2500

ъ

Géométrie des fronts de diffusion

Conclusion

t = 2500 (zoom)

Géométrie des fronts de diffusion

Évolution pour n = 10000 particules : $t = 3977 = \lambda_c n$

(日)、

ъ

Conclusion

Géométrie des fronts de diffusion

Conclusion

 $t = 3977 = \lambda_c n \text{ (zoom)}$

Conclusion

Évolution pour n = 10000 particules : t = 5000

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト → 臣 → の � @

Conclusion

Évolution pour n = 10000 particules : t = 10000

Géométrie des fronts de diffusion ○○○○○○ ○○○○○○● ○○○○○

Conclusion

t = 10000 (zoom)

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Conclusion

Approximation poissonienne

Probabilité d'occupation d'un site z :

$$p(z) = 1 - (1 - \pi_t(z))^n \simeq 1 - e^{-n\pi_t(z)}.$$

C'est égal à $p_c = 1/2$ pour

$$\|z\| = \sqrt{t \log \frac{\lambda_c}{t/n}}$$

si $t \leq \lambda_c n$, avec $\lambda_c = \sqrt{3}/2\pi \log 2$ (et cela reste < 1/2 sinon).

Approximation poissonienne

 \approx percolation en gradient localement : frontière localisée dans un anneau de largeur $\approx (\sqrt{t})^{4/7} = t^{2/7}$ autour de $r = r^* \asymp \sqrt{t}$.

Géométrie des fronts de diffusion

Conclusion

Géométrie : cas $\lambda < \lambda_c$

<□> <□> <□> <□> <=> <=> <=> <=> <=> <000

Conclusion

Géométrie : cas $\lambda < \lambda_c$

Théorème (N.)

Considérons $t_n = \lambda n$, avec $\lambda < \lambda_c$: avec probabilité tendant vers 1 lorsque $n \to \infty$,

- unique interface macroscopique autour de 0,
- localisée dans un anneau de largeur $\approx t^{2/7}$ autour de $r = r^*(\lambda) = c(\lambda)\sqrt{t}$,
- dimension fractale 7/4, longueur $\approx t^{5/7}$.

Géométrie des fronts de diffusion

Conclusion

Modèles avec exclusion

Modèles avec exclusion?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへの

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Inhomogénéité et universalité : conclusion

Conclusion :

 Dans les modèles physiques où la transition de phase de la percolation intervient, on observe un régime "presque-critique", plutôt qu'exactement le régime critique.

Inhomogénéité et universalité : conclusion

Conclusion :

- Dans les modèles physiques où la transition de phase de la percolation intervient, on observe un régime "presque-critique", plutôt qu'exactement le régime critique.
- 2. \Rightarrow Résultats positifs et négatifs :
 - similarités avec la percolation critique (dimension fractale, exposants...).
 - différences (asymétrie locale) : pas la même classe d'universalité.

Géométrie des fronts de diffusion 000000 0000000000000 00000 Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The end

Merci!