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Adaptive and Interacting MCMC algorithms

Outline

1. MCMC algorithms are a flexible family of algorithms to sample
distributions, known up to a normalisation factor.

2. This flexibility comes at a price... badly tuned MCMC can be very
slow to converge and lack of convergence may be difficult to
diagnose.

3. In the last 10 years, several algorithms have been proposed to
increase the sampling efficiency of the MCMC, without requiring
much additional user supervision.

4. The common idea is to improve the sampling strategy by learning

from the past simulations.



Adaptive and Interacting MCMC algorithms

Outline of the talk

1. Algorithm design

� Adaptive Markov chain : a single chain whose kernel is gradually
modified

� Interacting Markov chains : multiple chains which interact

2. Some numerical examples

3. Convergence of the algorithms
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Adaptive MCMC

An elementary example : the Adaptive Metropolis
Algorithm

� Yk+1 = Xk + Zk+1 where Zk+1 ∼i.i.d. q̄, and q̄ is symmetric (i.e.
q̄(z) = q̄(−z))

� In this case, q(x, y) = q(y, x) = q̄(y − x) = q̄(x− y) and the
acceptance rate does not depend on the proposal distribution

α(x, y) = 1 ∧ π(y)
π(x)

� ... biased random walk where some moves get rejected.
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Adaptive MCMC

Influence of the scaling

� If the variance is either too small or too large, then the
convergence rate of the Markov chain is slow :

1. too small... almost all the proposal are accepted. Nevertheless, the
stepsizes are small, and the algorithm visits the state space very
slowly.

2. too large... many propositions fall in regions where π is very small.
These proposals are often rejected and the algorithm get stuck at a
point.

Finding a proper scale is thus mandatory ! but it is not always
obvious to say what small or large mean for a given distribution π and a
given function.
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Adaptive MCMC

Scaling
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Adaptive MCMC

Optimal Scaling of the RWM

� A useful idea to get a better understanding of the influence of
scaling is to consider a high-dimensional limit, i.e. the state space
X = Rd where we let the dimension d→∞.

� Under appropriate assumptions, each coordinate of the Markov chain
{X(d)

k,i }d
i=1 converges to a diffusion limit.

� The choice of an optimal scaling then translates into the
optimization of the limiting diffusion speed, which is rather easy to
handle.
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Adaptive MCMC

Diffusive Limits

� Stationary distribution : π(d)(x1, . . . , xd) =
�d

i=1 f(xi) on Rd

(d→∞)

� Metropolis proposal : q(d)
θ (x1, . . . , xd) ∼ N

�
0, (θ2/d)Id

�
... with

variance decreasing as 1/d.

� Interpolated process : Z(d)
t = X(d)

[td],1... we consider a single
component and we speed up the time scale by d.

� When d becomes large, a single component becomes independent
from the other components which globally act as a random
environment.
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Adaptive MCMC

Diffusive Limits
Z(d) ⇒d Z in the Skorokhod space, where Z is a solution the Langevin
SDE

dZt = v1/2(θ)dBt + (1/2)v(θ)∇ log f(Zt)dt

v(θ) = θ2τ (∞) [θ, I(f)]

where,
τ (∞) [θ, I(f)] = lim

d→∞
τ (d)(θ)

is the limit of the acceptance rate in stationarity,

τ (d)(θ) =
��

π(d)(x)q(d)
θ (y − x)

�
1 ∧ π(d)(y)

π(d)(x)

�
dxdy

with x = (x1, x2, . . . , xd) and

I(f) =
� ��

d log f(x)
dx

���2

dx .
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Adaptive MCMC

Diffusion speed

� v(θ) = 2θ2τ (∞) [θ, I(f)] is the speed of the limiting diffusion :
Zt = Z̃v(θ)t where {Z̃t} is a solution of the Langevin SDE

dZ̃t = dBt + (1/2)∇ log f(Z̃t)dt .

� Optimizing the scale amounts to find θ which maximizes the
diffusion speed.
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Adaptive MCMC

Diffusion speed optimization

� The limiting acceptance rate is given

τ (∞) [θ] = 2Φ
�

θ
√

I(f)

2

�
⇐⇒ θ = 2√

I(f)
Φ−1

�
τ (∞) [θ] /2

�
.

� Since v(θ) = θ2τ (∞) [θ] the speed may be rewritten as a function of
the mean acceptance rate in stationarity

v(θ) ∝ w
�
τ (∞)(θ)

�
w : τ �→ τΦ−1(τ/2) .

� The speed is maximized if the scale is chosen so that τ (∞) [θ�],
where τ̄ is the maximum of w.

� The optimum value of the acceptance rate may be shown to be
τ̄ ≈ 0.234...
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Adaptive MCMC

Pros and Cons of diffusion limits

� Empirically this 0.234 rule has been observed to be approximately
right much more generally.

� Extensions and generalisations of this result can be found in
(Roberts and Rosenthal, 2001) and (Bedard, 2007), (Pillai, Stuart,
2009), (Bedard, Douc, Fort, Moulines, 2010).

� The focus of much of this work is in trying to characterise when the
0.234 rule holds and to explain how and why it breaks down in other
situations.

� One major disadvantage of the diffusion limit work is its reliance on
asymptotics in the dimensionality of the problem. Although it is
often empirically observed that the limiting behaviour can be seen in
rather small dimensional problems, (see for example Gelman et al.,
1996), it is difficult to quantify this in any general way.
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Adaptive MCMC

How to control the Acceptance Rate

� Objective : Finding the scale θ therefore amounts to solve

h(θ) def=
�� �

1 ∧ π(y)
π(x)

�
1
θ
q

�
y − x

θ

�
π(x)dxdy − τ̄ = 0,

� Under appropriate assumptions, θ → h(θ) is monotone with
limθ→0+ h(θ) = 1− τ̄ > 0 and limθ→∞ h(θ) = −τ̄ < 0... But h(θ)
cannot be computed explicitly !

� Suggest to use a stochastic approximation procedure to adapt

the scale θ.
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Adaptive MCMC

Adaptive Scaling Metropolis Algorithm

� Proposition & Accept/Reject

Yk+1 = Xk + θkN (0, Id)

Xk+1 =

�
Yk+1 with prob. α(Xk, Yk+1)
Xk otherwise

� Update the scaling factor

log(θk+1) = log(θk) + γk+1 {α(Xk, Yk+1)− τ̄}

where limk→∞ γk = 0 and
�∞

k=1 γk =∞.
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Adaptive MCMC

Multidimensional Scaling

Multidimensional scaling

� Same asymptotic analysis (d→∞) with

π(d)
Σd

(x) = |Σd|−1π(d)
�
Σ−1

d x
�
, π(d)(x1, . . . , xd) =

d�

i=1

f(xi)

q ∼ N(0, (σ2/d)Id)

then Z(d)
t = X[td],1 converges to the solution a Langevin SDE.

� the target acceptance rate (0.234...) which maximizes the speed of
the limiting diffusion is independent from the covariance but the
maximal achievable speed is strongly affected.

� Idea : adapt the scale and the covariance of the proposal.



Adaptive and Interacting MCMC algorithms

Adaptive MCMC

Multidimensional Scaling

Adaptive MCMC with multidimensional scaling
1. Simulate

Yk+1 = Xk +N (0, σkΓk)

Xk+1 =

�
Yk+1 with proba. α(Xk, Yk+1)
Xk otherwise

2. Update the target mean and covariance

µk+1 = µk + γk+1(Xk+1 − µk)

Γk+1 = Γk + γk+1

�
(Xk+1 − µk)(Xk+1 − µk)T − Γk

�

3. Control the global scale of the proposal

log(σk+1) = log(σk) + γk+1 (α(Xk, Yk+1)− τ̄)
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Adaptive MCMC

Multidimensional Scaling
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Multidimensional Scaling
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Multidimensional Scaling
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Interacting Tempering

Tempering

� The adaptive Metropolis-Hastings algorithm outlined above can run
into difficulties if the target probability distribution is multi-modal.

� The MCMC can become trapped in a local mode and fail to fully
explore other modes which are significant.

� This problem is very similar to the one encountered in finding a
global minimum in nonlinear optimisation. One solution to that
problem was to use simulated annealing by introducing a
temperature parameter.

� The analogous process applied to drawing samples from a target
probability distribution is often referred to as tempering : instead of
cooling down to make the distribution sharper and sharper, we
rather heating up the distribution to make it flatter and flatter...
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Interacting Tempering

Parallel tempering

� In parallel tempering algorithm by Geyer (1991) is to run parallel
Metropolis sampling at different temperatures

T1 ≥ T2 ≥ · · · ≥ TK = 1, with target distributions
�
π1/Tk

�K

k=1
.

� At intervals, a pair of adjacent level is chosen and a proposal made
to swap their states. If the swap is accepted then these states are
interchanged.

� The acceptance probability for the swap between the state at
temperature Tk−1 and Tk (k ∈ {2, . . . ,K}) is computed to ensure
that the joint states of all the parallel chains is reversible with
respect to the tensor product π1/T1 ⊗ · · · ⊗ π1/TK of the heated up
probability :

αk

�
x(k−1), x(k)

�
= 1 ∧ π1/Tk−1(x(k))π1/Tk(x(k−1))

π1/Tk−1
�
x(k−1)

�
π1/Tk

�
x(k)

� .
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Interacting Tempering

Parallel tempering

� This swap allows for an exchange of information across the
population of parallel simulations.

� In the higher temperature simulations, radically different
configurations can arise.

� By making exchanges, we can capture and improve configurations by
putting them into lower temperature simulations.

� Drawback : The temperature levels should be close enough to
achieve a significant acceptance probability for a swap.
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Interacting Tempering

Interacting Tempering

� The Interacting Tempering Algorithm exploits the parallel tempering
idea : the algorithm runs several chains at different temperatures.

� The idea is to replace an instantaneous swap by an interaction

with the whole past of a neighboring process.

� Idea : At time n, find in the past samples of the chain
X(k−1)

� ∈ {X(k−1)
0 , . . . ,X(k−1)

n } run at temperature Tk−1 a state
such that the probability of accepting the move

π1/Tk−1(X(k)
n )π1/Tk(X(k−1)

� )

π1/Tk−1

�
X(k−1)

�

�
π1/Tk

�
X(k)

n

� .

is large enough.
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Interacting Tempering

Interacting Tempering (at temperature Ti)

� a transition kernel P (k) with stationary distribution π1/Tk :
π1/TkP (k) = π1/Tk (typically, a MH algorithm run with the target
distribution π1/Tk).

� a probability of interaction � ∈ (0, 1)

Iteration n : with probability (1− �) draw X(k)
n+1 ∼ P (k)(X(k)

n , ·)

P (k)

θ(k−1)
n

(X(k)
n , A) = (1− �)P (k)(X(k)

n , A) + · · ·
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Interacting Tempering

Interacting Tempering
with probability �,

� select a state in X(k−1)
� ∈

�
X(k−1)

�

�n

�=0
with probability

�
g(X(k)

n , X(k−1)
� )

�n

�=0
;

� accept the proposal with probability αk(X(k)
n , X(k−1)

� )

P
θ(k−1)

n
(X(k)

n , A) = (1−�)P (k)(X(k)
n , A)+�

��

A
θ(k−1)

n (dy)αk(X(k)
n , y)

+ A(X(k)
n )

�
θ(k−1)

n (dy) {1− αk(X(k)
n , y)}

�

where θ(k−1)
n (dy) = 1

n+1

�n
�=1 δ

X(k−1)
�

(dy) and

αk(x, y) =
g(x, y)

�
θ(k−1)

n (dy)g(x, y)

�
1 ∧ π1/Tk(y)π1/Tk−1(x)

π1/Tk−1(y) π1/Tk(x)

�
.
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Interacting Tempering

An example

1. Mixture of Gaussians : 4 components in dimension 10.

2. Dimension : d = 10 (only the first two components are shown)
Interactions : 5 %

3. Temperatures : 50,40,30,25,20,15,10,5,2.5,1

4. 50 Energy rings (adapted from the empirical quantiles)

5. Basic Kernel : random walk Metropolis with covariance (4/d) ∗ I
(optimally adapted to individual components).
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Interacting Tempering

Interactions : 5 %
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Ergodicity

A General Framework

� Let (Θ, T ) be a measurable space and (X,X ) a general state space.

� Let (Pθ, θ ∈ Θ) be a collection of Markov transition kernels indexed
by θ ∈ Θ, which can be either finite or infinite dimensional (e.g.
an empirical distribution).

� For each θ ∈ Θ, Pθ admits a single probability distribution πθ :
πθ = πθPθ.

� Consider a X×Θ-valued process {(Xn, θn), n ≥ 0} on a filtered
probability space (Ω,A, {Fn, n ≥ 0}, P) such that {(Xn, θn), n ≥ 0}
is Fn-adapted and for any bounded measurable function f

E [f(Xn+1) | Fn] = Pθnf(Xn) .
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Ergodicity

Problems

� Problem : Find conditions such that :
1. Ergodicity : limn→∞ E [f(Xn)] = π(f) where π is the target

distribution.
2. Strong Law of Large Numbers : limn→∞ n−1 �n

k=1 f(Xk)→ π(f)
P-a.s.

� Problem : {Xk} is not a Markov Chain.
� Existing results :

1. Adaptive Markov Chains : Andrieu, Moulines (2006), Roberts and
Rosenthal (2007), Atchadé and Fort (2009)

2. Interacting Markov Chains : Del Moral and Miclo (2004), Andrieu,
Del Moral, Doucet, Jasra (2006,2007,2010), Del Moral and Doucet
(2009), Bercu, Del Moral and Doucet (2009)
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Ergodicity

Outline of the proof

Error decomposition

E [f(Xn)]− π(f) = E
�
f(Xn)− P N

θn−N
f(Xn−N )

�

+ E
�
P N

θn−N
f(Xn−N )− πθn−N (f)

�
+ E

�
πθn−N (f)

�
− π(f)

. This allows to consider situations where the ergodicity constant of the
Markov kernels get worse when θ approaches the parameter set boundary

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Ergodicity

Outline of the proof

Error decomposition

E [f(Xn)]− π(f) = E
�
f(Xn)− P N

θn−N
f(Xn−N )

�

+ E
�
P N

θn−N
f(Xn−N )− πθn−N (f)

�
+ E

�
πθn−N (f)

�
− π(f)

�→ [A] condition on the ergodicity of the transition kernels
Most often, the transition kernels {Pθ, θ ∈ Θ} are geometrically
ergodic :

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

. This allows to consider situations where the ergodicity constant of the
Markov kernels get worse when θ approaches the parameter set boundary

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Ergodicity

Outline of the proof

Error decomposition

E [f(Xn)]− π(f) = E
�
f(Xn)− P N

θn−N
f(Xn−N )

�

+ E
�
P N

θn−N
f(Xn−N )− πθn−N (f)

�
+ E

�
πθn−N (f)

�
− π(f)

�→ [B] condition on the adaptation mechanism

. This allows to consider
situations where the ergodicity constant of the Markov kernels get worse
when θ approaches the parameter set boundary

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Ergodicity

Outline of the proof

Error decomposition

E [f(Xn)]− π(f) = E
�
f(Xn)− P N

θn−N
f(Xn−N )

�

+ E
�
P N

θn−N
f(Xn−N )− πθn−N (f)

�
+ E

�
πθn−N (f)

�
− π(f)

�→ [C] when πθ �= π, condition on the convergence of {πθn , n ≥ 0} to π

.
This allows to consider situations where the ergodicity constant of the
Markov kernels get worse when θ approaches the parameter set boundary

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Ergodicity

Outline of the proof

Error decomposition

E [f(Xn)]− π(f) = E
�
f(Xn)− P r(n)

θn−r(n)
f(Xn−r(n))

�

+ E
�
P r(n)

θn−r(n)
f(Xn−r(n))− πθn−r(n)(f)

�
+ E

�
πθn−r(n)(f)

�
− π(f)

The conditions can be weakened by replacing N by r(n). This allows to
consider situations where the ergodicity constant of the Markov kernels
get worse when θ approaches the parameter set boundary

sup
f,|f |≤1

|Pn
θ f(x)− πθ(f)| ≤ Cθ ρn

θ V (x) ρθ ∈ (0, 1)

and Cθn ∨ (1− ρθn)−1 is not bounded (a.s. ).
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Ergodicity

Main result

Result [Fort et al. 2010]

A. (Ergodicity of the transition kernels)
� There exists πθ s.t. πθPθ = πθ

� for any � > 0, there exists a non-decreasing positive sequence
{r�(n), n ≥ 0} such that lim supn→∞ r�(n)/n = 0 and

lim sup
n→∞

E
����P r�(n)

θn−r�(n)
(Xn−r�(n), ·)− πθn−r�(n)

���
TV

�
≤ � .

B. (Diminishing adaptation) For any � > 0,

lim
n→∞

r�(n)−1�

j=0

E
�
sup

x

���Pθn−r�(n)+j
(x, ·)− Pθn−r�(n)(x, ·)

���
TV

�
= 0

C. (Convergence of the invariant distributions) There exist π and a
bounded non-negative function f s.t. limn πθn(f) = π(f) a.s.

Then limn E [f(Xn)] = π(f) .
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Law of large numbers for adaptive MCMC samplers

Law of large numbers for adaptive MCMC samplers

For an (unbounded) function f s.t. · · ·

1
n

n�

k=1

f(Xk) a.s.−→ π(f).
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Law of large numbers for adaptive MCMC samplers

Sketch of the proof

Sketch of the proof

We write

n−1
n�

k=1

f(Xk)−π(f) = n−1
n�

k=1

�
f(Xk)− πθk−1(f)

�
+

1
n

n�

k=1

πθk−1(f)− π(f)

For the second term, �→ [A] condition on πθn(f) a.s.−→ π(f)
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Law of large numbers for adaptive MCMC samplers

Sketch of the proof

Sketch of the proof

n−1
n�

k=1

f(Xk)−π(f) = n−1
n�

k=1

�
f(Xk)− πθk−1(f)

�
+

1
n

n�

k=1

πθk−1(f)−π(f)

For the first term, Tool : Poisson equation so that
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� Martingale increments : �→ [B] moment conditions : for some α > 1,

�

k

1
kα

E [|∆Mk|α|Fk−1] < +∞ a.s.
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Remainder due to the adaptation

+ R(2)
n� �� �

Remainder

� R(1)
n :�→ [C] condition on the adaptation : “diminishing adaptation”

� R(2)
n : �→ very weak conditions ! (more or less, a consequence of the

other conditions).
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Result [Fort et al. 2010]

A. (Ergodicity of the transition kernels) There exist Cθ, ρθ ∈ (0, 1) s.t.

�P n
θ (x, ·)− πθ�V ≤ Cθ ρn

θ V (x)

B. (Martingale term) there exists α > 1
�

k

1
kα

�
Cθk ∨ (1− ρθk )−1�2α

PθkV α(Xk) < +∞ a.s.

C. (Strengthened diminishing adaptation)

�

k

1
k

�
Cθk ∨ (1− ρθk )−1�6

V (Xk) sup
x

sup
f,|f |≤V

|Pθkf(x)− Pθk−1f(x)|
V (x)

< ∞ a.s.

D. (Convergence of the invariant distributions) for f s.t.
|f | ≤ V a, a ∈ (0, 1)

πθn(f)
a.s.−→ π(f)

Then, n−1
�n

k=1 f(Xk) a.s.−→ π(f)
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Main result

Result [Fort et al. 2010]

A. (Ergodicity of the transition kernels)

B. X is Polish

C. Pθ� is Feller and for any bounded continuous function f ,
{Pθf, θ ∈ Θ} is equicontinuous.

D. (Convergence of the transition kernels) for any x ∈ X,
Pθn(x, ·)→dPθ�(x, ·) a.s..

Then for any bounded continuous function f , πθn(f) a.s.−→ πθ�(f).
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Application to the convergence of adaptive and interacting
MCMC algorithms

Ergodicity criteria : checked in practice by
� drift inequality PθV ≤ λθV + bθ
� minorization condition Pθ(x, ·) ≥ δθ νθ(·) Cθ (x)
� conditions on the decay of the rate ξ s.t.

lim supn ξ(n)
�
bθn ∨ δ−1

θn
∨ (1− λθn)−1

�
< +∞

Diminishing adaptation : checked in practice by

distance(Pθ, Pθ�) ≤ C distance(θ, θ�) for some “distance”

Convergence of {πθn(f), n ≥ 0} when πθ �= π : based on the
convergence of {θn, n ≥ 0}



Adaptive and Interacting MCMC algorithms

Applications

Application to the convergence of adaptive and interacting
MCMC algorithms

Ergodicity criteria : checked in practice by
� drift inequality PθV ≤ λθV + bθ
� minorization condition Pθ(x, ·) ≥ δθ νθ(·) Cθ (x)
� conditions on the decay of the rate ξ s.t.

lim supn ξ(n)
�
bθn ∨ δ−1

θn
∨ (1− λθn)−1

�
< +∞

Diminishing adaptation : checked in practice by

distance(Pθ, Pθ�) ≤ C distance(θ, θ�) for some “distance”

Convergence of {πθn(f), n ≥ 0} when πθ �= π : based on the
convergence of {θn, n ≥ 0}



Adaptive and Interacting MCMC algorithms

Applications

Application to the convergence of adaptive and interacting
MCMC algorithms

Ergodicity criteria : checked in practice by
� drift inequality PθV ≤ λθV + bθ
� minorization condition Pθ(x, ·) ≥ δθ νθ(·) Cθ (x)
� conditions on the decay of the rate ξ s.t.

lim supn ξ(n)
�
bθn ∨ δ−1

θn
∨ (1− λθn)−1

�
< +∞

Diminishing adaptation : checked in practice by

distance(Pθ, Pθ�) ≤ C distance(θ, θ�) for some “distance”

Convergence of {πθn(f), n ≥ 0} when πθ �= π : based on the
convergence of {θn, n ≥ 0}



Adaptive and Interacting MCMC algorithms

Applications

Adaptive MCMC

Adaptive MCMC

We prove

� when the target density π is lighter than exponential

� with Nd (adapted) proposal distribution s.t. the eigenvalues of the
cov matrix are larger than κ.

1. Ergodicity : limn supf,|f |∞≤1 E [f(Xn)] = π(f) . contemporaneous

work by (Bai et al., 2010)

2. Strong law of large numbers for any function f such that
|f(x)| ≤ π−s(x), s ∈ (0, 1). pioneering work by (Saksman & Vihola, 2009) ; we use many ideas

of their paper !
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Applications

Convergence of the Equi-Energy sampler

Convergence of the (simplified) Equi-Energy sampler

We prove

� when the target density π is lighter than exponential, on a Polish
space X

� whatever the nbr of stages, the probability of swap � ∈ (0, 1), the
successive tempered distributions and the “hottest” one π1/T� ,
T� > 1

� when the “first” auxiliary process is an ergodic Markov chain

� when P is a RWHM algorithm with Gaussian proposal distribution

1. Ergodicity : limn E [f(Xn)] = π(f) for any bounded functions
f .

2. Strong law of large numbers for any continuous function f such that
|f(x)| ≤ π−s(x), s ∈ (0, 1/T�). extensions of the works by (Atchadé, 2007), (Andrieu et al.

2009)
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