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Outline

I Short introduction to likelihood-free inference and
Approximate Bayesian Computation for complex models

I The likelihood is not available analytically: Inference is based
on Monte-Carlo simulations and summary statistics instead of
the full data

I Rejection algorithm

I Part 1: Conditional density estimation algorithm

I Part 2: An exact hierarchical Bayes model

I Application: Demographic inference in coalescent models



Example of use of computer simulations in population genetics

I The use of simulations and summary statistics has a long
tradition in population genetics

I Example: Dating the (latest) expansion of Arabidopsis thaliana
in Europe



Arabidopsis thaliana

I Model organism for plant
genetic research (�owering and
adaptation).

I Small genome: 5 chromosomes,
150 Mbp.

I Lifestyle: weedy species.



Genomic data: Nordborg et al 2005

I 95 plants sampled world-wide (76 European individuals)

I 876 alignments of intra and inter-genic sequences (480,000 bp
for each individual)



Europe, 18Ky BP



Past demography: Wave-of-advance models



Best �tting scenario: southeastern origin, ∼ 10-12 Ky ago
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χ2 distance between the actual and simulated frequency spectra
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Summary

I Origin to the South-East of Europe (Black Sea)

I Speed ∼ 0.9km/year

I Onset of expansion ∼ 10,000 y ago

I Suggest a correlation with the expansion of Agriculture



Bayesian inference

I Parameter θ = (θ1, . . . , θJ), J ≥ 1.

I Data y = (y1, . . . , yn), n ≥ 1.

I p(θ) is the prior distribution.

I p(y |θ) is the likelihood or sampling distribution.

I We use the Bayes formula to compute the posterior
distribution

p(θ|y) = p(y |θ)p(θ)
p(y)



Inferring allele frequencies

I Prior distribution on the allele frequency: θ ∼ beta(1,1)
(uniform)

I Data: We observe the derived allele y = 9 times in a sample of
size n = 20 (frequency = .45)

I Sampling distribution

p(y |θ) = binom(n, θ)(y) ∝ θy (1− θ)n−y

I The posterior distribution is

p(θ|y) = beta(y + 1, n + 1− y)(θ).



ABC of Approximated Bayesian Computation

I Suppose that y is discrete. The rejection algorithm

Repeat

1. sample θ from the prior distribution p(θ);
2. sample ys from the sampling distribution p(y |θ);

Until (ys = y)
return(θ)

generates samples from the posterior distribution.

py (θ) =
∞∑
s=1

(1− p(y))s−1p(y , θ) = p(θ|y).



Approximate Bayesian Computation tolerates an imperfect match

I The algorithm

Repeat

1. sample θ from the prior distribution p(θ);
2. sample ys from the sampling distribution p(y |θ);

Until (|ys − y | < ε)
return(θ)

generates samples from an approximation of the posterior
distribution

pε(θ | y) ∝ Pr(|ys − y | < ε | θ)p(θ).



Exact vs approximate matching (ε = 5)

Exact match (acceptance rate = 0.045)
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Brief history of ABC

I Frequentist statistics: Implicit models (Diggle and Gratton
1984), indirect inference (Gourieroux et al 1993)

I Bayesian statistics: Tavaré et al (1997); Pritchard et al (1999)

I Termed ABC after (Beaumont et al 2002)

I ABC easy as 123?



Part 1. ABC viewed as a conditional density estimation algorithm



ABC and conditional density estimation (Beaumont et al 2002)

I Let K be the uniform distribution on (0, 1). The empirical
distribution is

p̂ε(θ | y) ∝
1

nε

n∑
s=1

K

(
|ys − y |

ε

)
δθs .

I Other kernels can be considered: Epanechnikov, Gaussian, etc

I A second kernel can be used to produced an estimate of the
conditional density



Regression adjustment on posterior estimates

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Simulated data

M
od

el
 p

ar
am

et
er

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

yo

−ε +ε

●

●

θi

θ i*

Posterior distribution

Statistical models of the relationship between ys and θ can be used
to correct the discrepancy between the simulated and observed
data.



Regression adjustment

I Linear model

θs = α+ β(y − ys) + ξs , s = 1, . . . ,Nε

where the (ys) check the condition (|y − ys | < ε).

I Fit the linear model and correct θ as follows

θ∗s = α̂+ ξs = θs − β̂(y − ys)



Adjusted values
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I Regression adjustments can signi�cantly improve the accuracy
of the approximation



Theoretical results

I Blum (2010) obtained the asymptotic bias and variance of the
estimators of the posterior distribution based on rejection
sampling and linear adjustment as nsimu →∞ (and ε→ 0).

I Much remains to be done in order to propose a method (of
practical value) for calibrating the tolerance or error rate (open
problem!).



Example: Demographic inference in population genetics:
Estimating the e�ective population size

I Coalescence time τ for 2 genes (unit = generation)

Pr(τ > k) = (1− 1/N)k



Coalescence time of 2 genes

I Di�usion approximation: If k = btNc and τ = bTNc

Pr(τ > k) = Pr(T > t)→ exp(−t)

I The coalescent: The number of ancestors in a sample of n
genes is a continuous time Markov chain on {n, . . . , 1}

λi ,i−1 =
i(i − 1)

2
i = n, . . . , 2



Mutations

I Mutation rate θ = 2µN where µ is the mutation probability
per generation

I The number of mutations in the tree is equal to the number of
polymorphic sites in the sample

Sn ∼ Poisson(θLn/2)

where Ln is the length of the tree for n genes.



Inference of the e�ective population size, N

I Data: n = 100 non-recombining DNA sequences of length
L = 1000 bp (µ = 10−3)

I Observation: S = 21 polymorphic sites

I Prior distribution on θ = 2Nµ: uniform over the interval
(0,100)

I ms command line
ms 100 10000 -t tbs < theta | samplestats > results.txt



Posterior distribution of N
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Non-linear regression and dimension reduction

I y can be of large dimension and rejection ABC methods su�er
from the curse of dimensionality

I ABC is wasteful. A typical usage may involve millions of
simulations, and it retains only a few thousands.

I Recycle the wasted data by using non-linear adjustment (Blum
and F 2010)



Non-linear regression and dimension reduction



Reducing the dimensionality of the data

I This can be achieved by many techniques

I GAM, ridge regression, lasso, projection pursuit

I Regularized feedforward neural networks (Ripley 1996)



Regression model

I Feedforward neural nets are 2-layer models

I The �rst layer performs a non-linear projection on a subspace
of lower dimensionality. Build H linear combinations from the
sample (H < d , d the dimension of the data)

sh = w0h +
d∑

k=1

wkhyk , h = 1, . . . ,H

I Perform non-linear regression on the H projections

θ = w00 +
H∑

h=1

wh0φ(sh) + error = gw (s) + error .



Regularization and correction

I Weighted (local) regularized least squares criterion

n∑
s=1

(θs − gw (ss))
2Kε(‖ss − s‖) + λ‖w‖2

I There is an automatic choice of summary statistics

I Non-linear adjustment

θ∗s = θs + gw (s)− gw (ss)



The bene�t of using non-linear models

I Back to the population genetic example

A) B)



Dimension reduction (arti�cial example)
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Part 2. Markov Chains and Sequential Monte Carlo samplers



ABC as a hierarchical model (Marjoram and Tavaré 2003)

I ABC gives �exact� inference under a di�erent model
(Wilkinson 2009)

θ ∼ p(θ) prior distribution

ys |θ ∼ p(.|θ) sampling distribution

y |ys ∼ Kε(|ys − y |) ≡ p(.|ys) error distribution

I The parameter ε may also be drawn from a prior distribution
(Bortot and Sisson 2007)



ABC with MCMC (Metropolis-Hastings)

I An iterative algorithm starting from an initial value θ1, at time
t = 1.

I At time t, the algorithm generates a candidate value θ
according to q(θ|θt), where q is some proposal distribution.

I Then it simulates a data set ys from the sampling distribution
with parameter θ, and sets θt+1 = θ with probability

α = min

{
1,Kε(|ys − y |) p(θ)q(θt |θ)

p(θt)q(θ|θt)

}
otherwise θt+1 = θ .



ABC with MCMC

I ABC-MCMC faces convergence issues (not many applications
so far)

I Sequential Monte Carlo samplers, adaptive techniques,
iterative importance sampling, o�er new horizons

I Sisson (2007) and correctors (Beaumont et al 2010, Toni et al
2009, etc...)



ABC-Population Monte Carlo (Beaumont et al 2010, Toni et al
2009)

Given a decreasing sequence of errors ε1 ≥ · · · ≥ εT = ε, and

samples of parameters θ(t) = (θ
(t)
1
, . . . , θ

(t)
N )

I At time t = 1, for i = 1, . . . ,N, simulate θ
(1)
i ∼ p(θ) and

ys ∼ p(y |θ(1)i ) until ‖ys − y‖ < ε1.

I Set ω
(1)
i = 1/N and σ2

2
= 2var(θ

(1)
i ).



ABC-Population Monte Carlo cont.

I At time 2 ≤ t ≤ T , for i = 1, . . . ,N. Repeat: select θ?i from

the θ
(t−1)
j 's with probabilities ω

(t−1)
j .

I Generate θ
(t)
i according to N(θ?i , σ

2
t ), ys ∼ p(y |θ(t)i ) until

‖ys − y‖ < εt .

I Set

ω
(t)
i ∝

p(θ
(t)
i )∑N

j=1
ω
(t−1)
j N(θ

(t)
j ; θ

(t−1)
j , σ2t )

and σ2t+1
= 2var(θ(t)) (minimize the KL divergence between

the target and the proposal).



Remarks

Importance sampling (cf Beaumont et al 2010)

I Let p̂t(θ
(t)) =

∑N
j=1

ω
(t−1)
j N(θ

(t)
j ; θ

(t−1)
j , σ2t ) .

I Let I = E [ω(t)h(θ(t))], we have

I ∝
∫ ∫

h(θ(t))
p(θ(t))

p̂(θ(t))
p̂(θ(t))p(θ(t)|y)p(θ(t−1))dθ(t)dθ(t−1)

= independent on θ(t−1)

Algorithm complexity: O(N2 × T )



Example

I Population divergence model (IM model) with 4 scaled
demographic parameters Na,N1,N2 and τdiv

I 12 summary statistics



Adaptive ABC-Sequential Monte Carlo (Del Moral et al 2008)

I Step 0. Set t = 0. For i = 1, . . . ,N, sample θ
(0)
i ∼ p(θ) and

y
k,0
s,i ∼ p(y |θ(0)i ).

I Step 1. Set t = t + 1. If εt−1 = 0 stop, otherwise choose εt
by solving the implicit equation

#{alive particles at time t} = α#{alive particles at time t−1}

where the weights depend on εt through the update rule

ω
(t)
i ∝ ω

(t−1)
i

#{accepted samples at time t − 1}
#{accepted samples at time t}

If εt < ε, then set εt = ε.



Adaptive ABC-Sequential Monte Carlo cont.

I Step 2. If ESS(ω(t)) < NT , then resample N particles from

the vector (θ(t−1), y
(t−1)
s ) with weights ω(t), and reset

ω
(t)
i = 1/N.

I Step 3. For i = 1, . . . ,N, sample

(θ(t), y
(t)
s ) ∼ Qmcmc(θ

(t−1), y
(t−1)
s , dθdys), if ω

(t)
i > 0

where Qmcmc is the ABC-MCMC transition kernel

I Return to Step 1.



Remarks

I Particular instance of SMC for state-space models (Del Moral
et al 2006)

I Relies on ABC-MCMC kernels to move the particles

I Adaptive tolerance levels (prevent the collapse of the SMC
approximation)

I Complexity O(N × T ×M)



Concluding messages

I ABC is a simulation-based method to make inference in
complex models where the likelihood is hard to compute

I Regression adjustments are essential tricks in practice (R
package available)

I SMC-ABC is a promising approach

I ABC is far from being 'easy as 123', but it can be a powerful
tool to make inferences with complex models if the steps of
Bayesian analysis are carefully applied.


