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Outline

» Short introduction to likelihood-free inference and
Approximate Bayesian Computation for complex models

» The likelihood is not available analytically: Inference is based
on Monte-Carlo simulations and summary statistics instead of
the full data

» Rejection algorithm
» Part 1: Conditional density estimation algorithm
» Part 2: An exact hierarchical Bayes model

» Application: Demographic inference in coalescent models



Example of use of computer simulations in population genetics

» The use of simulations and summary statistics has a long
tradition in population genetics

CAVALLI-SFORZA, L. L., and ZE1, G. 1967. Experiments with an artificial population. Pp. 473-
478 in J. F. Crow and J. V. NeiL (eds.), Third world congress of human genetics: pro-
ceedings. Johns Hopkins, Baltimore.

» Example: Dating the (latest) expansion of Arabidopsis thaliana
in Europe



Arabidopsis thaliana

» Model organism for plant
genetic research (flowering and
adaptation).

» Small genome: 5 chromosomes,
150 Mbp.

> Lifestyle: weedy species.




Genomic data: Nordborg et al 2005

> 95 plants sampled world-wide (76 European individuals)
» 876 alignments of intra and inter-genic sequences (480,000 bp
for each individual)
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Past demography: Wave-of-advance models
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Best fitting scenario: southeastern origin, ~ 10-12 Ky ago
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x? distance between the actual and simulated frequency spectra

Chi square statistic
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Summary

» Origin to the South-East of Europe (Black Sea)

» Speed ~ 0.9km/year

» Onset of expansion ~ 10,000 y ago

» Suggest a correlation with the expansion of Agriculture
OPEN & ACCESS Freely available online PLoS

Demographic History of European Populations of
Arabidopsis thaliana

Olivier Francois'*, Michael G. B. Blum?, Mattias Jakobsson®*, Noah A. Rosenberg®*



Bayesian inference

» Parameter 6 = (61,...,04), J > 1.
» Datay = (y1,-..,¥n), n > 1.

v

p(0) is the prior distribution.

v

p(y|0) is the likelihood or sampling distribution.

v

We use the Bayes formula to compute the posterior

distribution
p(y10)p(0)

p(Oly) = o)



Inferring allele frequencies

» Prior distribution on the allele frequency: 6 ~ beta(1,1)
(uniform)

» Data: We observe the derived allele y = 9 times in a sample of
size n = 20 (frequency = .45)
» Sampling distribution

p(y|#) = binom(n,0)(y) oc 07 (1 — 6)"
» The posterior distribution is

p(0ly) = beta(y +1,n+1— y)(6).



ABC of Approximated Bayesian Computation

» Suppose that y is discrete. The rejection algorithm

Repeat

1. sample 6 from the prior distribution p(6);
2. sample ys from the sampling distribution p(y|6);

Until (ys = y)
return(0)

generates samples from the posterior distribution.

[e.e]

py(0) = (1= p(y))* " p(y,0) = p(bly).

s=1



Approximate Bayesian Computation tolerates an imperfect match

» The algorithm

Repeat

1. sample 6 from the prior distribution p(6);

2. sample ys from the sampling distribution p(y|0);
Until (Jys — y| <€)
return(6)

generates samples from an approximation of the posterior
distribution

pe(6 | y) o< Pr(lys — y| < €] 0)p(6).



Exact
2

vs approximate matching (e = 5)

Exact match (acceptance rate = 0.045) Approximate match (acceptance rate = 0.42)
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Brief history of ABC

» Frequentist statistics: Implicit models (Diggle and Gratton
1984), indirect inference (Gourieroux et al 1993)

> Bayesian statistics: Tavaré et al (1997); Pritchard et al (1999)
» Termed ABC after (Beaumont et al 2002)
» ABC easy as 1237



Part 1. ABC viewed as a conditional density estimation algorithm



ABC and conditional density estimation (Beaumont et al 2002)

» Let K be the uniform distribution on (0,1). The empirical
distribution is

1< |)/s_}”
De — K| —— .
ZOPEY (==1)a

» Other kernels can be considered: Epanechnikov, Gaussian, etc

» A second kernel can be used to produced an estimate of the
conditional density



Regression adjustment on posterior estimates
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Statistical models of the relationship between ys and 6 can be used
to correct the discrepancy between the simulated and observed
data.



Regression adjustment

» Linear model

0520(—"_5()/_)/5)—"_557 5:17'-'7N6

where the (ys) check the condition (|y — ys| < €).
» Fit the linear model and correct 0 as follows

A
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Adjusted values

Approximate match (acceptance rate = 0.42) Adjusted values (acceptance rate = 0.42)
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» Regression adjustments can significantly improve the accuracy

of the approximation



Theoretical results

» Blum (2010) obtained the asymptotic bias and variance of the
estimators of the posterior distribution based on rejection
sampling and linear adjustment as ngmy — oo (and € — 0).

» Much remains to be done in order to propose a method (of
practical value) for calibrating the tolerance or error rate (open
problem!).



Example: Demographic inference in population genetics:
Estimating the effective population size

a «—N=10— b

T2)

T(3)

ol

Nature Reviews | Genetics

» Coalescence time 7 for 2 genes (unit = generation)

Pr(r > k) = (1 — 1/N)*



Coalescence time of 2 genes

» Diffusion approximation: If k = [tN] and 7 = | TN|
Pr(r > k) = Pr(T > t) — exp(—t)

» The coalescent: The number of ancestors in a sample of n
genes is a continuous time Markov chain on {n,... 1}




Mutations

» Mutation rate 6 = 2uN where i is the mutation probability

per generation
» The number of mutations in the tree is equal to the number of

polymorphic sites in the sample
Sp ~ Poisson(0L,/2)

where L, is the length of the tree for n genes.

MRCA
\ |

Nature Reviews | Genetics



Inference of the effective population size, N

» Data: n = 100 non-recombining DNA sequences of length
L = 1000 bp (u = 1073)
Observation: S = 21 polymorphic sites

v

v

Prior distribution on 6§ = 2Nu: uniform over the interval
(0,100)

ms command line
ms 100 10000 -t tbs < theta | samplestats > results.txt

v
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Non-linear regression and dimension reduction

» y can be of large dimension and rejection ABC methods suffer
from the curse of dimensionality

» ABC is wasteful. A typical usage may involve millions of
simulations, and it retains only a few thousands.

» Recycle the wasted data by using non-linear adjustment (Blum
and F 2010)



Non-linear regression and dimension

reduction
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Reducing the dimensionality of the data

» This can be achieved by many techniques
» GAM, ridge regression, lasso, projection pursuit
» Regularized feedforward neural networks (Ripley 1996)



Regression model

» Feedforward neural nets are 2-layer models

» The first layer performs a non-linear projection on a subspace
of lower dimensionality. Build H linear combinations from the
sample (H < d, d the dimension of the data)

d

Sh=won+ Y _Winyk, h=1,...,H
k=1

» Perform non-linear regression on the H projections

H
0 = woo + Z Who(sp) + error = gy (s) + error.
h=1



Regularization and correction

» Weighted (local) regularized least squares criterion

n

> (0 — gu(ss)PKelllss —s]l) + Allw]?

s=1

» There is an automatic choice of summary statistics

» Non-linear adjustment

05 = 0s + gw(s) — gw(ss)



The benefit of using non-linear models

» Back to the population genetic example
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Dimension reduction (artificial example)

—©— Smooth rejection

-4- Linear regression adjustment
Quadratic regression adjustment
-A-- Neural network
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Part 2. Markov Chains and Sequential Monte Carlo samplers



ABC as a hierarchical model (Marjoram and Tavaré 2003)

» ABC gives “exact” inference under a different model
(Wilkinson 2009)

0 ~ p(0) prior distribution
ys|0 ~ p(.|0) sampling distribution
ylys ~ Ke(lys — y|) = p(-lys) error distribution

» The parameter ¢ may also be drawn from a prior distribution
(Bortot and Sisson 2007)



ABC with MCMC (Metropolis-Hastings)

> An iterative algorithm starting from an initial value 6, at time
t=1.

> At time t, the algorithm generates a candidate value 6
according to q(6|6;), where g is some proposal distribution.

» Then it simulates a data set ys from the sampling distribution
with parameter 6, and sets 0;,1 = 6 with probability

p(0)q(6:|6) }

a = min {1, KF(D/S —H)W

otherwise 6;11 =6 .



ABC with MCMC

» ABC-MCMC faces convergence issues (not many applications
so far)

» Sequential Monte Carlo samplers, adaptive techniques,
iterative importance sampling, offer new horizons

» Sisson (2007) and correctors (Beaumont et al 2010, Toni et al
2009, etc...)



ABC-Population Monte Carlo (Beaumont et al 2010, Toni et al
2009)

Given a decreasing sequence of errors ¢; > -+ > e = ¢, and
samples of parameters (1) = (Hgt), . ,9%))
» Attime t =1, fori=1,..., N, simulate 9,(1) ~ p(6) and
1 )
ys ~ p(y[6%)) until [lys — y[| < e
> Set w,gl) =1/N and 03 = 2var(9,(1)).



ABC-Population Monte Carlo cont.

» Attime2 <t < T, fori=1,...,N. Repeat: select #7 from
the G}t_l)’s with probabilities w}t_l).

> Generate Hft) according to N(0%,0%), ys ~ p(y\GSt)) until
lys =yl < e
> Set
(1) p(6")

wp X 1 )
S e TN 6, 0?)

and 02 ; = 2var(A()) (minimize the KL divergence between
the target and the proposal).



Remarks

Importance sampling (cf Beaumont et al 2010)
> Let pe(00) = Nl INEY; 60V 02) .
> Let | = E[w®h(01)], we have

Oy POY) 6y o) (t=1)y y(8) (1)
I o h(6'")~ p(6'")p(6'|y)p(0'))d6\ do
p(6(®))

= independent on p(t=1)

Algorithm complexity: O(N? x T)



Example

» Population divergence model (IM model) with 4 scaled
demographic parameters N, Ny, No and 743y

> 12 summary statistics
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Fig. 2. Variability of the different alternative schemes evaluated through five replicates of the density estimates of the

posterior distributions of four identifiable parameters of the population genetics model. First line: population Monte

Carlo version; second line: tempered Markov chain Monte Carlo version; third line: Beaumont et al (2002) version

of the approximate Bayesian computation algorithm, against the reference posterior, obtained by 5 x 10° simulations
in Beaumont ct als (2002) version (dotted linc). The vertical lines identify the truc values of the parameters.



Adaptive ABC-Sequential Monte Carlo (Del Moral et al 2008)

> Step 0. Set t =0. Fori=1,...,N, sample 050) ~ p(#) and
k,0 0
Yei ™~ p(y16{).
» Step 1. Set t =t + 1. If ¢,_1 = 0 stop, otherwise choose ¢;
by solving the implicit equation
#{alive particles at time t} = a#t{alive particles at time t—1}

where the weights depend on ¢; through the update rule

(t—1) #{accepted samples at time t — 1}

i Xw;

#{accepted samples at time t}

If €; < ¢, then set ¢; = €.



Adaptive ABC-Sequential Monte Carlo cont.

» Step 2. If ESS(w(Y)) < N, then resample N particles from
the vector (G(tfl),ys(t_l)) with weights w(t), and reset
wlgt) =1/N.

» Step 3. Fori=1,..., N, sample

(H(t)a)/s(t)) ~ chmc(g(t—l)’ s(t_l), d@dys), if w[(t) >0

where Queme is the ABC-MCMC transition kernel
» Return to Step 1.



Remarks

» Particular instance of SMC for state-space models (Del Moral
et al 2006)

» Relies on ABC-MCMC kernels to move the particles

» Adaptive tolerance levels (prevent the collapse of the SMC
approximation)

» Complexity O(N x T x M)



Concluding messages

» ABC is a simulation-based method to make inference in
complex models where the likelihood is hard to compute

» Regression adjustments are essential tricks in practice (R
package available)

» SMC-ABC is a promising approach

» ABC is far from being 'easy as 123’, but it can be a powerful

tool to make inferences with complex models if the steps of
Bayesian analysis are carefully applied.



