Journées MAS, Bordeaux September 2010

The Digital Tree:

Analysis and Applications

Philippe Flajolet, INRIA Rocquencourt (F)

- A (finite) tree associated with a (finite) set of words over an alphabet A.
- Equípped with a randomness model on words, we get a random tree, indexed by the number n of words.
- Characterize its probabilistic properties, mostly with COMPLEXANALYSIS.

1. Digital Trees \& Algorithms

- DIGITAL TREE aka "TRIE":= STOP descent by pruning long one-way branches.
~Only places corresponding to 2+ words (and their immediate descendants) are kept.
~The digital tree is finite as soon as built out of distinct words.

bra...
bbb...

$$
E=\{a \ldots, b b a . . ., b b b . . .\}
$$

- TOP-DOWN construction: Set E is separated into $\mathrm{E}_{\mathrm{a}, \ldots,}, \mathrm{E}_{\mathrm{z}}$ according to initial letter; continue with next letter...
- INCREMENTAL construction: start with the empty tree and insert elements of E one after the other... (Split leaves as the need arises.)

© SUMMARY:

$$
\begin{array}{clc}
\text { Alphabet } \mathcal{A} & \mapsto & \swarrow \downarrow \\
\text { Words } \mathcal{W}=\mathcal{A}^{\infty} & \mapsto & \text { Branches } \\
\text { "Sets" (n-seq.) of words } \mathcal{W}^{n} & \mapsto & \text { Digital tree }
\end{array}
$$

Random word model on $\mathcal{W} \quad \mapsto$ Random Tree $_{n}$.

Memoryless (Bernoulli) p,q; Markov, CF

Algorithms: 1 - Dictionaries

- Manage dynamically dictionaries; hope for \underline{O} $(\log n)$ depth?
- Save space by "factoring" common prefixes; hope for $O(n)$ size?
- However, worst-case is unbounded...

(Fredkin, de la Briandais ~1960)

Analysis?

A random trie on $n=500$ uniform binary sequences; size $=741$ internal nodes; height=18

Algorithms:

- Data may be highly structured and share long prefixes. Use a transformation

$$
h: W \rightarrow W^{\prime}
$$

called "hashing" (akin to random number generators.)

- Uniform binary data are meaningful!

Analysis?

Algorithms: 3 -Paging

- Data may be accessible by blocks, e.g., pages on disc. Stop recursion as soon as "b" elements are isolated (standard: $b=1$).
- Combine with hashing = get index structure.

Analysis?

Algorithms: 4-MultiDim

- Data may be multidimensional \& numeric/ geometric.

Analysis?

Algorithms: 5-Communication

- Data may be distributed and accessible only via a common channel (network).
- Everybody speaks at the same time; if noise, then SPLIT according to individual coin flips.

tree protocol

Analysis?

2. Expectations

- Bernoulli vs Poisson models
- Mellin technology
- Fluctuations and error terms

Theorem (Knuth + De Bruijn, 1965 +)
For n uniform binary words:

- Expected number of internal nodes (size) \bar{S}_{n} is such that \bar{S}_{n} / n has no limit; it fluctuates with amplitude about 10^{-6} :

$$
\frac{\bar{S}_{n}}{n} \approx \frac{1}{\log 2} \pm 10^{-6}
$$

- Expected depth \bar{D}_{n} of a random leaf satisfies

$$
\bar{D}_{n}=\log _{2} n+O(1)
$$

(Proof in a "modernized" version follows...)

Algebra...

- Assumption 1. the number N of elements is Poisson (x).
- Assumption 2: a binary alphabet with probabilities p, q.

Let $\sigma(E)$ be the number of internal nodes in the tree:

$$
\sigma(E):=\mathbf{1}_{[\# E \geq 2]}+\sigma\left(E_{0}\right)+\sigma\left(E_{1}\right) .
$$

Let $S(x):=\mathbb{E}_{\mathcal{P}(x)}(\sigma)$. Since thinning of a $\mathcal{P}(x)$ by a Bernoulli RV of parameters p, q gives $\mathcal{P}(p x), \mathcal{P}(q x)$:

$$
S(x)=\left[1-(1+x) e^{-x}\right]+S(p x)+S(q x) .
$$

Algebra...

Solving by iteration

$$
S(x)=g(x)+S(p x)+S(q x)
$$

yields, e,g., with $p=q=\frac{1}{2}$ and $g(x)=1-(1+x) e^{-x}$, for size:

$$
S(x)=\sum_{k \geq 0} 2^{k} g\left(\frac{x}{2^{k}}\right)
$$

In general, get $S(x)=\sum_{k, \ell}\binom{k+\ell}{k} g\left(p^{k} q^{\ell} x\right) \equiv \sum_{w \in\{0,1\}^{*}} g\left(p_{w} x\right)$.

With \bar{S}_{n} the expected tree size when the tree contains n elements and $S(x)$ the Poisson expectation:

$$
S(x)=\sum_{n \geq 0} \bar{S}_{n} e^{-x} \frac{x^{n}}{n!}
$$

The Poisson expectation $S(x)$ is like a generating function of $\left\{\bar{S}_{n}\right\}$. Go back - "depoissonize" - by Taylor expansion. E.g.:

$$
\left.\bar{S}_{n}=\sum_{k}\left[1-\left(1-\frac{1}{2^{k}}\right)^{n}-\frac{n}{2^{k}}\left(1-\frac{1}{2^{k}}\right)^{n-1}\right]\right] \quad p=q=\frac{1}{2}
$$

Many variants are possible and one can justify that $\bar{S}_{n}=S(x)+$ small when $x=n$. (elementary)

Analysis...

The Mellin transform

$$
f(x) \quad \mathcal{M} \quad f^{\star}(s):=\int_{0}^{\infty} f(x) x^{s-1} d x
$$

(It exists in strips of \mathbb{C} determined by growth of $f(x)$ at $0,+\infty$.)

Property 1. Factors harmonic sums:

$$
\sum_{(\lambda, \mu)} \lambda f(\mu x) \stackrel{\mathcal{M}}{\rightsquigarrow}\left(\sum_{(\lambda, \mu)} \lambda \mu^{-s}\right) \cdot f^{\star}(x) .
$$

Property 2. Maps asymptotics of f on singularities of f^{\star} :

$$
f^{\star} \approx \frac{1}{\left(s-s_{0}\right)^{m}} \quad \Longrightarrow \quad f(x) \approx x^{-s_{0}}(\log x)^{m-1}
$$

Proof of $\mathbf{P}_{\mathbf{2}}$ is from Mellin inversion + residues:

$$
f(x)=\frac{1}{2 i \pi} \int_{c-i \infty}^{c+i \infty} f^{\star}(s) x^{-s} d s
$$

Mellin and Tries

$$
p=q=1 / 2: S(x)=\sum_{k} 2^{k} g\left(x / 2^{k}\right), \text { with } g(x)=1-(1+x) e^{-x}
$$

- Harmonic sum property:

$$
S^{\star}(s)=-\left(\sum 2^{k} 2^{k s}\right) \cdot(s+1) \Gamma(s)=\frac{-\Gamma(s)(s+1)}{1-2^{1+s}} .
$$

- Mapping properties: S^{\star} exists in $-2<\Re(s)<-1$. Poles at $s_{k}=-1+2 i k \pi / \log 2$, for $k \in \mathbb{Z}$.

$$
\begin{array}{ccc}
\text { Location of pole }\left(s_{0}\right) & \rightsquigarrow & \text { Asymptotics of } f(x) \approx x^{-s_{0}} \\
s_{0}=\sigma+i \tau & \rightsquigarrow & x^{-\sigma} e^{i \tau \log x} \\
\hline
\end{array}
$$

Theorem (Knuth + De Bruijn, 1965+)

For n uniform binary words, $p=q=\frac{1}{2}$:

- Expected number of binary nodes (size) \bar{S}_{n} is such that \bar{S}_{n} / n has no limit; it satisfies

$$
\bar{S}_{n}=\frac{n}{\log 2}+n P\left(\log _{2} n\right)+O(1)
$$

where $P(u)$ is a Fourier series of amplitude about 10^{-6}.
Proof above is for Poisson expectation; it transfers to $\overline{S_{n}}$. Also, things work similarly for depth: $\bar{D}_{n}=\log _{2} n+Q\left(\log _{2} n\right)+o(1)$.

Memoryless sources (I)

Correspond to $p \neq q$. Dirichlet series is $\frac{1}{1-p^{-s}-q^{-s}}$.

Theorem (Knuth 1973; Fayolle, F., Hofri 1986, ...)

Let $H:=p \log p^{-1}+q \log q^{-1}$ be the entropy.

- In the periodic case, $\frac{\log p}{\log q} \in \mathbb{Q}$, there are fluctuations in \bar{S}_{n}.
- In the aperiodic case, $\frac{\log p}{\log q} \notin \mathbb{Q}$:

$$
\bar{S}_{n} \sim \frac{n}{H} \quad \text { and } \quad \bar{D}_{n} \sim \frac{1}{H} \log n,
$$

Philippe Robert \& Hanene Mohamed relate this to the periodic/aperiodic dichotomy of renewal theory (2005+).

Memoryless sources (II)

- The geometry of poles of $\frac{1}{1-p^{-5}-q^{-5}}$ intervenes.
- This geometry relates to Diophantine properties of $\alpha:=\frac{\log p}{\log q}$

Theorem (F., Roux, Vallée, 2010)

If α has a finite irrationality measure, then $\exists \theta$:

$$
\left.S_{n}=\frac{n}{H}+O\left(\exp \left(-(\log n)^{1 / \theta}\right)\right)\right), \quad \theta>1 .
$$

Such is the case for almost all $p \in(0,1)$ and all rational $p \neq \frac{1}{2}$.

Definition (Irrationality measure)

The number $\alpha \notin \mathbb{Q}$ has irrationality measure $\leq m$ iff the number of
 solutions of $\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{m}}$ is finite.

Hiractal Geometiy, Complex Dimensions and Zeta Functions

3. Distributions

- Analytic depoissonization \&
saddle-points
- Gaussian laws ...

Saddle-points \& analytic depoissonization

Height H of a b-trie (cf paging) with uniform binary words.
$\mathbb{P}_{n}(H \leq h)=n!\cdot$ coeff. $\left[z^{n}\right] e_{b}\left(\frac{z}{2^{h}}\right)^{2^{h}}, \quad e_{b}(z):=1+\frac{z}{1!}+\cdots+\frac{z^{b}}{b!}$.

- Cauchy: $\left[z^{n}\right] f(z)=\frac{1}{2 i \pi} \int_{\gamma} f(z) \frac{d z}{z^{n+1}}$.
+ Saddle-point contour: concentration + local expansions.

= Throw n balls

 into 2^{h} buckets, each of capacity b

Theorem (F. 1983)

The expected height of a b-trie is $\sim(1+1 / b) \log _{2} n$. The size of the perfect tree embedding satisfies $\mathbb{E}\left(2^{H}\right) \asymp n^{1+1 / b}$. The distribution is of of double-exponential type $F(x)=e^{-e^{-x}}$, with periodicities.

Analytic depoissonization

Theorem (Jacquet-Szpankowski 1995+)

Let $X(\lambda)$ be a Poissonized expectation. Need X_{n}, which corresponds to conditioning upon Poisson $R V=n$. Assume:
(i) $X(\lambda)$ for complex λ near real axis has standard asymptotics;
(ii) $e^{\lambda} X(\lambda)$ is "small" in complex plane, away from real axis.

Then the Poisson approximation holds: \square
$X_{n} \sim X(n)$

Proof: use Poisson expectation as a GF, plus Cauchy, plus saddle-point.

DISTRIBUTIONS: size, depth, and path-length

Theorem (Jacquet-Régnier-Szpankowski, 1990++)
For general (p, q), the distribution of size is asymptotically normal. The depth of a random leaf is asymptoticaly normal, if $p \neq q$. The depth of a random leaf is asymptotically $\approx e^{-e^{-x}}$, if $p=q$. The path-length ($\equiv \sum$ depths) is asymptotically normal.

$$
(p=q=1 / 2)
$$

- Start with bivariate generating function $F(z, u)$.
- Analyse log
- Analyse perturbation near u=1.
- Use analytic depoissonization
- Conclude by continuity theorem for characteristic fns.

$$
F(z, u)=u F\left(\frac{z}{2}, u\right)^{2}+(1-u)(1+z)
$$

$$
\log F(z, u)=2 \log (F(z / 2, u)+\cdots
$$

$$
\log F\left(z, e^{i t}\right) \approx z+i \mu_{z} t-\frac{1}{2} \sigma_{z}^{2} t^{2}+\cdots
$$

$$
\operatorname{get}\left[z^{n}\right] F\left(z, e^{i t}\right) \approx \cdots
$$

$$
\mathbb{E}\left[e^{i t S_{n}}\right] \rightsquigarrow e^{-t^{2} / 2}
$$

(case of size, $p=q=1 / 2$)

Profile of tries, after Szpankowski et al.

+ Cesaratto-Vallée 2010+

4. General sources

- Comparing and sorting real numbers
- Continued fractions
- Fundamental intervals...

Comparing numbers \& sorting by continued fractions

$$
\operatorname{sign}\left(\frac{a}{b}-\frac{c}{d}\right)=\operatorname{sign}(a d-b c)
$$

Requires double precision and/or is unstable with floats.
(Computational geometry, Knuth's Metafont, . . .)
\rightsquigarrow Hakmem Algorithm (Gosper, 1972)

$$
\frac{36}{113}=\frac{1}{3+\frac{1}{7+\frac{1}{5}}}, \quad \frac{113}{355}=\frac{1}{3+\frac{1}{7+\frac{1}{16}}}
$$

Theorem (Clément, F., Vallée 2000+)
Sorting with continued fractions: mean path length of trie is

$$
\begin{gathered}
K_{0} n \log n+K_{1} n+Q(n)+K_{2}+o(1), \\
K_{0}=\frac{6 \log 2}{\pi^{2}}, \quad K_{1}=18 \frac{\gamma \log 2}{\pi^{2}}+9 \frac{(\log 2)^{2}}{\pi^{2}}-72 \frac{\log 2 \zeta^{\prime}(2)}{\pi^{4}}-\frac{1}{2} .
\end{gathered}
$$

and $Q(n) \approx n^{1 / 4}$ is equivalent to Riemann Hypothesis.
[Vallée 1997++]

- View source model in terms of
fundamental intervals:

- Revisit the analysis of tries (e.g, size)
- Mellinize:

\section*{| 0 | 1 |
| :--- | :--- |}

0001

$$
\left\{\begin{array}{l}
E_{\mathcal{P}(x)}[\text { Size }]=\sum_{w \in \mathcal{A}^{*}} g\left(p_{w} x\right) \\
g(x)=1-(1+x) e^{-x} .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
S^{\star}(s)=-(s+1) \Gamma(s) \wedge(s) \\
\Lambda(s):=\sum_{w} p_{w}^{-s}
\end{array}\right.
$$

- For expanding maps T, fundamental intervals are generated by a transfer operator.
- For binary system
(+Markov) and continued fractions,

$$
\mathcal{G}_{s}[f](x)=\sum_{h \in T(-1)} h^{\prime}(x)^{s} f \circ h(x) .
$$

simplifications occur.

$$
\left\{\begin{array}{l}
\Lambda(s)=\frac{1}{1-p^{-s}-q^{-s}} \\
\Lambda(s)=\cdots \frac{\zeta^{-+}(s, s)}{\zeta(2 s)} .
\end{array}\right.
$$

- ...and Nörlund integrals complete the job!
- Poisson

$$
A(x)=\sum_{n} a_{n} e^{-x} \frac{x^{n}}{n!}
$$

- + Mellin = Newton

$$
\begin{aligned}
& A^{\star}(s)=\Gamma(s) \sum_{n} a_{n} \frac{s(s+1) \cdots(s+n-1)}{n!} \\
& a_{n}=\frac{1}{2 i \pi} \int A^{\star}(-s) \frac{n!d s}{s(s+1) \cdots(s+n-1)}
\end{aligned}
$$

- \rightarrow Nörlund
= fixed-n model
cf [F. Sedgewick 1995]
Q.E.D.

5. Other trie algorithms

- Leader election
- The tree communication protocol
- "Patricía" trees
- Data compression: Lempel-Zív...
- Probabilistic counting
- Quicksort is O(n $\left.(\log n)^{2}\right) \ldots$

Leader election =

leftmost boundary of a random trie (1/2,1/2).

Theorem (Prodinger-Fill-Mamoud-Szpankowski)
The number R_{n} of rounds satisfies

$$
\mathbb{P}\left(R_{n} \leq\left\lfloor\log _{2} n\right\rfloor+k\right) \sim \frac{\beta(n) 2^{-k}}{\exp \left(\beta(n) 2^{-k}\right)-1},
$$

where $\beta(n):=n / 2^{\left\lfloor\log _{2} n\right\rfloor}$. There is a family of limit distributions based on $\left\{\log _{2} n\right\}$, not a single distribution.

Proof: tree decompositions + Mellin...

tree protocol = trie with arrivals

$$
\psi(z)=\tau(z)+\psi(\lambda+p z)+\psi(\lambda+q z) .
$$

Theorem (Fayolle, Flajolet, Hofri; Robert-Mohamed 2010)
The tree protocol, with $p=q=1 / 2$ is stable till arrival rate $\lambda_{0}=0.36017$, root of

$$
-\frac{1}{2}=\frac{e^{-2 y}}{1-2 y} \sum_{j \geq 0} 2^{j} h\left(\frac{y}{2^{j}}\right), \quad h(y) \equiv e^{-2 y}\left[e^{-y}(1-y)-1+2 y+2 y^{2}\right]
$$

A curiosity (cf Mellin):

-0.24999 99 99 9998211
(= $-1 / 2+10^{-211}$: there are 208 consecutive nines)

