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Introduction

Stochastic billiards on general tables: a particle moves according to its
constant velocity inside some domain D ⊂ Rd until it hits the boundary and
bounces randomly inside according to some reflection law.
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Introduction

Stochastic billiards on general tables: a particle moves according to its
constant velocity inside some domain D ⊂ Rd until it hits the boundary and
bounces randomly inside according to some reflection law.

Kinetic theory of gases: Knudsen [1952]
Diffusion in nanopores: Coppens + Malek [2003], Coppens + Dammers
[2006]
Feres [2007]: dynamical systems and ergodic theory
Lalley + Robbins [1987, 1988]: convex D and cosine law. “princess and
monster”
S. Evans [2001]: C1 boundary or polygon, uniform reflection law
Borovkov [1991, 1994], Romeijn [1998]: Monte Carlo Markov chains
algorithm (“running shake-and-bake algorithm”)
Goldstein, Kipnis, Ianiro [1985]: a mechanical particle system with stochastic
boundary conditions

Our emphasis: we consider general domains
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Billiard table

D ⊂ Rd open connected domain, with boundary ∂D locally Lipschitz and
almost everywhere continuously differentiable:

1– ∀x ∈ ∂D, we can rotate ∂D so that it is locally the graph of a Lipschitz
function.

2– ∃ R ⊂ ∂D open such that ∂D is continuously differentiable on R and the
(d−1)-dimensional Hausdorff measure of ∂D \ R is equal to zero.
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Reflection law for stochastic billiard

Outgoing direction is random, with density (in the relative frame) γ on the
open half sphere Se = {u ∈ Rd : |u| = 1, u · e > 0}, with e = the first unit
vector, such that

inf
K
γ > 0 ∀K compact ⊂ Se

Main example for γ: cosine density,

γ(u) = γd e · u on half sphere Se

cf Knudsen [1952].
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Figure: Bounce at x ∈ ∂D in dimension d = 2. The outgoing direction u is such that its
angle ϕx (u) with the normal n(x) has density γ; independent of the ingoing direction.
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Construction of KRW and KSB:

... standard way, with an i.i.d. sequence of law γ on Se.

☛ Knudsen Random Walk (KRW) (ξn, n ≥ 0) = sequence of impacts on
the boundary.
Markov chain in {∂D,∞,S}.
Note:: Start from ξ0 ∈ R. Then, with probability 1, ξ does not enter S.

☛ Knudsen Stochastic billiard: time-continuous process moving at speed 1.
Is defined for all times, a.s..
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Change the variable

β
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Figure: du = ‖x − y‖−(d−1) cos β dy
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Transition kernel for the random walk

Changing variable from u ∈ Se to y = hx (Uxu), we get for x ∈ R,

P[ξn+1 ∈ A | ξn = x] =

Z

A
K (x , y) dy ,

where dy is the surface measure on ∂D and

K (x , y) =
γ(U−1

x
y−x

‖y−x‖ ) cos ̂(n(y), y − x)

‖x − y‖d−1
1{x , y ∈ R, x ↔ y}

where we write x ↔ y (see each other) if the open segment (x , y) ⊂ D.
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Transition kernel for Knudsen random walk

For γ = Cosine law, the transition density is then

K (x , y) = γd

`

(y − x) · n(x)
´`

(x − y) · n(y)
´

‖x − y‖d+1
1{x , y ∈ R, x ↔ y}

symmetric ! The surface measure dx on ∂D is reversible,

dx K (x ,dy) = dy K (y , dx),

and then invariant.
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Le paradoxe de Bertrand, 1889

Comment choisir une corde au hasard sur un domaine D du plan ?
Probabilité pour que la corde soit plus longue que le coté du triangle
équilateral inscrit ?
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Dans le cas du disque, Joseph Bertrand propose plusieurs constructions
”raisonables”:

B

A

O

M

M

Figure: (1)– Extrémités au hasard: p = 1/3.

(2)– Rayon au hasard: ; le milieu M de la corde est tel que direction et longueur de
−−→
OM

sont indépendants uniformes: p = 1/2
(3)– M uniformément distribué dans le disque: p = 1/4
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Bertrand, la corde et la loi du cosinus

✏ Y a-t-il une unique solution ”correcte” ? Si oui, laquelle ?

Après Bertrand 1889, d’autres se sont penchés sur le paradoxe, dont Borel
1909, Poincaré 1912, Gnedenko 1962, Kendall and Moran 1963, von Mises
1957-64... Seul Borel exprime une préference (sans donner de raison), au
contraire de Von Mises qui écrit que ce genre de question (comme celle de
l’aiguille de Buffon) n’est pas du resort des probabilités; les autres se
contentent de dire que la question n’a pas de réponse précise en l’absence
d’une définition du mot ”au hasard”.
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Bertrand, la corde et la loi du cosinus

✏ Y a-t-il une unique solution ”correcte” ? Si oui, laquelle ?

Après Bertrand 1889, d’autres se sont penchés sur le paradoxe, dont Borel
1909, Poincaré 1912, Gnedenko 1962, Kendall and Moran 1963, von Mises
1957-64... Seul Borel exprime une préference (sans donner de raison), au
contraire de Von Mises qui écrit que ce genre de question (comme celle de
l’aiguille de Buffon) n’est pas du resort des probabilités; les autres se
contentent de dire que la question n’a pas de réponse précise en l’absence
d’une définition du mot ”au hasard”.

En 1973 Edwin Jaynes a proposé de choisir ”la bonne réponse” suivant un
principe de minimum d’information (entropie). En demandant que la
distribution de la corde au hasard soit invariante par homothétie et
translation, le problème devient bien posé, et admet pour solution unique la
construction du ”rayon aléatoire”.
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Bertrand, la corde et la loi du cosinus

✏ Y a-t-il une unique solution ”correcte” ? Si oui, laquelle ?

Après Bertrand 1889, d’autres se sont penchés sur le paradoxe, dont Borel
1909, Poincaré 1912, Gnedenko 1962, Kendall and Moran 1963, von Mises
1957-64... Seul Borel exprime une préference (sans donner de raison), au
contraire de Von Mises qui écrit que ce genre de question (comme celle de
l’aiguille de Buffon) n’est pas du resort des probabilités; les autres se
contentent de dire que la question n’a pas de réponse précise en l’absence
d’une définition du mot ”au hasard”.

En 1973 Edwin Jaynes a proposé de choisir ”la bonne réponse” suivant un
principe de minimum d’information (entropie). En demandant que la
distribution de la corde au hasard soit invariante par homothétie et
translation, le problème devient bien posé, et admet pour solution unique la
construction du ”rayon aléatoire”.
Nota: l’angle entre la corde et la tangente a densité proportionnelle à son
cosinus.

✏ Le billard stochastique avec la loi du cosinus étend cette construction au
cas d’un domaine général.
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Asymptotics on a bounded table (for a general γ)

Suppose that
diam(D) <∞

By the Lipschitz assumption, this implies that |∂D| <∞.
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Asymptotics on a bounded table (for a general γ)

Suppose that
diam(D) <∞

By the Lipschitz assumption, this implies that |∂D| <∞.

Theorem

(i) There exists a unique probability measure µ̂ on ∂D which is invariant for
the random walk ξn. Moreover, d µ̂ << dx.

(ii) ‖P[ξn ∈ ·] − µ̂‖v ≤ β0e−β1n (‖ · ‖v = total variation distance).

(iii) Central Limit Theorem: ∀A ⊂ ∂D measurable there exists σA (σA > 0 if
0 < |A| < |∂D|) such that

n−1/2
“

n
X

i=1

1{ξi ∈ A} − nµ̂(A)
”

law−→ N (0, σ2
A)

For the cosine law, the theorem holds with d µ̂ = |∂D|−1dx uniform on ∂D.
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Asymptotics on a bounded table (for a general γ)

Suppose that
diam(D) <∞

By the Lipschitz assumption, this implies that |∂D| <∞.

Theorem

(i) There exists a unique probability measure µ̂ on ∂D which is invariant for
the random walk ξn. Moreover, d µ̂ << dx.

(ii) ‖P[ξn ∈ ·] − µ̂‖v ≤ β0e−β1n (‖ · ‖v = total variation distance).

(iii) Central Limit Theorem: ∀A ⊂ ∂D measurable there exists σA (σA > 0 if
0 < |A| < |∂D|) such that

n−1/2
“

n
X

i=1

1{ξi ∈ A} − nµ̂(A)
”

law−→ N (0, σ2
A)

For the cosine law, the theorem holds with d µ̂ = |∂D|−1dx uniform on ∂D.
� Check Döblin condition: there exist n, ε > 0 such that for all x , y ∈ R

K n(x , y) ≥ ε (1)

�
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Inheritance by induced chords for KRW (cosine law)

Let D′ ⊂ D convex.

The stationary KRW (ξn)n in D provides a random chord (ξ1, ξ2) on D.
Conditionally on the chord hitting the domain D′, it intersects D′ according to
an “induced” random chord (ξ′1, ξ

′
2).
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Inheritance by induced chords for KRW (cosine law)

Let D′ ⊂ D convex.

The stationary KRW (ξn)n in D provides a random chord (ξ1, ξ2) on D.
Conditionally on the chord hitting the domain D′, it intersects D′ according to
an “induced” random chord (ξ′1, ξ

′
2).

Theorem

The induced chord has the same law (relative to D′) as the original one
(relative to D)

Nice inheritance property!

(A more complicated but similar one holds for non-convex D′.)
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Context

Billiard with finite horizon: distance between bounces is uniformly bounded.
(Ex: Sinaı̈ billiard on the triangular lattice with a

√
3/4 < r < a/2.)

r

a

Deterministic billiard. Bunimovich, Sinaı̈, Chernov [1991]: probability of initial
conditions (in the unit cell) s.t. t−1/2X (t) ∈ O open bounded → gaussian
measure of O.

Stochastic Sinaı̈ billiard: Bardos, Dumas, Golse [1997] prove t−1/2X (t)
converges to a diffusion.
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Context

Billiard with finite horizon: distance between bounces is uniformly bounded.
(Ex: Sinaı̈ billiard on the triangular lattice with a

√
3/4 < r < a/2.)

r

a

Deterministic billiard. Bunimovich, Sinaı̈, Chernov [1991]: probability of initial
conditions (in the unit cell) s.t. t−1/2X (t) ∈ O open bounded → gaussian
measure of O.

Stochastic Sinaı̈ billiard: Bardos, Dumas, Golse [1997] prove t−1/2X (t)
converges to a diffusion.

How can we go beyond periodic domains and still understand diffusivity ?
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Infinite horizontal “tube”

To understand diffusivity properties of billard in a table D = ω, which is
infinite in the first direction, write x = (α, u):
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Infinite horizontal “tube”

To understand diffusivity properties of billard in a table D = ω, which is
infinite in the first direction, write x = (α, u):

0

(α, u)

Λ

nω(α, u)

ωα

ω

rω(α, u)

e

Figure: Random tube. Inwards, normal vectors nω(x) = nω(α, u) ∈ Sd−1 and
rω(x) = rω(α, u) ∈ Sd−2.
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Random tube = random environment

Any tube ω = (ωα, α ∈ R) is seen as the process of its sections

ω = {(α, u) ∈ R
d : u ∈ ωα}

Let E to be the set of all open domains A ⊂ Rd−1 contained in a fixed ball,

A ⊂ Λ := {u ∈ R
d−1 : ‖u‖ ≤ M}.

Let Ω = C(R → E) “space of tubes” (equipped with the distance
ρ(A,B) = |(A \ B) ∪ (B \ A)| on E and cylinder sigma-algebra).
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Random tube = random environment

Any tube ω = (ωα, α ∈ R) is seen as the process of its sections

ω = {(α, u) ∈ R
d : u ∈ ωα}

Let E to be the set of all open domains A ⊂ Rd−1 contained in a fixed ball,

A ⊂ Λ := {u ∈ R
d−1 : ‖u‖ ≤ M}.

Let Ω = C(R → E) “space of tubes” (equipped with the distance
ρ(A,B) = |(A \ B) ∪ (B \ A)| on E and cylinder sigma-algebra).
Assume

ω ∼ P,

with P a probability measure on Ω, stationary and ergodic (w.r.t. shifts in α).
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Random tube: assumptions, notations

Assumptions: P-a.s., ω is open, connected, and:
(L) ∂ω is Lipschitz with uniform constants
(R) {x ∈ ∂ω : ∂ω is C1 in x , |nω(x) · e| 6= 1} has full measure Hd−1-measure
(P) Points on the boundary which are close, communicate ”well” and ”quickly”:
∃N, ε, δ: P-a.s., ∀x , y ∈ R with |(x − y) · e| ≤ 2,∃B1, . . . ,Bn ⊂ ∂ω, n ≤ N with
νω(Bi) ≥ δ(i = 1, . . . , n), s.t.

K (x , z) ≥ ε for all z ∈ B1, K (y , z) ≥ ε for all z ∈ Bn,

K (z, z′) ≥ ε for all z ∈ Bi , z′ ∈ Bi+1, i = 1, . . . , n − 1
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Random tube: assumptions, notations

Assumptions: P-a.s., ω is open, connected, and:
(L) ∂ω is Lipschitz with uniform constants
(R) {x ∈ ∂ω : ∂ω is C1 in x , |nω(x) · e| 6= 1} has full measure Hd−1-measure
(P) Points on the boundary which are close, communicate ”well” and ”quickly”:
∃N, ε, δ: P-a.s., ∀x , y ∈ R with |(x − y) · e| ≤ 2,∃B1, . . . ,Bn ⊂ ∂ω, n ≤ N with
νω(Bi) ≥ δ(i = 1, . . . , n), s.t.

K (x , z) ≥ ε for all z ∈ B1, K (y , z) ≥ ε for all z ∈ Bn,

K (z, z′) ≥ ε for all z ∈ Bi , z′ ∈ Bi+1, i = 1, . . . , n − 1

Notations:
µω

α = restriction of (d − 2)-dimensional Hausdorff measure on ∂ωα

νω = restriction of (d − 1)-dimensional Hausdorff measure on ∂ω

Disintegration formula: with x = (α, u),

dνω(x) = κ−1
α,u dµω

α(u) dα , κα,u = nω(x) · rω(x).
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What we prove: from now on, γ= cosine density

Denote by Pω the quenched law, i.e. the law of KRW in the environment ω

Theorem

Let d ≥ 3. Then, P-a.s., we have under the quenched law Pω,

n−1/2ξn · e law−→ N (0, σ2)

and a similar result for continuous time stochastic billiard.

Paradigm: KRW is “alike” RW in RE, d = 1, with random conductances.



Stochastic billiard on a general table Long time behavior in the compact case Diffusive behavior in an infinite random tube Ballistic regime for Stochastic billiard

U = projection on Rd−1. Define the environment as seen from the walker:
`

(θξn·eω,Uξn), n ≥ 0
´

with state space
S = {(ω, u) : ω ∈ Ω, u ∈ ∂ω0}

Note: environment consists not only in tube with an appropriate horizontal
shift, but also in the transverse component of the walk.

Markov chain with transition operator G,

Gf (ω, u) = Eω(f (θξ1·eω,Uξ1) | ξ0 = (0, u))

=

+∞
Z

−∞

dα
Z

Λ

dµω
α(v)κ−1

α,v f (θαω, v)K (0,u;α, v).
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Environment viewed from the particle:

Proposition

The probability measure Q on S

dQ(ω, u) =
1
Z κ

−1
0,u dµω

0 (u) dP(ω)

is reversible for G (hence invariant), i.e.
˙

g,Gf
¸

Q
=

˙

f ,Gg
¸

Q
. Moreover, the

(stationary) Markov process of environment viewed from the particle is
ergodic.

Define the local drift and the second moment of the jump (projected on the
horizontal direction):

∆β(ω,u) = Eω

`

(ξ1 − ξ0) · e | ξ0 = (β, u)
´

bβ(ω,u) = Eω

`

((ξ1 − ξ0) · e)2 | ξ0 = (β, u)
´

Then,
˙

∆β

¸

Q
= 0.
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Our Results

By invariance,
˙

bβ

¸

Q
does not depend on β.

Theorem (Quenched Invariance Principle)

Assume
˙

bβ

¸

Q
<∞. (2)

Then, ∃σ > 0 such that for P-almost all ω and any starting point, the
polygonal interpolation of n

m 7→ m−1/2ξn · e converges as m → ∞ in law,
under Pω, to the Brownian motion with diffusion coefficient σ.
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Our Results

By invariance,
˙

bβ

¸

Q
does not depend on β.

Theorem (Quenched Invariance Principle)

Assume
˙

bβ

¸

Q
<∞. (2)

Then, ∃σ > 0 such that for P-almost all ω and any starting point, the
polygonal interpolation of n

m 7→ m−1/2ξn · e converges as m → ∞ in law,
under Pω, to the Brownian motion with diffusion coefficient σ.

Proposition

If d ≥ 3, then condition (2) holds.
If d = 2 and if ∃S ⊂ Λ interval s.t. R × S ⊂ ω for P-a.a. ω, then (2) does not
hold.

Remark: if d = 2 it may happen that (2) holds. For ex., in case of uniformly
bounded jumps.
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Ideas of proof of Diffusivity

Condition (2) is known to imply the Invariance Principle under the annealed
law:
Kipnis, Varadhan (1986), De Masi, Ferrari, Goldstein, Wick (1989).
But we want more. . .
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Ideas of proof of Diffusivity

Condition (2) is known to imply the Invariance Principle under the annealed
law:
Kipnis, Varadhan (1986), De Masi, Ferrari, Goldstein, Wick (1989).
But we want more. . .

(i) Construct a corrector: ∃ψ : M = {(ω,u, y) : ω ∈ Ω, u ∈ ∂ω0, y ∈ ∂ω} → R

such that
ξn · e + ψ(ω,u, ξn)

is a martingale under the quenched law Pω (for all u ∈ ∂ω0).
Using condition (2), ψ can be obtained as an orthogonal projection on the
space of gradients (Kozlov’85, Landim-Olla’08, Mathieu-Piatniski’07,
Biskup-Prescott’07).
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Ideas of proof of Diffusivity

Condition (2) is known to imply the Invariance Principle under the annealed
law:
Kipnis, Varadhan (1986), De Masi, Ferrari, Goldstein, Wick (1989).
But we want more. . .

(i) Construct a corrector: ∃ψ : M = {(ω,u, y) : ω ∈ Ω, u ∈ ∂ω0, y ∈ ∂ω} → R

such that
ξn · e + ψ(ω,u, ξn)

is a martingale under the quenched law Pω (for all u ∈ ∂ω0).
Using condition (2), ψ can be obtained as an orthogonal projection on the
space of gradients (Kozlov’85, Landim-Olla’08, Mathieu-Piatniski’07,
Biskup-Prescott’07).
(ii) Apply CLT to this martingale.
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Ideas of proof of Diffusivity

Condition (2) is known to imply the Invariance Principle under the annealed
law:
Kipnis, Varadhan (1986), De Masi, Ferrari, Goldstein, Wick (1989).
But we want more. . .

(i) Construct a corrector: ∃ψ : M = {(ω,u, y) : ω ∈ Ω, u ∈ ∂ω0, y ∈ ∂ω} → R

such that
ξn · e + ψ(ω,u, ξn)

is a martingale under the quenched law Pω (for all u ∈ ∂ω0).
Using condition (2), ψ can be obtained as an orthogonal projection on the
space of gradients (Kozlov’85, Landim-Olla’08, Mathieu-Piatniski’07,
Biskup-Prescott’07).
(ii) Apply CLT to this martingale.
(iii) Show that the corrector can be neglected using the ergodic theorem �
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Easy proofs of finite/infinite norm

(i) Elementary proof of (2) for d ≥ 4:

|{s ∈ Sd−1 : x + hs ∈ R × Λ}| = O(h−(d−1)) as h → ∞,

uniformly in x ∈ R × Λ. This integrate h, so
˙

bβ

¸

Q
<∞.
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Easy proofs of finite/infinite norm

(i) Elementary proof of (2) for d ≥ 4:

|{s ∈ Sd−1 : x + hs ∈ R × Λ}| = O(h−(d−1)) as h → ∞,

uniformly in x ∈ R × Λ. This integrate h, so
˙

bβ

¸

Q
<∞.

Want to use what we know for straight cylinders. . .

(ii) Case d = 2 and ω contains an infinite straight strip of height r > 0, P-a.s.
Simple calculation for the strip: the expected squared length of a chord is
infinite. We use the property of induced chords to deduce that

˙

bβ

¸

Q
= ∞.
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ξ0

ξ1

r

Υ0

Υ1

e
η

n̂

|(Υ1 − Υ0) · e|

∂ω

Figure: d = 2, ω containing an infinite straight strip
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Sketch of proof, d = 3

ω

ω′ ξ′0

ξ′1

ξ
(1)
0

ξ
(1)
1

ξ
(2)
0 ξ

(2)
1

ξ
(3)
0

ξ
(3)
1

ξ
(4)
0

ξ
(4)
1

Figure: d = 3. If the outer domain ω′ is a cylinder, the expected squared length of a
chord is finite

We use the property of induced chords with non-convex interior domain to
prove

˙

bβ

¸

Q
= ∞.
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Stochastic billiard with drift in a random tube

Same assumptions as above on the random tube.

Dynamics for KRW with drift: acceptance/rejection. Fix λ > 0. If ξn = x ,

First select y ∈ ∂ω, y ∼ K (x , y)

Then,
if (y − x) · e > 0, set ξn+1 = y ,
if (y − x) · e < 0,
set ξn+1 = y with probability exp{−λ|(y − x) · e|}, and ξn+1 = x otherwise.

Then, the measure νω
λ with

dνω
λ

dνω
(x) = exp{λx · e}

is invariant and reversible for ξn.
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Law of large numbers

Theorem

Assume d ≥ 3. There exists v̂ > 0 deterministic such that, a.s.,

ξn · e
n

→ v̂ as n → ∞
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Law of large numbers

Theorem

Assume d ≥ 3. There exists v̂ > 0 deterministic such that, a.s.,

ξn · e
n

→ v̂ as n → ∞

Idea of proof: using condition (P), we make a coupling of ξ in a fixed ω, with a
Random Walk in Random Environment (RWRE) on Z, with unbounded jumps
and stationary ergodic environment. We use a (new) Law of Large Numbers
for the latter:
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Random walk in random environment with unbounded jumps on Z

Attention: now,

ω = (ωx,y ; x , y ∈ Z), ωx,y ≥ 0,
X

y

ωx,y = 1.

Let Sn be the RWRE in Z with Pω(Sn+1 = x + y |Sn = x) = ωx,y .
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Random walk in random environment with unbounded jumps on Z

Attention: now,

ω = (ωx,y ; x , y ∈ Z), ωx,y ≥ 0,
X

y

ωx,y = 1.

Let Sn be the RWRE in Z with Pω(Sn+1 = x + y |Sn = x) = ωx,y .

Assume (ωx,·)x is stationary and ergodic under some P.

Consider also the RW in the truncated environment ω̺:

ω̺
xy =

8

>

>

>

<

>

>

>

:

ωxy , if 0 < |y | < ̺,

0, if |y | ≥ ̺,

ωx0 +
X

y :|y|≥̺

ωxy , if y = 0,
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RWRE: assumptions

Assume uniform ellipticity, uniform tails, strong transience (no traps):

Condition E. There exists ε̃ such that P[ω01 ≥ ε̃] = 1.

Condition C. ∃α > 1, γ1 > 0 s.t. for all s ≥ 1,
X

y :|y|≥s

ω0y ≤ γ1s−α, P-a.s.

Condition D. ∃g1 ≥ 0 with
P∞

k=1 kg1(k) <∞,∃̺0 <∞, such that
∀x ≤ 0, ̺ ≥ ̺0,

E0
ωN̺

∞(x) ≤ g1(|x |), P − a.s.

with N̺
n (x) =

P

k≤n 1{S̺
k = x}.
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Law of Large Numbers for ballistic RWRE with unbounded jumps

Theorem

Then, ∀̺ ∈ [̺0,∞],∃v̺ > 0 s.t. we have

S̺
n

n
→ v̺, n → ∞, a.s.
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Law of Large Numbers for ballistic RWRE with unbounded jumps

Theorem

Then, ∀̺ ∈ [̺0,∞],∃v̺ > 0 s.t. we have

S̺
n

n
→ v̺, n → ∞, a.s.

✍ No reversibility is assumed.

✍ RWRE on Z with bounded jumps: long-time behavior determined by
middle Lyapunov exponents of random matrices.
Transience/recurrence by Key [1984], LLN by Goldsheid [2003, 2008],
Brémont [2009]; lingering ”à la Sinai” by Bolthausen and Goldsheid
[2008].

✍ Only reference for unbounded jumps: 0-1 law by Andjel [1988].
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