On self-avoiding walks

Mireille Bousquet-Mélou
CNRS, LaBRI, Bordeaux, France
http://www.labri.fr/~bousquet

Outline

I. Self-avoiding walks (SAW): Generalities, predictions and results
II. Some exactly solvable models of SAW
II. O A toy model: Partially directed walks
II. 1 Weakly directed walks
II. 2 Prudent walks
II. 3 Two related models

I. Generalities

Self-avoiding walks (SAW)

What is $c(n)$, the number of n-step SAW?

$$
\begin{aligned}
& c(1)=4 \\
& c(2)=c(1) \times 3=12 \\
& c(3)=c(2) \times 3=36 \\
& c(4)=c(3) \times 3-8=100
\end{aligned}
$$

Not so easy! $c(n)$ is only known up to $n=71$ [Jensen 04]

Problem: a highly non-markovian model

Some (old) conjectures/predictions

- The number of n-step SAW behaves asymptotically as follows:

$$
c(n) \sim(\kappa) \mu^{n} n^{\gamma}
$$

Some (old) conjectures/predictions

- The number of n-step SAW behaves asymptotically as follows:

$$
c(n) \sim(\kappa) \mu^{n} n^{\gamma}
$$

where

- $\gamma=11 / 32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

Some (old) conjectures/predictions

- The number of n-step SAW behaves asymptotically as follows:

$$
c(n) \sim(\kappa) \mu^{n} n^{\gamma}
$$

where

- $\gamma=11 / 32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]
- $\mu=\sqrt{2+\sqrt{2}}$ on the honeycomb lattice [Nienhuis 82]
(proved this summer [Duminil-Copin \& Smirnov])

Some (old) conjectures/predictions

- The number of n-step SAW behaves asymptotically as follows:

$$
c(n) \sim(\kappa) \mu^{n} n^{\gamma}
$$

\Rightarrow The probability that two n-step SAW starting from the same point do not intersect is

$$
\frac{c(2 n)}{c(n)^{2}} \sim n^{-\gamma}
$$

Some (old) conjectures/predictions

- The end-to-end distance is on average

$$
\mathbb{E}\left(D_{n}\right) \sim n^{3 / 4} \quad\left(\text { vs. } n^{1 / 2}\right. \text { for a simple random walk) }
$$

[Flory 49, Nienhuis 82]

Some (recent) conjectures/predictions

- Limit process: The scaling limit of SAW is $\operatorname{SLE}_{8 / 3}$.
(proved if the scaling limit of SAW exists and is conformally invariant [Lawler, Schramm, Werner 02])

This would imply

$$
c(n) \sim \mu^{n} n^{11 / 32} \quad \text { and } \quad \mathbb{E}\left(D_{n}\right) \sim n^{3 / 4}
$$

In 5 dimensions and above

- The critical exponents are those of the simple random walk:

$$
c(n) \sim \mu^{n} n^{0}, \quad \mathbb{E}\left(D_{n}\right) \sim n^{1 / 2}
$$

- The scaling limit exists and is the d-dimensional brownian motion
[Hara-Slade 92]

Proof: a mixture of combinatorics (the lace expansion) and analysis

II. Exactly solvable models

\Rightarrow Design simpler classes of SAW, that should be natural, as general as possible... but still tractable

- solve better and better approximations of real SAW
- develop new techniques in exact enumeration

II.O. A toy model: Partially directed walks

Definition: A walk is partially directed if it avoids (at least) one of the 4 steps N, S, E, W.

Example: A NEW-walk is partially directed

"Markovian with memory 1"

The self-avoidance condition is local.

Let $a(n)$ be the number of n-step NEW-walks.

A toy model: Partially directed walks

- Recursive description of NEW-walks:

$$
\begin{aligned}
& a(0)=1 \\
& a(n)=2+a(n-1)+2 \sum_{k=0}^{n-2} a(k) \quad \text { for } n \geq 1
\end{aligned}
$$

A toy model: Partially directed walks

- Recursive description of NEW-walks:

- Generating function:

$$
A(t):=\sum_{n \geq 0} a(n) t^{n}=1+2 \frac{t}{1-t}+t A(t)+2 A(t) \frac{t^{2}}{1-t}
$$

A toy model: Partially directed walks

- Recursive description of NEW-walks:

$$
\begin{aligned}
& a(0)=1 \\
& a(n)=2+a(n-1)+2 \sum_{k=0}^{n-2} a(k) \quad \text { for } n \geq 1
\end{aligned}
$$

- Generating function:

$$
\begin{gathered}
A(t):=\sum_{n \geq 0} a(n) t^{n}=1+2 \frac{t}{1-t}+t A(t)+2 A(t) \frac{t^{2}}{1-t} \\
A(t)=\frac{1+t}{1-2 t-t^{2}} \Rightarrow a(n) \sim(1+\sqrt{2})^{n} \sim(2.41 \ldots)^{n}
\end{gathered}
$$

A toy model: Partially directed walks

- Asymptotic properties: coordinates of the endpoint

$$
\mathbb{E}\left(X_{n}\right)=0, \quad \mathbb{E}\left(X_{n}^{2}\right) \sim n, \quad \mathbb{E}\left(Y_{n}\right) \sim n
$$

- Random NEW-walks:

Scaled by n (- and \mid)

Scaled by $\sqrt{n}(-)$ and $n(\mid)$

II.1. Weakly directed walks

(joint work with Axel Bacher)

Bridges

- A walk with vertices $v_{0}, \ldots, v_{i}, \ldots, v_{n}$ is a bridge if the ordinates of its vertices satisfy $y_{0} \leq y_{i}<y_{n}$ for $1 \leq i \leq n$.

- There are many bridges:

$$
b(n) \sim \mu_{b r i d g e}^{n} n^{\gamma^{\prime}}
$$

where

$$
\mu_{\text {bridge }}=\mu_{S A W}
$$

Irreducible bridges

Def. A bridge is irreducible if it is not the concatenation of two bridges.

Observation: A bridge is a sequence of irreducible bridges

Weakly directed bridges

Definition: a bridge is weakly directed if each of its irreducible bridges avoids at least one of the steps N, S, E, W.

This means that each irreducible bridge is a NES- or a NWS-walk.

\Rightarrow Count NES- (irreducible) bridges

Enumeration of NES-bridges

Proposition

- The generating function of NES-bridges of height $k+1$ is

$$
B^{(k+1)}(t)=\sum_{n} b_{n}^{(k+1)} t^{n}=\frac{t^{k+1}}{G_{k}(t)}
$$

where $G_{-1}=1, G_{0}=1-t$, and for $k \geq 0$,

$$
G_{k+1}=\left(1-t+t^{2}+t^{3}\right) G_{k}-t^{2} G_{k-1}
$$

Enumeration of NES-bridges

Proposition

- The generating function of NES-bridges of height $k+1$ is

$$
B^{(k+1)}(t)=\sum_{n} b_{n}^{(k+1)} t^{n}=\frac{t^{k+1}}{G_{k}(t)},
$$

where $G_{-1}=1, G_{0}=1-t$, and for $k \geq 0$,

$$
G_{k+1}=\left(1-t+t^{2}+t^{3}\right) G_{k}-t^{2} G_{k-1}
$$

- The generating function of NES-excursions of height at most k is

$$
E^{(k)}(t)=\frac{1}{t}\left(\frac{G_{k-1}}{G_{k}}-1\right)
$$

Excursion: $y_{0}=0=y_{n}$ and $y_{i} \geq 0$ for $1 \leq i \leq n$.

Enumeration of NES-bridges

- Bridges of height $k+1$:

$$
B^{(k+1)}=t B^{(k)}+E^{(k)} t^{2} B^{(k)}
$$

- Excursions of height at most k

$$
E^{(k)}=1+t E^{(k)}+t^{2}\left(E^{(k-1)}-1\right)+t^{3}\left(E^{(k-1)}-1\right) E^{(k)}
$$

- Initial conditions: $E^{(-1)}=1, B^{(1)}=t /(1-t)$.

Enumeration of NES-bridges

Proposition

- The generating function of NES-bridges of height $k+1$ is

$$
B^{(k+1)}(t)=\sum_{n} b_{n}^{(k+1)} t^{n}=\frac{t^{k+1}}{G_{k}(t)},
$$

where $G_{-1}=1, G_{0}=1-t$, and for $k \geq 0$,

$$
G_{k+1}=\left(1-t+t^{2}+t^{3}\right) G_{k}-t^{2} G_{k-1}
$$

- The generating function of NES-excursions of height at most k is

$$
E^{(k)}(t)=\frac{1}{t}\left(\frac{G_{k-1}}{G_{k}}-1\right)
$$

Excursion: $y_{0}=0=y_{n}$ and $y_{i} \geq 0$ for $1 \leq i \leq n$.

Enumeration of weakly directed bridges

- GF of NES-bridges:

$$
B(t)=\sum_{k \geq 0} \frac{t^{k+1}}{G_{k}}
$$

Enumeration of weakly directed bridges

- GF of NES-bridges:

$$
B(t)=\sum_{k \geq 0} \frac{t^{k+1}}{G_{k}}
$$

- GF of irreducible NES-bridges:

$$
B(t)=\frac{I(t)}{1-I(t)} \Rightarrow I(t)=\frac{B(t)}{1+B(t)}
$$

Enumeration of weakly directed bridges

- GF of NES-bridges:

$$
B(t)=\sum_{k \geq 0} \frac{t^{k+1}}{G_{k}}
$$

- GF of irreducible NES-bridges:

$$
B(t)=\frac{I(t)}{1-I(t)} \Rightarrow I(t)=\frac{B(t)}{1+B(t)}
$$

- GF of weakly directed bridges (sequences of irreducible NES- or NWSbridges):

$$
W(t)=\frac{1}{1-(2 I(t)-t)}=\frac{1}{1-\left(\frac{2 B(t)}{1+B(t)}-t\right)}
$$

with $G_{-1}=1, G_{0}=1-t$, and for $k \geq 0$,

$$
G_{k+1}=\left(1-t+t^{2}+t^{3}\right) G_{k}-t^{2} G_{k-1}
$$

[Bacher-mbm 10]

Asymptotic results and nature of the generating function

- The number $w(n)$ of weakly directed bridges of length n satisfies

$$
w(n) \sim \mu^{n}
$$

with $\mu \simeq 2.54$ (the current record).

Asymptotic results and nature of the generating function

- The number $w(n)$ of weakly directed bridges of length n satisfies

$$
w(n) \sim \mu^{n},
$$

with $\mu \simeq 2.54$ (the current record).

- The number N_{n} of irreducible bridges in a random weakly directed bridge of length n satisfies

$$
\mathbb{E}\left(N_{n}\right) \sim n,
$$

\Rightarrow The average end-to-end distance grows linearly with n.

Asymptotic results and nature of the generating function

- The number $w(n)$ of weakly directed bridges of length n satisfies

$$
w(n) \sim \mu^{n}
$$

with $\mu \simeq 2.54$ (the current record).

- The number N_{n} of irreducible bridges in a random weakly directed bridge of length n satisfies

$$
\mathbb{E}\left(N_{n}\right) \sim n,
$$

\Rightarrow The average end-to-end distance grows linearly with n.

- The series $W(t)$ has a natural boundary on the curve

$$
\left\{x+i y: x \geq 0, y^{2}=\frac{1-x^{2}-2 x^{3}}{1+2 x}\right\}
$$

\Rightarrow It is neither rational, nor algebraic, nor the solution of a linear differential equation with polynomial coefficients...

II. 2. Prudent self-avoiding walks

Self-directed walks [Turban-Debierre 86]
Exterior walks [Préa 97]
Outwardly directed SAW [Santra-Seitz-Klein 01]
Prudent walks [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08]

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

not prudent!

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

Remark: Partially directed walks are prudent

A property of prudent walks

A property of prudent walks

The box of a prudent walk

The endpoint of a prudent walk is always on the border of the box

Recursive construction of prudent walks

Each new step either inflates the box or walks (prudently) along the border.

Recursive construction of prudent walks

- Three more parameters
(catalytic parameters)

- Generating function of prudent walks ending on the top of their box:

$$
T(t ; u, v, w)=\sum_{\omega} t^{|\omega|} u^{i(\omega)} v^{j(\omega)} w^{h(\omega)}
$$

Series with three catalytic variables u, v, w

Recursive construction of prudent walks

- Three more parameters
(catalytic parameters)

- Generating function of prudent walks ending on the top of their box:

$$
\begin{array}{rl}
\left(1-\frac{u v w t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T & T(t ; u, v, w)= \\
& 1+\mathcal{T}(t ; w, u)+\mathcal{T}(t ; w, v)-t v \frac{\mathcal{T}(t ; v, w)}{u-t v}-t u \frac{\mathcal{T}(t ; u, w)}{v-t u}
\end{array}
$$

with $\mathcal{T}(t ; u, v)=t v T(t ; u, t u, v)$.

- Generating function of all prudent walks, counted by the length and the half-perimeter of the box:

$$
P(t ; u)=1+4 T(t ; u, u, u)-4 T(t ; 0, u, u)
$$

Simpler families of prudent walks [Préa 97]

- The endpoint of a 3-sided walk lies always on the top, right or left side of the box
- The endpoint of a 2-sided walk lies always on the top or right side of the box
- The endpoint of a 1 -sided walk lies always on the top side of the box $(=$ partially directed!)

Functional equations for prudent walks:

The more general the class, the more additional variables
(Walks ending on the top of the box)

- General prudent walks: three catalytic variables
$\left(1-\frac{u v w t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(t ; u, v, w)=1+\mathcal{T}(w, u)+\mathcal{T}(w, v)-t v \frac{\mathcal{T}(v, w)}{u-t v}-t u \frac{\mathcal{T}(u, w)}{v-t u}$ with $\mathcal{T}(u, v)=t v T(t ; u, t u, v)$.
- Three-sided walks: two catalytic variables

$$
\left(1-\frac{u v t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(t ; u, v)=1+\cdots-\frac{t^{2} v}{u-t v} T(t ; t v, v)-\frac{t^{2} u}{v-t u} T(t ; u, t u)
$$

- Two-sided walks: one catalytic variable

$$
\left(1-\frac{t u\left(1-t^{2}\right)}{(1-t u)(u-t)}\right) T(t ; u)=\frac{1}{1-t u}+t \frac{u-2 t}{u-t} T(t ; t)
$$

Two- and three-sided walks: exact enumeration

Proposition

1. The generating function of 2 -sided walks is algebraic:

$$
P_{2}(t)=\frac{1}{1-2 t-2 t^{2}+2 t^{3}}\left(1+t-t^{3}+t(1-t) \sqrt{\frac{1-t^{4}}{1-2 t-t^{2}}}\right)
$$

[Duchi 05]
2. The generating function of 3 -sided prudent walks is...

Two- and three-sided walks: exact enumeration

2. The generating function of 3 -sided prudent walks is:

$$
P_{3}(t)=\frac{1}{1-2 t-t^{2}}\left(\frac{1+3 t+t q\left(1-3 t-2 t^{2}\right)}{1-t q}+2 t^{2} q T(t ; 1, t)\right)
$$

where
$T(t ; 1, t)=\sum_{k \geq 0}(-1)^{k} \frac{\prod_{i=0}^{k-1}\left(\frac{t}{1-t q}-U\left(q^{i+1}\right)\right)}{\prod_{i=0}^{k}\left(\frac{t q}{q-t}-U\left(q^{i}\right)\right)}\left(1+\frac{U\left(q^{k}\right)-t}{t\left(1-t U\left(q^{k}\right)\right)}+\frac{U\left(q^{k+1}\right)-t}{t\left(1-t U\left(q^{k+1}\right)\right)}\right)$
with

$$
U(w)=\frac{1-t w+t^{2}+t^{3} w-\sqrt{\left(1-t^{2}\right)\left(1+t-t w+t^{2} w\right)\left(1-t-t w-t^{2} w\right)}}{2 t}
$$

and

$$
q=U(1)=\frac{1-t+t^{2}+t^{3}-\sqrt{\left(1-t^{4}\right)\left(1-2 t-t^{2}\right)}}{2 t}
$$

A series with infinitely many poles.
[mbm 08]

Two- and three-sided walks: asymptotic enumeration

- The numbers of 2 -sided and 3 -sided n-step prudent walks satisfy

$$
p_{2}(n) \sim \kappa_{2} \mu^{n}, \quad p_{3}(n) \sim \kappa_{3} \mu^{n}
$$

where $\mu \simeq 2.48 \ldots$ is such that

$$
\mu^{3}-2 \mu^{2}-2 \mu+2=0
$$

Compare with $2.41 \ldots$ for partially directed walks, $2.54 \ldots$ for weakly directed bridges, but 2.64... for general SAW.

- Conjecture: for general prudent walks

$$
p_{4}(n) \sim \kappa_{4} \mu^{n}
$$

with the same value of μ as above [Dethridge, Guttmann, Jensen 07].

Two-sided walks: properties of large random walks (uniform distribution)

- The random variables X_{n}, Y_{n} and δ_{n} satisfy

$$
\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(Y_{n}\right) \sim n \quad \mathbb{E}\left(\left(X_{n}-Y_{n}\right)^{2}\right) \sim n, \quad \mathbb{E}\left(\delta_{n}\right) \sim 4.15 \ldots
$$

Two-sided walks: random generation (uniform distribution)

500 steps

780 steps

1354 steps

3148 steps

- Recursive step-by-step construction à la Wilf $\Rightarrow 500$ steps (precomputation of $O\left(n^{2}\right)$ large numbers)
- Boltzmann sampling via a context-free grammar [Duchon-Flajolet-Louchard-Schaeffer 02]

$$
\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(Y_{n}\right) \sim n \quad \mathbb{E}\left(\left(X_{n}-Y_{n}\right)^{2}\right) \sim n, \quad \mathbb{E}\left(\delta_{n}\right) \sim 4.15 \ldots
$$

Three-sided prudent walks:

random generation and asymptotic properties

- Asymptotic properties: The average width of the box is $\sim \kappa n$
- Random generation: Recursive method à la Wilf $\Rightarrow 400$ steps (pre-computation of $O\left(n^{3}\right)$ numbers)

Four-sided (i.e. general) prudent walks

- An equation with 3 catalytic variables:

$$
\begin{aligned}
& \left(1-\frac{u v w t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(u, v, w)=1+\mathcal{T}(w, u)+\mathcal{T}(w, v)-t v \frac{\mathcal{T}(v, w)}{u-t v}-t u \frac{\mathcal{T}(u, w)}{v-t u} \\
& \text { with } \mathcal{T}(u, v)=t v T(u, t u, v)
\end{aligned}
$$

- Conjecture:

$$
p_{4}(n) \sim \kappa_{4} \mu^{n}
$$

where $\mu \simeq 2.48$ satisfies $\mu^{3}-2 \mu^{2}-2 \mu+2=0$.

- Random prudent walks: recursive generation, 195 steps (sic! $O\left(n^{4}\right)$ numbers)

II.3. Another distribution: Kinetic prudent walks

At time n, the walk chooses one of the admissible steps with uniform probability.
[An admissible step is one that gives a prudent walk]

Remark: Walks of length n are no longer uniform

$$
\frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} \quad-\frac{1}{\square} \quad-\frac{1}{4}-\frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}
$$

Another distribution: Kinetic prudent walks

- Kinetic model: recursive generation with no precomputation

500 steps

1000 steps

10000 steps

20000 steps

- Theorem: The walk chooses uniformly one quadrant, say the NE one, and then its scaling limit is given by

$$
Z(u)=\int_{0}^{3 u / 7}\left(1_{W(s) \geq 0} e_{1}+1_{W(s)<0} e_{2}\right) d s
$$

where e_{1}, e_{2} form the canonical basis of \mathbb{R}^{2} and $W(s)$ is a brownian motion. [Beffara, Friedli, Velenik 10]

A kinetic, continuous space version: The rancher's walk

At time n, the walk takes a uniform unit step in \mathbb{R}^{2}, conditioned so that the new step does not intersect the convex hull of the walk.

Theorem: the end-to-end distance is linear. More precisely, there exists a constant $a>0$ such that

$$
\lim \sup \frac{\left\|\omega_{n}\right\|}{n} \geq a
$$

Conjectures

- Linear speed: There exists $a>0$ such that $\frac{\left\|\omega_{n}\right\|}{n} \rightarrow a$ a.s.
- Angular convergence: $\frac{\omega_{n}}{\left\|\omega_{n}\right\|}$ converges a.s.
[Angel, Benjamini, Virág 03]

What's next?

- Exact enumeration: General prudent walks on the square lattice - Growth constant?
- Uniform random generation: better algorithms (maximal length 200 for general prudent walks...)

- A mixture of both models: walks formed of a sequence of prudent irreducible bridges?

Triangular prudent walks

The length generating function of triangular prudent walks is

$$
P(t ; 1)=\frac{6 t(1+t)}{1-3 t-2 t^{2}}(1+t(1+2 t) R(t ; 1, t))
$$

with

$$
R(t ; 1, t)=(1+Y)(1+t Y) \sum_{k \geq 0} \frac{t^{\binom{k+1}{2}}\left(Y\left(1-2 t^{2}\right)\right)^{k}}{\left(Y\left(1-2 t^{2}\right) ; t\right)_{k+1}}\left(\frac{Y t^{2}}{1-2 t^{2}} ; t\right)_{k}
$$

and

$$
Y=\frac{1-2 t-t^{2}-\sqrt{(1-t)\left(1-3 t-t^{2}-t^{3}\right)}}{2 t^{2}}
$$

Notation:

$$
(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
$$

- The series $P(t ; 1)$ is neither algebraic, nor even D-finite (infinitely many poles at $\left.Y t^{k}\left(1-2 t^{2}\right)=0\right)$

