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I. Generalities



Self-avoiding walks (SAW)

What is c(n), the number of n-step SAW?
c(1) = 4
c(2) = c(1) × 3 = 12
c(3) = c(2) × 3 = 36
c(4) = c(3) × 3 − 8 = 100Not so easy! c(n) is only known up to n = 71 [Jensen 04℄Problem: a highly non-markovian model



Some (old) onjetures/preditions

• The number of n-step SAW behaves asymptotially as follows:

c(n) ∼ (κ)µn nγ
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Some (old) onjetures/preditions

• The number of n-step SAW behaves asymptotially as follows:

c(n) ∼ (κ)µn nγwhere- γ = 11/32 for all 2D latties (square, triangular, honeyomb) [Nienhuis 82℄

- µ =
√

2 +
√

2 on the honeyomb lattie [Nienhuis 82℄(proved this summer [Duminil-Copin & Smirnov℄)



Some (old) onjetures/preditions

• The number of n-step SAW behaves asymptotially as follows:

c(n) ∼ (κ)µn nγ

⇒ The probability that two n-step SAW starting from the same point do notinterset is

c(2n)

c(n)2
∼ n−γ



Some (old) onjetures/preditions

• The end-to-end distane is on average

E(Dn) ∼ n3/4 (vs. n1/2 for a simple random walk)[Flory 49, Nienhuis 82℄
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Some (reent) onjetures/preditions

• Limit proess: The saling limit of SAW is SLE8/3.(proved if the saling limit of SAW exists and is onformally invariant[Lawler, Shramm, Werner 02℄)This would imply
c(n) ∼ µnn11/32 and E(Dn) ∼ n3/4



In 5 dimensions and above

• The ritial exponents are those of the simple random walk:

c(n) ∼ µnn0, E(Dn) ∼ n1/2.

• The saling limit exists and is the d-dimensional brownian motion[Hara-Slade 92℄Proof: a mixture of ombinatoris (the lae expansion) and analysis



II. Exatly solvable models

⇒ Design simpler lasses of SAW, that should be natural, as general aspossible... but still tratable
• solve better and better approximations of real SAW
• develop new tehniques in exat enumeration



II.0. A toy model: Partially direted walks

De�nition: A walk is partially direted if it avoids (at least) one of the 4 stepsN, S, E, W.Example: A NEW-walk is partially direted
"Markovian with memory 1"

The self-avoidane ondition is loal.Let a(n) be the number of n-step NEW-walks.



A toy model: Partially direted walks

• Reursive desription of NEW-walks:
4 5 6

2 31

a(0) = 1

a(n) = 2 + a(n − 1) + 2
∑n−2

k=0 a(k) for n ≥ 1
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A toy model: Partially direted walks

• Reursive desription of NEW-walks:
4 5 6

2 31

a(0) = 1

a(n) = 2 + a(n − 1) + 2
∑n−2

k=0 a(k) for n ≥ 1

• Generating funtion:

A(t) :=
∑

n≥0

a(n)tn = 1 + 2
t

1 − t
+ tA(t) + 2A(t)

t2

1 − t

A(t) =
1 + t

1 − 2t − t2
⇒ a(n) ∼ (1 +

√
2)n ∼ (2.41...)n



A toy model: Partially direted walks

• Asymptoti properties: oordinates of the endpoint

E(Xn) = 0, E(X2
n) ∼ n, E(Yn) ∼ n

• Random NEW-walks:
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II.1. Weakly direted walks

(joint work with Axel Baher)



Bridges

• A walk with verties v0, . . . , vi, . . . , vn is a bridge if the ordinates of its vertiessatisfy y0 ≤ yi < yn for 1 ≤ i ≤ n.
• There are many bridges:

b(n) ∼ µn
bridgen

γ′where

µbridge = µSAW



Irreduible bridges

Def. A bridge is irreduible if it is not the onatenation of two bridges.Observation: A bridge is a sequene of irreduible bridges



Weakly direted bridges

De�nition: a bridge is weakly direted if eah of its irreduible bridges avoidsat least one of the steps N, S, E, W.This means that eah irreduible bridge is a NES- or a NWS-walk.

vn

v0

⇒ Count NES- (irreduible) bridges



Enumeration of NES-bridges

Proposition
• The generating funtion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1 − t, and for k ≥ 0,

Gk+1 = (1 − t + t2 + t3)Gk − t2Gk−1.



Enumeration of NES-bridges

Proposition
• The generating funtion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1 − t, and for k ≥ 0,

Gk+1 = (1 − t + t2 + t3)Gk − t2Gk−1.

• The generating funtion of NES-exursions of height at most k is

E(k)(t) =
1

t

(

Gk−1

Gk
− 1

)

.

Exursion: y0 = 0 = yn and yi ≥ 0 for 1 ≤ i ≤ n.



Enumeration of NES-bridges

Last return to height 0

First return to height 0

• Bridges of height k + 1:
B(k+1) = tB(k) + E(k)t2B(k)

• Exursions of height at most k

E(k) = 1 + tE(k) + t2
(

E(k−1) − 1
)

+ t3
(

E(k−1) − 1
)

E(k)

• Initial onditions: E(−1) = 1, B(1) = t/(1 − t).
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Enumeration of weakly direted bridges

• GF of NES-bridges:
B(t) =

∑

k≥0

tk+1

Gk

• GF of irreduible NES-bridges:
B(t) =

I(t)

1 − I(t)
⇒ I(t) =

B(t)

1 + B(t)

• GF of weakly direted bridges (sequenes of irreduible NES- or NWS-bridges):

W (t) =
1

1 − (2I(t) − t)
=

1

1 −
(

2B(t)
1+B(t)

− t
)

with G−1 = 1, G0 = 1 − t, and for k ≥ 0,
Gk+1 = (1 − t + t2 + t3)Gk − t2Gk−1.

[Baher-mbm 10℄



Asymptoti results and nature of the generating funtion

• The number w(n) of weakly direted bridges of length n satis�es

w(n) ∼ µn,with µ ≃ 2.54 (the urrent reord).
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Asymptoti results and nature of the generating funtion

• The number w(n) of weakly direted bridges of length n satis�es

w(n) ∼ µn,with µ ≃ 2.54 (the urrent reord).
• The number Nn of irreduible bridges in a random weakly direted bridge oflength n satis�es

E(Nn) ∼ n,

⇒ The average end-to-end distane grows linearly with n.

• The series W (t) has a natural boundary on the urve

{

x + iy : x ≥ 0, y2 =
1 − x2 − 2 x3

1 + 2x

}

.

⇒ It is neither rational, nor algebrai, nor the solution of a linear di�erentialequation with polynomial oe�ients...



II. 2. Prudent self-avoiding walks

Self-direted walks [Turban-Debierre 86℄Exterior walks [Préa 97℄Outwardly direted SAW [Santra-Seitz-Klein 01℄Prudent walks [Duhi 05℄, [Dethridge, Guttmann, Jensen 07℄, [mbm 08℄
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A step never points towards a vertex that has been visited before.
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Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Remark: Partially direted walks are prudent



A property of prudent walks



A property of prudent walks

The box of a prudent walk

The endpoint of a prudent walk is always on the border of the box



Reursive onstrution of prudent walks

Eah new step either in�ates the box or walks (prudently) along the border.



Reursive onstrution of prudent walks

i

h

j
• Three more parameters(atalyti parameters)
• Generating funtion of prudent walks ending on the top of their box:

T(t; u, v, w) =
∑

ω
t|ω|ui(ω)vj(ω)wh(ω)Series with three atalyti variables u, v, w



Reursive onstrution of prudent walks

i

h

j
• Three more parameters(atalyti parameters)
• Generating funtion of prudent walks ending on the top of their box:

(

1 − uvwt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v, w) =

1 + T (t;w, u) + T (t;w, v)− tv
T (t; v, w)

u − tv
− tu

T (t;u, w)

v − tuwith T (t;u, v) = tvT(t; u, tu, v).

• Generating funtion of all prudent walks, ounted by the length and thehalf-perimeter of the box:

P(t; u) = 1 + 4T(t; u, u, u) − 4T(t; 0, u, u)



Simpler families of prudent walks [Préa 97℄

ij i

3-sided 2-sided 1-sided

• The endpoint of a 3-sided walk lies always on the top, right or left side ofthe box

• The endpoint of a 2-sided walk lies always on the top or right side of the box

• The endpoint of a 1-sided walk lies always on the top side of the box (=partially direted!)



Funtional equations for prudent walks:The more general the lass, the more additional variables(Walks ending on the top of the box)

• General prudent walks: three atalyti variables

(

1 − uvwt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v, w) = 1+T (w, u)+T (w, v)−tv
T (v, w)

u − tv
−tu

T (u, w)

v − tuwith T (u, v) = tvT(t; u, tu, v).
• Three-sided walks: two atalyti variables
(

1 − uvt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v) = 1 + · · · − t2v

u − tv
T(t; tv, v) − t2u

v − tu
T(t; u, tu)

• Two-sided walks: one atalyti variable
(

1 − tu(1 − t2)

(1 − tu)(u − t)

)

T(t; u) =
1

1 − tu
+ t

u − 2t

u − t
T(t; t)



Two- and three-sided walks: exat enumeration

Proposition1. The generating funtion of 2-sided walks is algebrai:

P2(t) =
1

1 − 2t − 2t2 + 2t3






1 + t − t3 + t(1 − t)

√

√

√

√

1 − t4

1 − 2t − t2





[Duhi 05℄2. The generating funtion of 3-sided prudent walks is...



Two- and three-sided walks: exat enumeration

2. The generating funtion of 3-sided prudent walks is:

P3(t) =
1

1 − 2t − t2

(

1 + 3t + tq(1 − 3t − 2t2)

1 − tq
+ 2t2q T(t; 1, t)

)

where

T(t; 1, t) =
∑

k≥0

(−1)k

∏k−1
i=0

(

t
1−tq − U(qi+1)

)

∏k
i=0

(

tq
q−t − U(qi)

)

(

1 +
U(qk) − t

t(1 − tU(qk))
+

U(qk+1) − t

t(1 − tU(qk+1))

)

with

U(w) =
1 − tw + t2 + t3w −

√

(1 − t2)(1 + t − tw + t2w)(1 − t − tw − t2w)

2t
,and

q = U(1) =
1 − t + t2 + t3 −

√

(1 − t4)(1 − 2t − t2)

2t
.

A series with in�nitely many poles.[mbm 08℄



Two- and three-sided walks: asymptoti enumeration

• The numbers of 2-sided and 3-sided n-step prudent walks satisfy

p2(n) ∼ κ2 µn, p3(n) ∼ κ3 µnwhere µ ≃ 2.48... is suh that
µ3 − 2µ2 − 2µ + 2 = 0.Compare with 2.41... for partially direted walks, 2.54... for weakly diretedbridges, but 2.64... for general SAW.

• Conjeture: for general prudent walks
p4(n) ∼ κ4 µnwith the same value of µ as above [Dethridge, Guttmann, Jensen 07℄.



Two-sided walks: properties of large random walks(uniform distribution)

• The random variables Xn, Yn and δn satisfy

E(Xn) = E(Yn) ∼ n E((Xn − Yn)
2) ∼ n, E(δn) ∼ 4.15 . . .

Xn

Yn

δn



Two-sided walks: random generation (uniform distribution)
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• Reursive step-by-step onstrution à la Wilf ⇒ 500 steps(preomputation of O(n2) large numbers)
• Boltzmann sampling via a ontext-free grammar[Duhon-Flajolet-Louhard-Shae�er 02℄

E(Xn) = E(Yn) ∼ n E((Xn − Yn)
2) ∼ n, E(δn) ∼ 4.15 . . .



Three-sided prudent walks:random generation and asymptoti properties

• Asymptoti properties: The average width of the box is ∼ κn

• Random generation: Reursive method à la Wilf ⇒ 400 steps(pre-omputation of O(n3) numbers)
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Four-sided (i.e. general) prudent walks

• An equation with 3 atalyti variables:

(

1 − uvwt(1 − t2)

(u − tv)(v − tu)

)

T(u, v, w) = 1+ T (w, u)+ T (w, v)− tv
T (v, w)

u − tv
− tu

T (u, w)

v − tuwith T (u, v) = tvT(u, tu, v).
• Conjeture:

p4(n) ∼ κ4 µnwhere µ ≃ 2.48 satis�es µ3 − 2µ2 − 2µ + 2 = 0.
• Random prudent walks: reursive generation, 195 steps (si! O(n4) numbers)
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II.3. Another distribution: Kineti prudent walks

At time n, the walk hooses one of the admissible steps with uniform probability.[An admissible step is one that gives a prudent walk℄1/3 1/2

Remark: Walks of length n are no longer uniform
1

4
· 1
3
· 1
3
· 1
3

1

4
· 1
3
· 1
3
· 1
2



Another distribution: Kineti prudent walks

• Kineti model: reursive generation with no preomputation
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• Theorem: The walk hooses uniformly one quadrant, say the NE one, andthen its saling limit is given by

Z(u) =

∫ 3u/7

0

(1W(s)≥0 e1 + 1W(s)<0 e2
)

dswhere e1, e2 form the anonial basis of R2 and W (s) is a brownian motion.[Be�ara, Friedli, Velenik 10℄



A kineti, ontinuous spae version: The ranher's walk

At time n, the walk takes a uniform unit step in R2, onditioned so that thenew step does not interset the onvex hull of the walk.

Theorem: the end-to-end distane is linear. More preisely, there exists aonstant a > 0 suh that
lim sup

||ωn||
n

≥ a.

Conjetures

• Linear speed: There exists a > 0 suh that ||ωn||
n → a a.s.

• Angular onvergene: ωn
||ωn|| onverges a.s.[Angel, Benjamini, Virág 03℄



What's next?

• Exat enumeration: General prudent walks on the square lattie � Growthonstant?
• Uniform random generation: better algorithms (maximal length 200 for gen-eral prudent walks...)
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• A mixture of both models: walks formed of a sequene of prudent irreduiblebridges?



Triangular prudent walksThe length generating funtion of triangular prudent walks is

P(t; 1) =
6t(1 + t)

1 − 3t − 2t2

(

1 + t (1 + 2t)R(t; 1, t)
)

with

R(t; 1, t) = (1 + Y )(1 + tY )
∑

k≥0

t(
k+1
2 )

(

Y (1 − 2t2)
)k

(Y (1 − 2t2); t)k+1

(

Y t2

1 − 2t2
; t

)

kand

Y =
1 − 2t − t2 −

√

(1 − t)(1 − 3t − t2 − t3)

2t2Notation:

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1).

• The series P(t; 1) is neither algebrai, nor even D-�nite (in�nitely many polesat Y tk(1 − 2t2) = 0)


