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Uncertainty quantification and propagation

Uncertainty quantification has become an essential path in prediction science

@ More realistic predictions
confidence on predictions, robust design

@ Analyze the impact of input uncertainty
variance, sensitivity, hierarchization, reliability and risk

@ Comprehension and selection of models

When considering a physical model M with output u

© Quantification of input uncertainty. Modeling step using available information.
Define a probability space (©, B, P) and consider the model as random:

0e oM

Q Propagation of uncertainty. Characterization of random output u(6)

] o
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Spectral stochastic methods for uncertainty quantification |

Spectral stochastic methods, initiated by the works of Ghanem and Spanos (1991), can
be seen as a functional approach to probability for prediction of the solution of stochastic
models. Closely related to Wiener's Polynomial Chaos and its generalizations
(Fourier-type representations of random variables)

Main ideas:

@ Uncertainties represented by a finite number of “simple” random variables & defined
on a probability space (O, B, P).

@ Functional representation of any o(&)-measurable random variable 7(6)
n(6) = 7i(£(6))

Random parameters £ : © — = are new coordinates of the model defining the
stochastic dimensions.

@ Classical approximation theory for approximation of functionals

ii(y) = > nataly), yeZ=
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Spectral stochastic methods for uncertainty quantification Il

Quantification/Discretization of Propagation of uncertainty
input uncertainty through a model

heo—g0)e= € — | M(&)]— u®

Interests

@ A general framework for both quantification and propagation of uncertainty
@ Information is preserved (not only samples or statistics...)

@ Explicit expression of random quantities in terms of random variables & with “simple
measure” P¢. Cheap post-processing via classical integration

E(f(n(9))) = E(f(ii(£(9)))) = /= F(ii(y))dPe(y)

@ Other parametric analyses: sensitivity, optimization, inverse problems
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Spectral stochastic methods for uncertainty quantification 111

Some questions
@ Discretization of uncertainties ?
@ Choice of expansion basis ?
@ Definition and computation of an approximation ?

@ Introduction of extra dimensions dramatically increases the computational
complexity. Can we circumvent the curse of dimensionality ?
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Stochastic analysis

An important question in stochastic analysis: how to represent square integrable
functionals of a Brownian motion

@ Expansion with multiple Wiener integrals
@ Stochastic It6 integrals

@ Polynomial Chaos expansions
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A Cameron-Martin Theorem |

Let W;(0), t € (0, T), be a brownian motion defined on probability space (©, B, P), and
let {a(t)}xen= be a complete orthonormal system in L2(0, T). Let

§k(0) :/O ar(t)dWi(9), k=1,..,00

& = {&k }ken+ forms a countable set of independent Gaussian random variables.

Let {h;}ien C L?(R) be the set of normalized Hermite polynomials and let introduce

Ha(€) = [ ] hos (60)

with v a multi-index in
oo
T ={a = (a)ken;ox €N, |a| =D ax < oo}
k=1

The H, are multidimensional Hermite polynomials in Gaussian random variables &.
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A Cameron-Martin Theorem Il

Theorem (Cameron-Martin (1947))

The set {Ho(€)}acz forms a complete orthogonal system in L*(©, BY, P), with
BY = o(W;;0 < t < T). In other terms, any random variable n € L*(©,BY, P) can be
expressed

n=">_ naHa(), (*)

acl

with N = E(nH.(€)) and where the series expansion () converges in L*(©,BY, P).

(%) is a polynomial chaos expansion (Wiener Chaos expansion) of a second order
functional of the brownian motion.

Summary

@ Discretization of the Brownian motion, “replaced” by a countable set of random
variables &.

Q Second order functionals of the Brownian motion expressed in terms of &.
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Polynomial Chaos and Generalizations |

Given a set of random variable £ on (©, 8, P), with arbitrary measure P¢, we define a

Hilbertian basis {1)(&)}acz of L>(©,0(&), P). For n € [*(©,0(£&), P),

n= 3 Natba(§)

aET

is called a generalized chaos decomposition of 7.
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Polynomial Chaos and Generalizations |l

Generalizations of chaos expansions

@ Infinite dimensional case

>

>

>

>

Gaussian measure 3 [Wiener 38]
Poisson, Levy processes E) [Ito 56]
Tensor algebras over Hilbert spaces El [Segal 56]

Polynomial spaces in random variables with arbitrary measure B[Ernst 10]

@ Finite dimensional case (more classical approximation theory)

v

v

[%(©,0(8), P) ~ L*(Z, Bz, Pe)

Orthogonal polynomials in independent random variables E] [Ghanem 91, Xiu 02]
“Modified polynomials” for dependent variables with arbitrary measure E [Soize 04]
Piecewise polynomials El [Deb 01, Wan 05], wavelets El [Le Maitre 04]

Enriched approximation (discontinuities, ...) El [Ghosh 08, AN 09]
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Probabilistic modeling using chaos representations |

Two types of uncertainties can be distinguished
@ aleatory uncertainty: random and not reducible.

@ epistemic uncertainty: lack of knowledge (information), modeling error

Chaos expansions provide a general framework for uncertainty representation and
identification.
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Probabilistic modeling using chaos representations ||

In practice, uncertainty are characterized by random parameters X (), which have to be
expressed in terms of basic random variables

X(0) = X(£(9))

Uncertainty quantification from data using chaos expansions
Chaos expansion of X in terms of a set of random variables & = (&1,...,&m)

X =~ Z aaa(€)

a€Zlp

@ Inference techniques to identify the set of parameters A = {a4 }acz, from data set
X = {X1}Q [[Desceliers 2006, Soize 2010]

@ Epistemic uncertainty modeling with further chaos expansion of coefficients
30(0) © Y., 3000 Vo (€'(6)) B [Arnst 2010, Soize 2010]
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Outline

@ Propagation of uncertainties
@ Principle
@ Alternative definitions of chaos expansions
@ Stochastic partial differential equations
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Spectral stochastic methods for uncertainty propagation |

After uncertainty modeling and discretization, the model M is considered as a random
parameterized model M(&). Random output is seen as a functional

‘u:yGE%u(y)GV‘

and for most models
we L’(Z,Bz,PeV) = {u: 2= Vi B(Ju(@IR) } =V @ L*(F, Bz, Pe)

Propagation of uncertainty

@ Construction of an approximation space

‘Sp = span{ya}hy C S 1= L*(Z, Bz, Pe) ‘

Polynomial basis E) [Ghanem 91, Xiu 02], piecewise polynomials E) [Deb 01, Le Maitre
04, Wan 05], enriched spectral basis D[Ghosh 08, AN 09], generalized chaos basis
El [Soize 04], ...

@ Introduction e Polynomial chaos e Identification ® Propagation e Separated representations

16



Spectral stochastic methods for uncertainty propagation Il

@ Definition and computation of an approximate functional representation

‘uzzaua(@lbaevl\/@‘gp‘

Direct simulations(L? Projection, Interpolation, Regression)
o = Y uly)
K

where (wg,yx) € R x = and the u(yk) are solution of deterministic problems:

M(yx) — u(yk) € Vn

Galerkin projections

Approximation based on stochastic-weak formulations. In general, equivalent
to the solution of a set of P coupled deterministic problems:

MUy, yUap) — {Uayy -y Uapt EVN X ... X Wy
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Galerkin projections |

Most models in computational science can be synthetized into an operator equation
u§) eV, Au(§):§) = b(§)

which admits a weak solution
uel’(Z,B,Pe;V) =V®S

A stochastic-weak solution can be defined by

|< ¢, AW) >=<¢,b> VpeS

where for ¥, € S, < 9,0 >= E(¢(&)p(&)).
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Galerkin projections Il

Galerkin approximation

Approximate solution u = Zaezp Ua ® 1Pq €V ® Sp is defined by

\<¢,A(u) S=<,b> vzpesp\

System of coupled deterministic equations defining the coefficients {ua}acz, € (V)°

(+)

Pros:
Nice mathematical framework, a priori and a posteriori error estimates, stability,
efficiency

Cons:

Requires a (sometimes minor) modification of existing deterministic solution
techniques. Complexity of system ().
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Galerkin projections Ill

Galerkin system of equations
After deterministic approximation (finite elements, finite differences, ...), the Galerkin
system of equations is

‘ueR"’@@SP, <, A(u) >=<¢,b> Vi€ Sp (1)

For linear problems (or linearized nonlinear problems), Galerkin approximation
u(€) = > ez, Ua¥a(§) € RN ® Sp has its coefficients determined by the system of
equations:

> E(A¢atp)us = E(bia), Va€Ip

BELp

System of size N x P

A A ... A
@] o ajap Uozl bal
u b
Aazal a2 . a2
u b
AT . oo (Nepap op op
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Galerkin projections IV

Two levels of sparsity
@ Eventual sparsity of each block (inherited from sparsity of A(&))

@ Block-sparsity (inherited from properties of functions )

Illustration of block sparsity: approximation of a Hermite Polynomial Chaos with degree
p =6 in dimension m =5

block (o, B) : Aas = E(Atatss), with A(E) = Y A1, (€)

[vI<pa

If A(&) is highly nonlinear in &, not so sparse !!! J
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Stochastic Partial Differential Equation |

Model problem: stationary diffusion equation
— V- (k(x)Vu(x)) =f(x) forxeQ, u(x)=0 forxedQ

with conductivity x and source f.

Model stochastic problem
— V- (k(x,0)Vu(x,0)) = f(x,0) forx€Q, u(x)=0 forxedQ

where k and f are stochastic fields defined on a probability space (©, BB, P).

@ Introduction e Polynomial chaos e Identification ® Propagation e Separated representations
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Stochastic Partial Differential Equation Il

Space Weak formulation. A space-weak solution u is considered as a random variable
with values in V C H'(Q), and should verify

[u(0) €V, a(u(0),v;0) = b(vi0), YveV]

with
a(u,v;0) = / k(x,0)Vu-Vvdx, b(v;0)= / f(x,0)vdx
Q Q
Space-Stochastic Weak formulation. A weak solution v is searched in
[*(©,B,P;V) ~V ® L*(©,B,P)

such that

‘uGV@S, A(u,v) = L(v), VVGV@S‘

with

A(u, v) = E(a(u(0), v(0);:0)), L(v) =E(b(v(0);0))
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Mathematical and numerical analysis |

@ Classical functional analysis applies E [Babuska 2005, Matthies 2005, Frauenfelder 2005].
Well-posedness in the sense of Hadamard (existence, uniqueness, continuous
dependence on data) if f € L%(©; L*(Q)) and

0 < ko < K(x,0) < K1 < 0

See [ [Soize 2006] for weaker ellipticity conditions. See El [Holden 1996] for functional
analysis in generalized random variables spaces (distribution) for “non-smooth” data.

@ Approximations may be achieved by Galerkin methods

unp € Vw®Sp,  A(uny,vn,p) = L(vn,p), VYvnp € VN ®Sp

Convergence is ensured by Cea's lemma. If A is a symmetric continuous and
coercive bilinear form, it defines a norm || - ||.4 and un,p is the best approximation of
the exact solution u with respect to this norm

unp=arg min_ flu—via
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Mathematical and numerical analysis Il

@ Sp should represent functions of a finite number of random variables (for
computational purpose). Requires a discretization of stochastic fields,

r(x,0) = £ (x,0) = £(x,&(6), .., ém(0))
e.g. using

» Finite dimensional Polynomial Chaos expansion
» Karhunen-Loeve expansion

K(x, 0) = pe(x) + Z w; (x)ni(6)

and eventual further chaos expansion

ni(0) = > miata({€}i)

acp
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Mathematical and numerical analysis |11

@ Galerkin methods are stable if no variational crime is committed
The exact random field k(x, 6) can be expanded in terms of independent random

variables {172,
= 3 () (EO)E)

YyET

where span{i;}yez = L*(©, 0({&}22,), P) := S°°. Initial bilinear form A
u,veVeS™®, A(uv)=E(a(u,v;0)) = E(/ k(x,0)Vu - Vv dx)
Q

We introduce a finite dimensional space span{ta(&)}aczy = S5’ C 8%, with
¢ = {&}7", (m-dimensional chaos with degree p).

uveves,, Z Z (Yat)p) / Ky (X)Vua - Vv dx

a,BELp veLy,

since (Yatp) € Szp L span{tpa;a € T\I5,}.
o No variational crime if we replace x(x, 8) by k(™" (x,0) = ZW,EIZM Kyt~ (£(0))
P
e Galerkin problem is well-posed, while direct methods are not necessarily
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Complementary topics

@ Improvement of solvers (preconditioners, parallelization, ...)
D[Ghanem 1999, Pellissetti 2000, Matthies 2005, Keese 2005, Powell 2007]

@ Random Geometry
—V - (k(x)Vu(x)) = f(x) for x € Q(0), u(x)=0 forxe dQ0)

e Fictitious domain [ [Canuto 2007]
e Random Mapping E [Tartakovsky 2006, Xiu 2006]
o Level-set and Extended Finite Element 8 [AN 07, AN 08]
@ Error estimation, Adaptive approximation
B [Wan 2005, Frauenfelder 2005, Ladevéze 2006, Mathelin 2007]

@ Model reduction

e Stochastic Reduced Basis B [Nair 2001, Sachdeva 2006] =~ Krylov iterative solvers.

e Approximate spectral decompositions ] [Matthies 2005, Doostan 2007]
o Generalized Spectral Decomposition E] [AN 07, AN 08]
e High dimensional separated representations ) [Doostan 09, AN 10]
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Outline

e Separated representations and Model reduction
@ Tensor product structure of stochastic problems
@ Separated representations
@ Proper Generalized Decomposition
@ Application to a stochastic PDE
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Tensor product structure of stochastic problems

Stochastic (parameterized) PDEs

| Vi(r(x OVau(x, ) = F(x.€), x€Q €=(&,....&) € =]
ue H(Q) ® L*(Z,B=,P:) =V ®S

Tensor product structure of stochastic function space S = L*(Z, Bz, P¢)

For independent random variables (1, ..., &)

5= 12218, P) @ .. 0 (5., B2, Py,)

Possibly high stochastic (parametric) dimensionality s = 10, 100, 1000, ...
» Many input (random) parameters (source terms, operator's parameters, bc's
» Random fields or processes with high spectral (multiscale) content:

0) = > k(&0 = K(x, E:(0). .. &(0))

® Introduction e Polynomial chaos e Identification @ Propagation e Separated representations
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Limitation of spectral approaches: the curse of dimensionality

Classical construction of approximation spaces Sp C S :=8'® ... Q@ S°

» Full tensor product approximation

SP=8!®..08; dim(Sp) = n’ (exponential increase with s)
» Sparse tensor product approximation
Sp=> S8 ®..08; dim(Sp) = =) (factorial increase with s)
lil<n

dim(Sp) ~ 10,10%,10*°, 10%° .
Simply unreachable with usual representations !!!
Do we need to come back to Monte-Carlo simulations ?

o Introduction e Polynomial chaos e Identification  Propagation ® Separated representations 20



Dimensionality reduction based on separated representations

Separated representation of v € S:1 ® ... ® S5
z
v(€) = vz(€) = ) adik(&r) - di(&s)

. = v
Optimal approximation space for the representation of random variable v

z
V(€)= 3 onWi(e), Wil€) = 6k(&) . #i(&) | span{Wi}iy = Sz C S

k=1

‘ dim(S8z) = Z x n x s‘ (linear increase with the dimension s)

Observation in many applications: for a given precision, the optimal decomposition order
Z may be of several orders of magnitude lower than P

Z < P| (typically Z ~ 10, P ~ 10'®)

How to construct these representations ? J
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Tensor product spaces and Separated representations |

Tensor product of Banach spaces

@ Algebraic tensor product space of Banach spaces
a®f:1 Vi = span{w1 ®...0ew'wke Vi}
@ Tensor product of Banach spaces, endowed with norm || - ||:

— Il
V = H~||®Z:1 Vk — a ®Z:1 Vk

Example: SPDEs
— -1l _
LEV) =V ® Lp(3), |vI*= /= Iv(y)[I3dPe(y)

o(2) = itk 20, I = [ oo [ vl dPa ()
=i =5
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Tensor product spaces and Separated representations |l

Sets of finite rank tensors

@ Rank-1 tensors ‘ Ri={w'®..ow!: wecV} ‘

@ Rank-m tensors ‘ Rm={>",2; z € Ri} = Rm-1+ R1 ‘

Separated representation (tensor product approximation)

‘u%um: "W ®...Ow €Rm lu—um]] — O
m—» o0
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Construction of separated representations

A posteriori construction: knowing u

V is equipped with a crossnorm || - ||
SVD (Proper Orthogonal Decomposition, Karhunen-Loeve decomposition, ...)

lu—umll = min |lu—va|
VmERm

Multidimensional versions of SVD
lu—umll=—min_[lu— vnl
VmESmCRm
with Sy, a subset of R, with suitable constraints (orthogonality, boundedness, ...)
E [Chen 2008, de Silva 2008, Kolda 2009, Uschmajew 2010]
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Construction of separated representations

A posteriori construction: knowing u

V is equipped with a crossnorm || - ||

SVD (Proper Orthogonal Decomposition, Karhunen-Loeve decomposition, ...)

lu—umll = min |lu—va|
VmERm

Multidimensional versions of SVD
lu—umll=—min_[lu— vnl
VmESmCRm
with S, a subset of R, with suitable constraints (orthogonality, boundedness, ...
E [Chen 2008, de Silva 2008, Kolda 2009, Uschmajew 2010]

)

A priori construction: without knowing u but only the problem it solves

Proper Generalized Decomposition

o Introduction e Polynomial chaos e Identification  Propagation ® Separated representations

34



Proper Generalized Decomposition

Weak form of the problem
veV, A(u,v)=L(v) VveV

Aim:
@ Define a separated representation um, of u which is computable without knowing u
but only A and L.

Criteria for the definition of separated representations and associated algorithms:
@ Convergence
@ Robustness
@ Ability to capture a low rank approximation if it exists

@ Low computational costs
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Variational problems associated with convex optimization |

We consider the case where

A(u, v) = L{v) = (T (u), v)

where 7' : V — V' is the differential of a convex and Fréchet differentiable functional
J : V — R. Equivalent minimization problem:

J(u) = min 7 (v)

Natural definition of PGD

J(um)= min_ J(vm)

VmESmCRm

@ Progressive: knowing um—1 € Rm—1,
Sm=tm-1+R1, J(um)= min J(tm-1+ 2)
zeR,

@ Direct, with a suitable choice of Sy, C Ry (for well-posedness)

@ Progressive with updates

® Introduction e Polynomial chaos e Identification @ Propagation e Separated representations
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Variational problems associated with convex optimization 11

Well-posedness and convergence results for progressive constructions
£ [Le Bris & al 2009, Cances & al 2010, Falco & AN 2010]

@ Well posedness of this optimization problem is ensured by properties of J (convexity
and coercivity) and R (weakly closed in V).

@ Under quite general assumptions on J (ellipticity, uniform continuity of 7’ on
bounded sets), strong convergence of the sequence un, can be proved .

Remark :
@ For , generalized spectral decomposition. Dedicated algorithms D[AN 2008].
@ For , same (and more) difficulties as for multidimensional SVDs.
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Particular case of linear elliptic problems

),

If A is a symmetric continuous coercive bilinear form on a Hilbert space (V, || - |

T(v) = 5AW,v) — £(v)

1

A defines a norm || - |4 : v — A(v, v)"/2, which is equivalent to || - ||.

Progressive PGD

T+ 2ma) = min T(un+2) < [ tn = zmealls = min lu = um — 2Py
o
Interpretation as a generalized multidimensional SVD ) [AN 2007, Falco & AN 2010]
2 2 2
o= wnlf = el = =7y 0F 0] [om= _ max  (u—tn1w)a
where om = ||zm||.4 is interpreted as the dominant singular value of (v — um).
- o
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Possible construction with alternated direction algorithm
In order to compute zm+1 € Ri,

min j(um+wl®wz®...) min j(um+..l®wd71®wd)

wlevy wad eV,

\—/
For a given z = ®{_,w*, we introduce the linear subspace R}(z) C R1 C V defined by

Ri(z2)=w'®..0V,®...0w’

Alternated direction algorithm

Starting from an initial guess z(¥) € R1, we construct a sequence {z(")}neN defined by

|2 = fo ofiz")|  fi(z)=arg_min T(um+2)
26R}(2)

corresponding to successive Galerkin projections on linear subspaces

‘zo =fl(z) & z°eRi(z), Alum+2z°2")=L(z") Vz*cRi(2)
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The important case d = 2: Generalized Spectral Decomposition

min j(um+wl®w2) J

wleVy,w2eV,

wh=fi(w’) e w'=arg rpin T (tm + w' @ w?)
wleVy

w’ = f,f,(wl) & w?=arg min j(um+wl®wz)
w2eV,

Equivalent pseudo eigenproblem formulated on w! € V;

Find the dominant eigenvector w' of the following pseudo-eigenproblem
g g g

‘ w! = o f2(wh) i= opn(wh) 1 T(wh) ‘ T = pseudo correlation operator

with ‘ w' € argmin,icy, J(um + w' @ f3(wh)) ‘ om(w") = dominant singular value

Efficient algorithms inspired from classical eigenproblems ) [AN CMAME 2007, 2008] J
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Alternative definitions for Proper Generalized Decompositions

Alternative formulations for general nonsymmetric problems

@ Minimal Residual PGD [ [AN & Ladeveze 2004, Doostan 2009, Ammar 2010, AN &
Falco 2010]

@ Galerkin PGD ] [Ladeveze 1980, AN 2007, AN 2008, AN & Le Maitre 2009, Chinesta
2007]

@ Petrov-Galerkin (MiniMax) PGD D[AN 2010]

@ Norm induced by the operator D[Lozinski 2010]

ot
Progressive or Direct construction of rank-m approximations
@ Purely progressive
@ Progressive with updates
o Direct )

@ A. Nouy (2010). PGD for time dependent PDEs.
Computer Methods in Applied Mechanics and Engineering.
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Solution strategy for high dimensional stochastic problems

A 2-level tensor product approximation |u e V®S'®...® S°
—_———
S

Q 2D PGD for a quasi optimal deterministic/stochastic separation

umum() =M wi(€)| W=w)ie W, A=) eS)Y

Requires the solution of a few deterministic problems (&~ M) and stochastic
algebraic equations (reduced order model at the deterministic level).

@ Multidimensional PGD for solving stochastic algebraic equations

NE) ~ N2(€) = S, k(&) 05(&) |, o eRY, 4l eS)

[§ Nouy, A. (2010, In press).
PGD and separated representations for the numerical solution of high dimensional
stochastic problems.
Archives of Computational Methods in Engineering
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lllustration : stationary advection-diffusion-reaction equation

—V - (kVu)+ c-Vu+~yu=14dlg(x) on Q J

Random field

40
K6, €) = e + Y VEiki(x)é, & € U(-1,1)

i=1

Spatial modes ki(x)
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Stochastic approximation

62(517'--y§40)7 E:(—1,1)40251 X ... X 40

Sp=P4(Z1) ® ... ® Pa(Z40)

dim(Sp) = 5% ~ 107

T T ——. Solution u(-, p) for mean parameters

dim(Vy) = 4435
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Results... in brief

Deterministic/stochastic separation

u(é) ~ um(€) = ZW’ i

[V = sparon ]

For a precision ||u — um,z|[;2 < 10

@ | dim(Vu) ~ 15 | < 4435 = dim(Vy)
@ | dim(Sz) ~ 10 | < 10 = dim(Sp)

@ 15 classical deterministic problems in order to build Vi C Vy

@ about 1 minute computation on a laptop with matlab

Random variables separation

NE) = ()i = Az(€) = Dok [[ (&)

= |8z = span{[T;_, #(&) i

—2
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Conclusions

PGD methods for stochastic problems

@ Separation of difficulties: deterministic/stochastic separation
partly non intrusive Galerkin stochastic method

@ Reduced order model construction
a priori construction of quasi-optimal reduced basis

@ Separation in high-dimensional tensor product spaces :
a way to circumvent the curse of dimensionality
v

@ Special Issue on Recent advances in PGD.
Chinesta, Cueto, Ladevéze & Nouy (Eds).
Archives Computational Methods in Engineering, 2010 (In press).
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Open questions and perspectives

Open questions for PGD
@ Mathematical analysis of the pseudo eigenproblem ?
@ Optimality for non-symmetric problems ?

@ Error estimation and Goal-oriented approximations

Open questions for separated representations in stochastic analysis
@ How to separate dimensions ? Depends on the "separability” of the solution

@ Adaptive stochastic dimension: hierarchical tensor product, ...
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Karhunen-Loéve expansion > Return J

We consider a random field x(x, ), (x,0) € Q x ©, such that
k€ L}(Q)® L*(0,8,P)
with mean and covariance functions
p(x) = E(r(x,0)),  Culx,y) = E((r(x,0) = pe(x))(5(y, 0) — ps(y)))
@ We introduce the covariance operator

T:we L2(Q) - /Q Colxoy)wly) dy € 12(Q)

and consider the eigenproblem
T(w)=ow
@ Operator T is compact and classical spectral theory applies

» Countable set of eigenvalues {o;}72;, positive, bounded and with only
accumulation point 0.
» The set of eigenfunctions {w;(x)}%; forms a hilbertian basis of L?(R)
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Karhunen-Loéve expansion

Illustration

L-shaped domain Q C (0,2) x (0,2). Exponential square covariance function

_ Ix —yI? _
CK’(XMy) - eXp(_ 22 )7 I= 1/2
5 wy Mode ws
2 A

Wy Wio

Mode ws

4

W30
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Karhunen-Loéve expansion

Karhunen-Loeve expansion

Random field x admits the following series expansion

K(x,0) = () + S wi(Imi(0), M =< K — o, Wi > 120y

i=1

where convergence is in L*(Q) ® [*(©, B, P).

Truncation (Discretization)

r(x,0) ~ K (x,0) = pe(x) + Y wilx)mi(0)

i=1

#{™ is the best approximation of this form in L3(Q) ® L3(©), i.e.

(m))2 _ i 2
K — K = min K — lr — wi @ ni
I I w; €L2(Q),n; €L3(O) Je=g ; !
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Karhunen-Loeve < Singular Value Decompositon

Let k € L*(Q) ® L2(©) and let u = k — sy, € L*(Q) ® L3(©). We introduce the operator
Uu @ Q) — L3
w — n(0) =< u(-,0), w >p2q)= [, uly,0)w(y)dy

Karhunen-Loeve expansion of u is equivalent to a Singular Value Decomposition of
operator U. J

For w € L*(Q) and 5 € L3(0)
<n,U(v) >12(0)=< U (), v > 129
with U™ the adjoint operator of U defined by

U o 130) — L[3(Q)
n — w(x) =< u(x, )?7>,_2 = E(u(x,0)n(6))

and U U is the covariance operator of «:
U Uw) =< 0, < 0w >0y >150)= | B, 0)uly.0)wly)dy = T(w)
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Wiener Chaos a= |

Let (©, B, P) be a probability space. Let & = (&k)ken+ be a set of centered Gaussian
random variables called basic random variables. (&) C B denotes the corresponding
o-algebra.

We consider the set of second order random variables L*(©, B, P) which is a Hilbert
space for the inner product

< f.g >p0.m.m= E(F(0)g(6)) = / £(0)2(6)dP(9)

Let P,(R™) be the set of m-variate polynomial of degree n and let P,(&) be the set of
polynomials of degree n in a finite subset of random variables &

Pu(€) = {p(&s, -, &in)ip € Pa(R™), i1y ..., im € N, m € N}

Pa(€) C L2(©,0(£),P) C L*(©,B, P)

Pn(&) is called the polynomial chaos of degree n.
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Wiener Chaos 1

We then define
Hn(&) = Pa(€) © Pn-1(£)

Hn(€) is called the homogeneous chaos of degree n.

Wiener (1938)

L2(©,0(€), P) admits the following orthogonal decomposition

oo

L2(@7U(€)7 P) = @Hn

n=0

If we denote T, the orthogonal projector from L*(©, o(£), P) onto H,(£), any
n € L*(©, (&), P) admits the mean square convergent orthogonal series expansion

n=7 M

n=0

KL Chaos Propagation Example
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Wiener Chaos i

For a practical construction of chaos expansion, we introduce the set of normalized
Hermite polynomials {h;}ien and

oo}

Ha(€) = [ ] har (&)

k=1

with @ a multi-index in Z = {& = (o )ken+; o € N, || = 302, aue < 00}. Therefore,

‘ Pa(€) = span{Ha(€);a € I}, Zn={a € o < n} ‘

and

[ #a(€) = span{Ha(€);0 € T}, Ty ={a €T, Ja| = n}]
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Wiener Chaos v

Any second order random variable n € L*(©, g(£), P) admits the following mean square
convergent expansion

=Y naHa(§) =D > naHa(§)

aET n=0 a€Jp

For computational purpose, approximations may be achieved by

@ using finite order Polynomial Chaos expansions

=Y NaHa(€) =D D naHa(€)

a€Zp n=0 a€Jp

@ retaining a finite number of random variables & = {&}/Z; and using a finite
dimensional polynomial chaos

Pu(§) = span{Ha (&) € I’} I = {a € N";|a| < n}

KL Chaos Propagation Example
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Wiener Chaos \Vj

First Polynomials of the Chaos expansion

Order 0:  Ho,,.)(&) =1
Order 1:  Hgu0,,..(&) =&, Ho,1,0,..)(8) = &,
Order 2:  Hau,..)(8) = &&2,  Hezoo,.)(€) = %(ﬁ -1,

Hi,1y(x1, x2) Hi,3)(x1, x2) His,2)(x1, x2)
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@ Karhunen-Loeve expansion

@ Polynomial chaos and generalizations
@ Wiener Chaos

© Propagation
@ Direct methods

© Example: advection-reaction-diffusion stochastic problem



L? projection
Letting {1 }5_; be an orthonormal basis of Sp C L*(Z, Bz, P¢), we define

P
u(£) ~ Z Ua¢a(€)7 Us € Vn
a=1

with
o =< 10 22 50,9 = BU(E0a() = [ uly)un ()aPe(y)

Numerical quadrature

Q
ta ® Y u(yr)tha(yr)w

k=1
with {yk,wk}szl a quadrature rule on = adapted to measure P¢:
» Monte-Carlo or Quasi Monte-Carlo

» Gauss quadrature E] [Le Maitre 01, Reagan 03, ...]

» Sparse quadrature E) [Smolyak 1963, Keese & Matthies 2005]

KL Chaos Propagation Example 61



Interpolation - Collocation

Letting {to }5_1 be an interpolation basis associated with interpolation points {ya }h_;.

P
u(&) ~ Z Uoﬂpa(g)y
a=1
with
uo = u(yk) € Vn
Construction of interpolation grids

» Tensorized grids E) [Babuska 2007]
» Sparse Grids ) [Webster 2007, Nobile 2008]

» Anisotropic Sparse Grids D[Nobile 2008], based on a priori error estimates
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Regression = |

Let J(&) = f(u(€)) be a quantity of interest, with J : = — R. We seek for an
approximation

JE) ~ > Jatbal€)

aclp
We define a set of regression points {yk},?:1 and associated weights wk. Then, we solve
Q

min wi(J(yk) — Z Jawa(yk))z

Wataezp 1 acle
or equivalently a system of equations
Q Q
> <Zwk¢ﬁ(w)¢a(w)> Jo = wibs(yi)J(ye), BETp
a€Tp \k=1 k=1

Choice of regression points and weights: Pseudorandom samplings, Quasi-random

samplings, Gauss-Quadrature points (full or sparse) D[Berveiller 2006].
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Regression a il

Experimental design must be sufficiently rich in order to obtain a well-conditioned system

for the P coefficients
Q>FP

Some ways to reduce P, and therefore Q
@ Choice of hyperbolic sets of polynomials Zp E [Blatman 10]
@ Adaptive chaos representations based on adaptive regression techniques D[Blatman
& Sudret 08,09] (adaptive construction of Zp)
Remark

If {yk,wk}kQ:I constitutes an integration rule on = associated with measure Pg, then

2

Do w0 = Y Jata(yi))? R E((J(E)= D Jata(€))) = 4= D Javallizz,se.pe)

k=1 a€Zp a€Zp a€Zp

and regression is equivalent to a projection with a “numerical pseudo-norm”.
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Example: lllustration of the decomposition ug = 35 | w;(x))\;(&)

ws(x)}

R,

Spatial modes W = {w1(x)..

CoO®

TN 'Q \\ ;
o N\

To compute these modes
= only 8 deterministic problems J

Random variables A = {\1(&)...2s(&)}
A o-l gl_; A

2 o

KL Chaos Propagation Example
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Separated representation of random
variables

V4
NE) = > drdi(r)--i (ao) € Sp
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Convergence of multidimensional separated representations

Stochastic algebraic equation: problem defined on the reduced space Vy ® S ~RM @ S
Ee(A€)" TAAE)) = Ee(A(€) b)) VA" eRY ®S J

AE) ~ Az(€) = me ;G ERY, Wk(€) = 6i(&))-0k (€a0) € Sp

Convergence with Z for different M
IA = Az|lZ2

() =3 (W) wile)

k=1

For a precision of 1072
to be compared with

0 5 10 15
Order Z
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Convergence of generalized spectral decomposition

Mean square convergence

Ns
2 2 1 n ny| 2
llum — “HLZ(E;L?(Q)) = E¢(llum — “HL?(Q)) ~ . Z lum(€") — u(€ )HL?(Q)
n=1

l|um — ull2 (Ns = 500)
107
s
3 107} .
S
10 :
0 5 10 15
Order
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Convergence properties of generalized spectral decomposition

-

Samples

Sample of x(x, &) ‘

l.lref(X, g) - U(X, “5)
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Convergence properties of generalized spectral decomposition
Samples

s
- iy

b

2

Iy

Sample of x(x, &) |
s

ba

or

os

u,ef(X,f) — LI(X,[,LE) U15(X,€) - U(le"'g)

\

\g—
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Convergence properties of generalized spectral decomposition
Samples

Sample of x(x, &) \‘ i:f

l.lref(X, g) - U(X, “5) U15(X, g) - U(X, “5)
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Convergence properties of generalized spectral decomposition
Samples

—
Sample of x(x, &) “ I:
S

u’ef(Xa g) - U(X, “5) U15(X, g) - U(X, “5)

9 (7
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Convergence properties of generalized spectral decomposition
Uniform convergence

lum — ull oo (=z12(0)) = ZUEH“M(f) —u(@)lli2@) & sup lum(€") — U(ﬁn)HL?(m
€e=

ne{l...Ns}
lum — u]2e0 (Ns = 500)
10°
S 1ol
v
1
107 ‘
0 5 10 15
Order
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Convergence properties of quantities of interest

Probability density function

Quantity of interest

KL Chaos Propagation Example

Probability density function of Q(&)

14000 14000
—— Monte-Carlo| —— Monte—Carlo|
12000 ——Order 1 12000 ——Order 4
10000 10000
8000 8000
6000 6000
4000 4000
2000 2000
0

x10°*

25

M=15

3 35 4 45

x10°*

14000
—— Monte—Carlo| —— Monte—Carlo|

12000 Order 8 12000 p Order 15
10000 10000

8000 / 8000

6000 6000 /

4000 4000 \

2000

x10°*

2000 /

N
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3
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Convergence properties of quantities of interest
Probability of events

P(Q >q), qe€(35,5.4)

uantity of interest
Q y 10° : : : : :
Qe) = [ u(x. 8 ox
Q) 10_1, J
[ 2 i
Q 10 —— Monte—Carlo

—A— Order 1
1072 —o— Order 2

.Qz —e— Order 4
Order 8
1074 Order 15 )
—+— Order 20
o) = [ wlxx .
QZ 10 L L L L L
34 3.6 3.8 4 4.2 4.4 4.6
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Convergence properties of quantities of interest
Sensitivity analysis

Q&) =

Qu(€) ~

Qum,z(€)

z
= Z%‘W(ﬁ)v
k=1

)=me

First order Sobol sensitivity index with respect to parameter &;

Si=

Var(E(Q[$))

Var(Q)

E(QI¢) =

First order sobol sensivity indices S;

Zak¢k &),

40

ai = qc [ [ E(9k(£))
j=1
J#i

07
06 06 06
. 05 . 05 L 05
3 3 3
£ Zo4 £ 04
So4 5 20
s s s
%03 g 03 g 03
2 2 2
& & &
02 02 02
01 01 01
0 ” o 1 o |
0 10 40 50 0 10 40 50 0 10 20 30 40 50

Random variable &
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Results... in brief

Random variables separation

z s
u(€) ~ um(€) = Z wii( AE) = ()i ~ Az(€) = Dok [ [ #i(&)
k=1  j=1
= Sz= SPQ”{HJS':1 %(f/)}fﬂ

Deterministic/stochastic separation

< Vu = span{w;}},

For a precision ||u — um,z||,2 < 1072 lum — ull?

o | dim(Vu) ~ 15 | < 4435 = dim(Vx)

1

10°

L2 error
=
S

0 5
Order

c—
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Results... in brief

Deterministic/stochastic separation

u(€) = um(€) =

§ Wll

< Vu = span{w;}},

For a precision ||u — um,z||2 < 1072

9 | dim(Vu) ~ 15 | <« 4435 = dim(Vn) w0

@ | dim(Sz) ~ 10| <« 10%®® = dim(Sp)

Random variables separation

s

AE) = (ML = Az(8) =D o [ [ #4(&)

i1

o 87 = span{ITL, #&)} s

A — Az||?, for different M

107
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——M=10
y M=15
10°
0 5 10

Order Z
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Results... in brief

Deterministic/stochastic separation Random variables separation

u(§) = um(§) = ZW::

< Vu = span{w;}},

A(€) = (N)iy =~ Az(€) =

— Sz =span{[]_, Bl (&) o

Z s
S o[ 4)
k=1  j=1

For a precision ||u — um,z||,2 < 1072

o | dim(Vu) ~ 15 | < 4435 = dim(Vn)
@ | dim(Sz) ~ 10 | < 10® = dim(Sp)

@ 15 classical deterministic problems in
order to build Vi C Vn

a>
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Results... in brief

Deterministic/stochastic separation

u(€) = um(€) =

5 Wll

< Vu = span{w;}},

Random variables separation

AE) = (ML = Az(8) =D o [ [ #4(&)

k=1  j=1

— Sz =span{]];_, Bl (&) o

For a precision ||u — um,z||,2 < 1072

9 [ dim(Vum) =~ 15 | < 4435 = dim(Vy)

@ | dim(Sz) ~ 10 | < 10® = dim(Sp)

@ 15 classical deterministic problems in
order to build Vi C Vn

@ about 1 minute computation on a
laptop with matlab

First spatial modes {w:(x)...wg(x)}

EOC® S

)

o M\ :91
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