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MATCHINGS

In a graph G, a matching is a subset of edges that are pairwise non-adjacent.

The matching number ν(G) is the maximum possible cardinality of a matching.

� Typical behavior of ν(G) when G is a large random diluted graph ?
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Gn : Erdős-Rényi graph with parameter c/n on n vertices

Theorem [Karp & Sipser, ’82]

ν(Gn)

n

P
−−−→
n→∞

1−
1

2

(

x∗ + e−cx∗

+ cx∗e−cx∗

)

,

where x∗ is the smallest root of x = e−ce−cx

in [0, 1].
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Gn : Erdős-Rényi graph with parameter c/n on n vertices

Theorem [Karp & Sipser, ’82]

ν(Gn)

n

P
−−−→
n→∞

1−
1

2

(

x∗ + e−cx∗

+ cx∗e−cx∗

)

,

where x∗ is the smallest root of x = e−ce−cx

in [0, 1].

Remark : In the sense of local weak convergence (Aldous & Steele 2003), Gn converges

to a Galton-Watson tree with Poisson(c) degree distribution φ(x) = e−c(1−x).

Theorem For random graphs G1, G2, . . . s.t. Gn
d

−−−→
n→∞

GWT (φ) & φ′(1) <∞,

ν(Gn)

n

P
−−−→
n→∞

min
[0,1]

F,

where F = 1−
1

2

(

xφ′(1− x) + φ(1− x) + φ

(

1−
φ′(1− x)

φ′(1)

))

.
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PROOF :

The multi-affine polynomial 1+ x1 + . . .+ xd is non-vanishing whenever all variables lie

in the open right half-plane.
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PRELIMINARIES : MEASURES AND INFLUENCE

A measure µ : {0, 1}E → R+ over the subsets of a finite ground set E

can be represented by a multi-affine polynomial in x = (xe)e∈E :

P (x) =
∑

F⊆E

µ(F )xF , with x
F =

∏

e∈F

xe.

Key idea (Lee-Yang, 1952) : the location of the complex zeros of P is intimately

connected to the “combinatorial complexity” of µ.

P decomposes as P = xeP
/e + P \e, with P /e, P \e multiaffine on E \ e.

The rational function (P /e)/(P \e) is called the influence of e ∈ E on µ .
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Given a finite graph G = (V,E), consider a measure µG : {0, 1}E → R+

that factorizes into a product of local measures around vertices :

µG(F ) =
∏

i∈V

µi(F ∩ Ei),

with Ei = {e ∈ E; e incident to i} and µi : {0, 1}
Ei → R+.

Goal : compute the weighted number of spanning subgraphs of each given size, i.e.

PG(z) =
∑

F⊆E

µG(F )z|F |.

Remark : z → +∞←→ maximize |F | subject to µG(F ) > 0.

Example µi(F ) = 1|F |≤1 : µG counts matchings, PG is the matching polynomial.

� even for matchings, computing PG(1) is known to be # P-complete !
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• Free entropy : fG(z) =
1
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• Boltzmann distribution with activity z > 0 : µz
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µG(F )z|F |
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• Internal energy : uG(z) =
1

|V |

∑

e∈E

µz
G(e ∈ F) = zf ′

G(z)

� Computing the Boltzmann local marginals is generally hard.

� Cavity Approximation (Mézard & Parisi, 85) : non-rigorous, but really efficient
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THE CAVITY METHOD

z : positive parameter (activity)

I~ij : influence of edge ij on the local measure µi.

x~ij : positive variables attached to each oriented edge ~ij ∈ ~E.

1. Find a solution {x~ij ;
~ij ∈ ~E} to the local cavity equations on G :

j

i
k'

k

k"

x~ij = zI~ij(x~ki
; k 6= j)

2. Use the cavity approximation to evaluate the Boltzmann marginals :

µz
Gn

(ij ∈ F) ≈
x~ijx~ji

z + x~ijx~ji

.
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)
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VALIDITY OF THE CAVITY METHOD ?

When G is acyclic, the cavity method is valid for any activity z :

1. convergence : the cavity equations admit a unique, globally attractive solution

2. correctness : the cavity approximation is exact

In presence of cycles, the heuristic still seems to work well in various cases, leading to

� powerful predictions e.g. the assignment problem : (Xi,j)1≤i,j≤n iid uniform on [0, 1],

min
π∈Sn

(

n
∑

i=1

Xi,π(i)

)

a.s.
−−−→
n→∞

ζ(2) =
π2

6
.

conjectured by Parisi in 1987 and proved by Aldous in 2001.

� efficient decentralized approximation algorithms e.g. belief propagation and its variants

(Pearl, Yedida, Mézard, Montanari, Semerjian, Gamarnik, Shah, Weitz, Dembo...)

But rigorous results remain sparse. Any simple, general conditions for validity ?
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10-e

THE HALF-PLANE PROPERTY

A measure µ (over subsets of a finite ground set) isD−nonvanishing (D ⊆ C) if its

multi-affine generating polynomial is non-vanishing whenever all variables lie inD.

Of particular combinatorial interest is the right open half-plane

H+ := {z ∈ C;ℜ(z) > 0}.

� spanning trees (Kirchhoff, 1847), ferromagnetic Ising model (Lee-Yang, 1952),

matchings (Heilmann-Lieb, 1972), unbranched subgraphs (Ruelle, 1998), uniform

matroı̈ds (Wagner, 2000), determinantal/permanental measures (Choe, Oxley, Sokal,

Wagner, 2004). See also the beautiful theory developped by Borcea and Bränden (2008).

Say {µi, i ∈ V } has the uniform half-plane property if there exists an open setD ⊇ H+

such that every µi is D−non-vanishing.



10-g

THE HALF-PLANE PROPERTY

A measure µ (over subsets of a finite ground set) isD−nonvanishing (D ⊆ C) if its

multi-affine generating polynomial is non-vanishing whenever all variables lie inD.

Of particular combinatorial interest is the right open half-plane

H+ := {z ∈ C;ℜ(z) > 0}.

� spanning trees (Kirchhoff, 1847), ferromagnetic Ising model (Lee-Yang, 1952),

matchings (Heilmann-Lieb, 1972), unbranched subgraphs (Ruelle, 1998), uniform

matroı̈ds (Wagner, 2000), determinantal/permanental measures (Choe, Oxley, Sokal,

Wagner, 2004). See also the beautiful theory developped by Borcea and Bränden (2008).

Say {µi, i ∈ V } has the uniform half-plane property if there exists an open setD ⊇ H+

such that every µi is D−non-vanishing.

Example : µi(F ) = 1{|F |≤1}, and more generally µi(F ) = 1{|F |≤r} for r ∈ N.
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MAIN RESULT

1. Convergence : If the local measures have the uniform half-plane property, then on any

graph with bounded degree and for any activity z, the cavity equation admits a unique,

globally attractive solution.

2. Asymptotical correction : When G is an infinite tree, the cavity approximation can be

directly used to construct a law µz
G on {0, 1}E which turns out to be the weak limit of

µz
Gn

along any graph sequence (Gn)n≥1 converging locally to G.

Corollary : When the convergence Gn → G holds under uniform choice of the root ◦,

uGn
(z)→ uG(z) =

1

2
E

[

∑

i∼◦

µz
G (i◦ ∈ F)

]

and fGn
(z)→

∫ z

0

uG(s)

s
ds.
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1. contraction at low activity : if z is sufficiently small, then the cavity operator is

contracting, hence there exists a unique, exponentially attractive fixed point.

2. analycity in the activity : the uniform half-plane property guarantees that the cavity

operator preserves uniformly bounded analycity in a fixed complex domain containing

the positive real line. Hence, the above convergence extends to any z > 0.

3. local weak convergence : the cavity operator is “local”, i.e. continuous with respect to

local convergence, so we may pass to the limit in the cavity equations. When the limit

is a Galton-Watson tree, the cavity equations may be simplified into a recursive

distributional equation, which can sometimes be explicitely solved.
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CONCLUSION

Gian-Carlo Rota (1932-1999) :

“The one contribution of mine that I hope will be remembered has consisted in just pointing

out that all sorts of problems of combinatorics can be viewed as problems on location of

the zeros of certain polynomials and in giving these zeros a combinatorial interpretation.”


