The geometry of polynomials and the validity of the

 Cavity Method
Justin Salez (ENS \& INRIA)

Joint work with Charles Bordenave (CNRS \& Uni. Toulouse) and Marc Lelarge (INRIA \& ENS).

MATCHINGS

In a graph G, a matching is a subset of edges that are pairwise non-adjacent.

MATCHINGS

In a graph G, a matching is a subset of edges that are pairwise non-adjacent.

MATCHINGS

In a graph G, a matching is a subset of edges that are pairwise non-adjacent.

The matching number $\nu(G)$ is the maximum possible cardinality of a matching.

MATCHINGS

In a graph G, a matching is a subset of edges that are pairwise non-adjacent.

The matching number $\nu(G)$ is the maximum possible cardinality of a matching.
\triangleright Typical behavior of $\nu(G)$ when G is a large random diluted graph?

MATCHING NUMBER OF LARGE RANDOM DILUTED GRAPHS

G_{n} : Erdős-Rényi graph with parameter c / n on n vertices

MATCHING NUMBER OF LARGE RANDOM DILUTED GRAPHS

G_{n} : Erdős-Rényi graph with parameter c / n on n vertices
Theorem [Karp \& Sipser, '82]

$$
\frac{\nu\left(G_{n}\right)}{n} \underset{n \rightarrow \infty}{\stackrel{P}{\longrightarrow}} 1-\frac{1}{2}\left(x^{*}+e^{-c x^{*}}+c x^{*} e^{-c x^{*}}\right)
$$

where x^{*} is the smallest root of $x=e^{-c e^{-c x}}$ in $[0,1]$.

MATCHING NUMBER OF LARGE RANDOM DILUTED GRAPHS

G_{n} : Erdős-Rényi graph with parameter c / n on n vertices
Theorem [Karp \& Sipser, '82]

$$
\frac{\nu\left(G_{n}\right)}{n} \underset{n \rightarrow \infty}{P} 1-\frac{1}{2}\left(x^{*}+e^{-c x^{*}}+c x^{*} e^{-c x^{*}}\right),
$$

where x^{*} is the smallest root of $x=e^{-c e^{-c x}}$ in $[0,1]$.
Remark : In the sense of local weak convergence (Aldous \& Steele 2003), G_{n} converges to a Galton-Watson tree with Poisson (c) degree distribution $\phi(x)=e^{-c(1-x)}$.

MATCHING NUMBER OF LARGE RANDOM DILUTED GRAPHS

G_{n} : Erdős-Rényi graph with parameter c / n on n vertices
Theorem [Karp \& Sipser, '82]

$$
\frac{\nu\left(G_{n}\right)}{n} \xrightarrow[n \rightarrow \infty]{P} 1-\frac{1}{2}\left(x^{*}+e^{-c x^{*}}+c x^{*} e^{-c x^{*}}\right)
$$

where x^{*} is the smallest root of $x=e^{-c e^{-c x}}$ in $[0,1]$.
Remark: In the sense of local weak convergence (Aldous \& Steele 2003), G_{n} converges to a Galton-Watson tree with Poisson (c) degree distribution $\phi(x)=e^{-c(1-x)}$.
Theorem For random graphs G_{1}, G_{2}, \ldots s.t. $G_{n} \xrightarrow[n \rightarrow \infty]{d} G W T(\phi) \& \phi^{\prime}(1)<\infty$,

$$
\frac{\nu\left(G_{n}\right)}{n} \xrightarrow[n \rightarrow \infty]{P} \min _{[0,1]} F
$$

where $F=1-\frac{1}{2}\left(x \phi^{\prime}(1-x)+\phi(1-x)+\phi\left(1-\frac{\phi^{\prime}(1-x)}{\phi^{\prime}(1)}\right)\right)$.

PROOF:

PROOF:

The multi-affine polynomial $1+x_{1}+\ldots+x_{d}$ is non-vanishing whenever all variables lie in the open right half-plane.

PRELIMINARIES: MEASURES AND INFLUENCE

PRELIMINARIES: MEASURES AND INFLUENCE

A measure $\mu:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$over the subsets of a finite ground set E

PRELIMINARIES : MEASURES AND INFLUENCE

A measure $\mu:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$over the subsets of a finite ground set E can be represented by a multi-affine polynomial in $\mathbf{x}=\left(x_{e}\right)_{e \in E}$:

$$
P(\mathbf{x})=\sum_{F \subseteq E} \mu(F) \mathbf{x}^{F}, \text { with } \mathbf{x}^{F}=\prod_{e \in F} x_{e}
$$

PRELIMINARIES: MEASURES AND INFLUENCE

A measure $\mu:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$over the subsets of a finite ground set E can be represented by a multi-affine polynomial in $\mathbf{x}=\left(x_{e}\right)_{e \in E}$:

$$
P(\mathbf{x})=\sum_{F \subseteq E} \mu(F) \mathbf{x}^{F}, \text { with } \mathbf{x}^{F}=\prod_{e \in F} x_{e} .
$$

Key idea (Lee-Yang, 1952) : the location of the complex zeros of P is intimately connected to the "combinatorial complexity" of μ.

PRELIMINARIES: MEASURES AND INFLUENCE

A measure $\mu:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$over the subsets of a finite ground set E can be represented by a multi-affine polynomial in $\mathbf{x}=\left(x_{e}\right)_{e \in E}$:

$$
P(\mathbf{x})=\sum_{F \subseteq E} \mu(F) \mathbf{x}^{F}, \text { with } \mathbf{x}^{F}=\prod_{e \in F} x_{e} .
$$

Key idea (Lee-Yang, 1952) : the location of the complex zeros of P is intimately connected to the "combinatorial complexity" of μ.
P decomposes as $P=x_{e} P^{/ e}+P^{\backslash e}$, with $P^{/ e}, P^{\backslash e}$ multiaffine on $E \backslash e$.

PRELIMINARIES: MEASURES AND INFLUENCE

A measure $\mu:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$over the subsets of a finite ground set E can be represented by a multi-affine polynomial in $\mathbf{x}=\left(x_{e}\right)_{e \in E}$:

$$
P(\mathbf{x})=\sum_{F \subseteq E} \mu(F) \mathbf{x}^{F}, \text { with } \mathbf{x}^{F}=\prod_{e \in F} x_{e}
$$

Key idea (Lee-Yang, 1952) : the location of the complex zeros of P is intimately connected to the "combinatorial complexity" of μ.
P decomposes as $P=x_{e} P^{/ e}+P^{\backslash e}$, with $P^{/ e}, P^{\backslash e}$ multiaffine on $E \backslash e$. The rational function $\left(P^{/ e}\right) /\left(P^{\backslash e}\right)$ is called the influence of $e \in E$ on μ.

SPANNING SUBGRAPHS WITH LOCAL CONSTRAINTS

Given a finite graph $G=(V, E)$, consider a measure $\mu_{G}:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$

SPANNING SUBGRAPHS WITH LOCAL CONSTRAINTS

Given a finite graph $G=(V, E)$, consider a measure $\mu_{G}:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$ that factorizes into a product of local measures around vertices :

$$
\mu_{G}(F)=\prod_{i \in V} \mu_{i}\left(F \cap E_{i}\right)
$$

with $E_{i}=\{e \in E ; e$ incident to $i\}$ and $\mu_{i}:\{0,1\}^{E_{i}} \rightarrow \mathbb{R}_{+}$.

SPANNING SUBGRAPHS WITH LOCAL CONSTRAINTS

Given a finite graph $G=(V, E)$, consider a measure $\mu_{G}:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$ that factorizes into a product of local measures around vertices :

$$
\mu_{G}(F)=\prod_{i \in V} \mu_{i}\left(F \cap E_{i}\right)
$$

with $E_{i}=\{e \in E ; e$ incident to $i\}$ and $\mu_{i}:\{0,1\}^{E_{i}} \rightarrow \mathbb{R}_{+}$.
Goal : compute the weighted number of spanning subgraphs of each given size, i.e.

$$
P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}
$$

SPANNING SUBGRAPHS WITH LOCAL CONSTRAINTS

Given a finite graph $G=(V, E)$, consider a measure $\mu_{G}:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$ that factorizes into a product of local measures around vertices :

$$
\mu_{G}(F)=\prod_{i \in V} \mu_{i}\left(F \cap E_{i}\right)
$$

with $E_{i}=\{e \in E ; e$ incident to $i\}$ and $\mu_{i}:\{0,1\}^{E_{i}} \rightarrow \mathbb{R}_{+}$.
Goal : compute the weighted number of spanning subgraphs of each given size, i.e.

$$
P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}
$$

Remark: $z \rightarrow+\infty \longleftrightarrow$ maximize $|F|$ subject to $\mu_{G}(F)>0$.

SPANNING SUBGRAPHS WITH LOCAL CONSTRAINTS

Given a finite graph $G=(V, E)$, consider a measure $\mu_{G}:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$ that factorizes into a product of local measures around vertices :

$$
\mu_{G}(F)=\prod_{i \in V} \mu_{i}\left(F \cap E_{i}\right)
$$

with $E_{i}=\{e \in E ; e$ incident to $i\}$ and $\mu_{i}:\{0,1\}^{E_{i}} \rightarrow \mathbb{R}_{+}$.
Goal : compute the weighted number of spanning subgraphs of each given size, i.e.

$$
P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}
$$

Remark: $z \rightarrow+\infty \longleftrightarrow$ maximize $|F|$ subject to $\mu_{G}(F)>0$.
Example $\mu_{i}(F)=\mathbf{1}_{|F| \leq 1}$:

SPANNING SUBGRAPHS WITH LOCAL CONSTRAINTS

Given a finite graph $G=(V, E)$, consider a measure $\mu_{G}:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$ that factorizes into a product of local measures around vertices :

$$
\mu_{G}(F)=\prod_{i \in V} \mu_{i}\left(F \cap E_{i}\right)
$$

with $E_{i}=\{e \in E ; e$ incident to $i\}$ and $\mu_{i}:\{0,1\}^{E_{i}} \rightarrow \mathbb{R}_{+}$.
Goal : compute the weighted number of spanning subgraphs of each given size, i.e.

$$
P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}
$$

Remark : $z \rightarrow+\infty \longleftrightarrow$ maximize $|F|$ subject to $\mu_{G}(F)>0$.
Example $\mu_{i}(F)=\mathbf{1}_{|F| \leq 1}: \mu_{G}$ counts matchings, P_{G} is the matching polynomial.

SPANNING SUBGRAPHS WITH LOCAL CONSTRAINTS

Given a finite graph $G=(V, E)$, consider a measure $\mu_{G}:\{0,1\}^{E} \rightarrow \mathbb{R}_{+}$ that factorizes into a product of local measures around vertices :

$$
\mu_{G}(F)=\prod_{i \in V} \mu_{i}\left(F \cap E_{i}\right)
$$

with $E_{i}=\{e \in E ; e$ incident to $i\}$ and $\mu_{i}:\{0,1\}^{E_{i}} \rightarrow \mathbb{R}_{+}$.
Goal : compute the weighted number of spanning subgraphs of each given size, i.e.

$$
P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}
$$

Remark : $z \rightarrow+\infty \longleftrightarrow$ maximize $|F|$ subject to $\mu_{G}(F)>0$.
Example $\mu_{i}(F)=\mathbf{1}_{|F| \leq 1}: \mu_{G}$ counts matchings, P_{G} is the matching polynomial.
\triangleright even for matchings, computing $P_{G}(1)$ is known to be \# P-complete!

STATISTICAL PHYSICS

STATISTICAL PHYSICS

- Partition function : $\quad P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}$

STATISTICAL PHYSICS

- Partition function : $\quad P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}$
- Free entropy : $\quad f_{G}(z)=\frac{1}{|V|} \log P_{G}(z)$

STATISTICAL PHYSICS

- Partition function : $\quad P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}$
- Free entropy: $\quad f_{G}(z)=\frac{1}{|V|} \log P_{G}(z)$
- Boltzmann distribution with activity $z>0: \quad \mu_{G}^{z}(F)=\frac{\mu_{G}(F) z^{|F|}}{P_{G}(z)}$

STATISTICAL PHYSICS

- Partition function: $\quad P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}$
- Free entropy : $\quad f_{G}(z)=\frac{1}{|V|} \log P_{G}(z)$
- Boltzmann distribution with activity $z>0: \quad \mu_{G}^{z}(F)=\frac{\mu_{G}(F) z^{|F|}}{P_{G}(z)}$
- Internal energy : $\quad u_{G}(z)=\frac{1}{|V|} \sum_{e \in E} \mu_{G}^{z}(e \in \mathcal{F})$

STATISTICAL PHYSICS

- Partition function: $\quad P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}$
- Free entropy: $f_{G}(z)=\frac{1}{|V|} \log P_{G}(z)$
- Boltzmann distribution with activity $z>0: \quad \mu_{G}^{z}(F)=\frac{\mu_{G}(F) z^{|F|}}{P_{G}(z)}$
- Internal energy : $\quad u_{G}(z)=\frac{1}{|V|} \sum_{e \in E} \mu_{G}^{z}(e \in \mathcal{F})=z f_{G}^{\prime}(z)$

STATISTICAL PHYSICS

- Partition function : $\quad P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}$
- Free entropy : $\quad f_{G}(z)=\frac{1}{|V|} \log P_{G}(z)$
- Boltzmann distribution with activity $z>0: \quad \mu_{G}^{z}(F)=\frac{\mu_{G}(F) z^{|F|}}{P_{G}(z)}$
- Internal energy : $\quad u_{G}(z)=\frac{1}{|V|} \sum_{e \in E} \mu_{G}^{z}(e \in \mathcal{F})=z f_{G}^{\prime}(z)$
\triangleright Computing the Boltzmann local marginals is generally hard.

STATISTICAL PHYSICS

- Partition function: $\quad P_{G}(z)=\sum_{F \subseteq E} \mu_{G}(F) z^{|F|}$
- Free entropy : $\quad f_{G}(z)=\frac{1}{|V|} \log P_{G}(z)$
- Boltzmann distribution with activity $z>0: \quad \mu_{G}^{z}(F)=\frac{\mu_{G}(F) z^{|F|}}{P_{G}(z)}$
- Internal energy : $\quad u_{G}(z)=\frac{1}{|V|} \sum_{e \in E} \mu_{G}^{z}(e \in \mathcal{F})=z f_{G}^{\prime}(z)$
\triangleright Computing the Boltzmann local marginals is generally hard.
\triangleright Cavity Approximation (Mézard \& Parisi, 85) : non-rigorous, but really efficient

THE CAVITY METHOD

THE CAVITY METHOD

z : positive parameter (activity)

THE CAVITY METHOD

z : positive parameter (activity)
$\mathcal{I}_{\overrightarrow{i j}}$: influence of edge $i j$ on the local measure μ_{i}.

THE CAVITY METHOD

z : positive parameter (activity)
$\mathcal{I}_{i j}$: influence of edge $i j$ on the local measure μ_{i}.
$x_{i j}$: positive variables attached to each oriented edge $\overrightarrow{i j} \in \vec{E}$.

THE CAVITY METHOD

z : positive parameter (activity)
$\mathcal{I}_{\overrightarrow{i j}}$: influence of edge $i j$ on the local measure μ_{i}.
$x_{\overrightarrow{i j}}$: positive variables attached to each oriented edge $\overrightarrow{i j} \in \vec{E}$.

1. Find a solution $\left\{x_{i j} ; \overrightarrow{i j} \in \vec{E}\right\}$ to the local cavity equations on G :

$$
x_{\overrightarrow{i j}}=z \mathcal{I}_{\overrightarrow{i j}}\left(x_{\overrightarrow{k i}} ; k \neq j\right)
$$

THE CAVITY METHOD

z : positive parameter (activity)
$\mathcal{I}_{i j}$: influence of edge $i j$ on the local measure μ_{i}.
$x_{\overrightarrow{i j}}$: positive variables attached to each oriented edge $\overrightarrow{i j} \in \vec{E}$.

1. Find a solution $\left\{x_{i \vec{j}} ; \overrightarrow{i j} \in \vec{E}\right\}$ to the local cavity equations on G :

$$
x_{\overrightarrow{i j}}=z \mathcal{I}_{\overrightarrow{i j}}\left(x_{\overrightarrow{k i}} ; k \neq j\right)
$$

2. Use the cavity approximation to evaluate the Boltzmann marginals :

$$
\mu_{G_{n}}^{z}(i j \in \mathcal{F}) \approx \frac{x_{\overrightarrow{i j}} x_{\vec{j} i}}{z+x_{\overrightarrow{i j}} x_{\overrightarrow{j i}}}
$$

VALIDITY OF THE CAVITY METHOD?

VALIDITY OF THE CAVITY METHOD?

When G is acyclic, the cavity method is valid for any activity z :

VALIDITY OF THE CAVITY METHOD?

When G is acyclic, the cavity method is valid for any activity z :

1. convergence : the cavity equations admit a unique, globally attractive solution

VALIDITY OF THE CAVITY METHOD?

When G is acyclic, the cavity method is valid for any activity z :

1. convergence : the cavity equations admit a unique, globally attractive solution
2. correctness : the cavity approximation is exact

VALIDITY OF THE CAVITY METHOD?

When G is acyclic, the cavity method is valid for any activity z :

1. convergence : the cavity equations admit a unique, globally attractive solution
2. correctness : the cavity approximation is exact

In presence of cycles, the heuristic still seems to work well in various cases, leading to

VALIDITY OF THE CAVITY METHOD ?

When G is acyclic, the cavity method is valid for any activity z :

1. convergence : the cavity equations admit a unique, globally attractive solution
2. correctness : the cavity approximation is exact

In presence of cycles, the heuristic still seems to work well in various cases, leading to
\triangleright powerful predictions e.g. the assignment problem : $\left(X_{i, j}\right)_{1 \leq i, j \leq n}$ iid uniform on $[0,1]$,

$$
\min _{\pi \in \mathfrak{S}_{n}}\left(\sum_{i=1}^{n} X_{i, \pi(i)}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \zeta(2)=\frac{\pi^{2}}{6}
$$

conjectured by Parisi in 1987 and proved by Aldous in 2001.

VALIDITY OF THE CAVITY METHOD ?

When G is acyclic, the cavity method is valid for any activity z :

1. convergence : the cavity equations admit a unique, globally attractive solution
2. correctness : the cavity approximation is exact

In presence of cycles, the heuristic still seems to work well in various cases, leading to
\triangleright powerful predictions e.g. the assignment problem : $\left(X_{i, j}\right)_{1 \leq i, j \leq n}$ iid uniform on $[0,1]$,

$$
\min _{\pi \in \mathfrak{S}_{n}}\left(\sum_{i=1}^{n} X_{i, \pi(i)}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \zeta(2)=\frac{\pi^{2}}{6}
$$

conjectured by Parisi in 1987 and proved by Aldous in 2001.
\triangleright efficient decentralized approximation algorithms e.g. belief propagation and its variants (Pearl, Yedida, Mézard, Montanari, Semerjian, Gamarnik, Shah, Weitz, Dembo...)

VALIDITY OF THE CAVITY METHOD ?

When G is acyclic, the cavity method is valid for any activity z :

1. convergence : the cavity equations admit a unique, globally attractive solution
2. correctness : the cavity approximation is exact

In presence of cycles, the heuristic still seems to work well in various cases, leading to
\triangleright powerful predictions e.g. the assignment problem : $\left(X_{i, j}\right)_{1 \leq i, j \leq n}$ iid uniform on $[0,1]$,

$$
\min _{\pi \in \mathfrak{S}_{n}}\left(\sum_{i=1}^{n} X_{i, \pi(i)}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \zeta(2)=\frac{\pi^{2}}{6}
$$

conjectured by Parisi in 1987 and proved by Aldous in 2001.
\triangleright efficient decentralized approximation algorithms e.g. belief propagation and its variants (Pearl, Yedida, Mézard, Montanari, Semerjian, Gamarnik, Shah, Weitz, Dembo...)

But rigorous results remain sparse. Any simple, general conditions for validity?

THE HALF-PLANE PROPERTY

THE HALF-PLANE PROPERTY

A measure μ (over subsets of a finite ground set) is \mathcal{D}-nonvanishing ($\mathcal{D} \subseteq \mathbb{C}$) if its multi-affine generating polynomial is non-vanishing whenever all variables lie in \mathcal{D}.

THE HALF-PLANE PROPERTY

A measure μ (over subsets of a finite ground set) is \mathcal{D}-nonvanishing ($\mathcal{D} \subseteq \mathbb{C}$) if its multi-affine generating polynomial is non-vanishing whenever all variables lie in \mathcal{D}.

Of particular combinatorial interest is the right open half-plane

$$
\mathbb{H}_{+}:=\{z \in \mathbb{C} ; \Re(z)>0\}
$$

THE HALF-PLANE PROPERTY

A measure μ (over subsets of a finite ground set) is \mathcal{D}-nonvanishing ($\mathcal{D} \subseteq \mathbb{C}$) if its multi-affine generating polynomial is non-vanishing whenever all variables lie in \mathcal{D}.

Of particular combinatorial interest is the right open half-plane

$$
\mathbb{H}_{+}:=\{z \in \mathbb{C} ; \Re(z)>0\}
$$

\triangleright spanning trees (Kirchhoff, 1847), ferromagnetic Ising model (Lee-Yang, 1952), matchings (Heilmann-Lieb, 1972), unbranched subgraphs (Ruelle, 1998), uniform matroïds (Wagner, 2000), determinantal/permanental measures (Choe, Oxley, Sokal, Wagner, 2004). See also the beautiful theory developped by Borcea and Bränden (2008).

THE HALF-PLANE PROPERTY

A measure μ (over subsets of a finite ground set) is \mathcal{D} - nonvanishing ($\mathcal{D} \subseteq \mathbb{C}$) if its multi-affine generating polynomial is non-vanishing whenever all variables lie in \mathcal{D}.

Of particular combinatorial interest is the right open half-plane

$$
\mathbb{H}_{+}:=\{z \in \mathbb{C} ; \Re(z)>0\}
$$

\triangleright spanning trees (Kirchhoff, 1847), ferromagnetic Ising model (Lee-Yang, 1952), matchings (Heilmann-Lieb, 1972), unbranched subgraphs (Ruelle, 1998), uniform matroïds (Wagner, 2000), determinantal/permanental measures (Choe, Oxley, Sokal, Wagner, 2004). See also the beautiful theory developped by Borcea and Bränden (2008).

Say $\left\{\mu_{i}, i \in V\right\}$ has the uniform half-plane property if there exists an open set $\mathcal{D} \supseteq \overline{\mathbb{H}}_{+}$ such that every μ_{i} is \mathcal{D}-non-vanishing.

THE HALF-PLANE PROPERTY

A measure μ (over subsets of a finite ground set) is \mathcal{D}-nonvanishing ($\mathcal{D} \subseteq \mathbb{C}$) if its multi-affine generating polynomial is non-vanishing whenever all variables lie in \mathcal{D}.

Of particular combinatorial interest is the right open half-plane

$$
\mathbb{H}_{+}:=\{z \in \mathbb{C} ; \Re(z)>0\}
$$

\triangleright spanning trees (Kirchhoff, 1847), ferromagnetic Ising model (Lee-Yang, 1952), matchings (Heilmann-Lieb, 1972), unbranched subgraphs (Ruelle, 1998), uniform matroïds (Wagner, 2000), determinantal/permanental measures (Choe, Oxley, Sokal, Wagner, 2004). See also the beautiful theory developped by Borcea and Bränden (2008). Say $\left\{\mu_{i}, i \in V\right\}$ has the uniform half-plane property if there exists an open set $\mathcal{D} \supseteq \overline{\mathbb{H}}_{+}$ such that every μ_{i} is \mathcal{D}-non-vanishing.

Example : $\mu_{i}(F)=1_{\{|F| \leq 1\}}$, and more generally $\mu_{i}(F)=1_{\{|F| \leq r\}}$ for $r \in \mathbb{N}$.

MAIN RESULT

MAIN RESULT

1. Convergence : If the local measures have the uniform half-plane property, then on any graph with bounded degree and for any activity z, the cavity equation admits a unique, globally attractive solution.

MAIN RESULT

1. Convergence: If the local measures have the uniform half-plane property, then on any graph with bounded degree and for any activity z, the cavity equation admits a unique, globally attractive solution.
2. Asymptotical correction : When G is an infinite tree, the cavity approximation can be directly used to construct a law μ_{G}^{z} on $\{0,1\}^{E}$ which turns out to be the weak limit of $\mu_{G_{n}}^{z}$ along any graph sequence $\left(G_{n}\right)_{n \geq 1}$ converging locally to G.

MAIN RESULT

1. Convergence: If the local measures have the uniform half-plane property, then on any graph with bounded degree and for any activity z, the cavity equation admits a unique, globally attractive solution.
2. Asymptotical correction : When G is an infinite tree, the cavity approximation can be directly used to construct a law μ_{G}^{z} on $\{0,1\}^{E}$ which turns out to be the weak limit of $\mu_{G_{n}}^{z}$ along any graph sequence $\left(G_{n}\right)_{n \geq 1}$ converging locally to G.

Corollary : When the convergence $G_{n} \rightarrow G$ holds under uniform choice of the root o,

$$
u_{G_{n}}(z) \rightarrow u_{G}(z)=\frac{1}{2} \mathbb{E}\left[\sum_{i \sim 0} \mu_{G}^{z}(i \circ \in \mathcal{F})\right] \text { and } f_{G_{n}}(z) \rightarrow \int_{0}^{z} \frac{u_{G}(s)}{s} d s
$$

SKETCH OF PROOF : THREE INGREDIENTS

SKETCH OF PROOF : THREE INGREDIENTS

1. contraction at low activity : if z is sufficiently small, then the cavity operator is contracting, hence there exists a unique, exponentially attractive fixed point.

SKETCH OF PROOF : THREE INGREDIENTS

1. contraction at low activity : if z is sufficiently small, then the cavity operator is contracting, hence there exists a unique, exponentially attractive fixed point.
2. analycity in the activity : the uniform half-plane property guarantees that the cavity operator preserves uniformly bounded analycity in a fixed complex domain containing the positive real line. Hence, the above convergence extends to any $z>0$.

SKETCH OF PROOF : THREE INGREDIENTS

1. contraction at low activity : if z is sufficiently small, then the cavity operator is contracting, hence there exists a unique, exponentially attractive fixed point.
2. analycity in the activity : the uniform half-plane property guarantees that the cavity operator preserves uniformly bounded analycity in a fixed complex domain containing the positive real line. Hence, the above convergence extends to any $z>0$.
3. local weak convergence : the cavity operator is "local", i.e. continuous with respect to local convergence, so we may pass to the limit in the cavity equations. When the limit is a Galton-Watson tree, the cavity equations may be simplified into a recursive distributional equation, which can sometimes be explicitely solved.

CONCLUSION

Gian-Carlo Rota (1932-1999) :

"The one contribution of mine that I hope will be remembered has consisted in just pointing out that all sorts of problems of combinatorics can be viewed as problems on location of the zeros of certain polynomials and in giving these zeros a combinatorial interpretation."

