Modélisation de propagation de fissure par un PDMP

Romain Azaïs ba, Anne Gégout-Petit ba, Marie Touzet ba

b: IMB − b: Equipe CQFD, INRIA − #: LMP

Projet ANR FauToCoES

Journées MAS 2010

Plan

- Modèle PDMP pour la propagation de fissure
 - Pourquoi un modèle stochastique?
 - Qu'est-ce qu'un PDMP?
- 2 Ajustement sur les données de Virkler
 - Ajustement par morceaux
 - Statistiques des résultats obtenus
- 3 Modèles de propagation de fissure
 - Modèle général
 - Principe d'actualisation
- 4 Simulations et validation du modèle
 - Modèle général
 - Principe d'actualisation

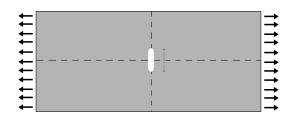
Loi de Paris-Erdogan (propagation de fissure)

$$\frac{\mathrm{d}u}{\mathrm{d}t} = C(\Delta\sigma\sqrt{\pi})^m \cos\left(\frac{\pi}{\omega}u\right)^{-\frac{m}{2}} u^{\frac{m}{2}} \tag{P-E}$$

Loi de Paris-Erdogan (propagation de fissure)

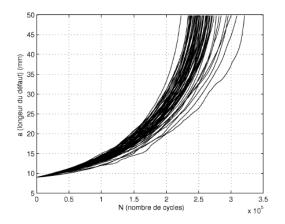
$$\frac{\mathrm{d}u}{\mathrm{d}t} = C(\Delta\sigma\sqrt{\pi})^m \cos\left(\frac{\pi}{\omega}u\right)^{-\frac{m}{2}} u^{\frac{m}{2}} \tag{P-E}$$

Expérience de Virkler



$$\Delta \sigma = 48.28 \mathrm{MPa}$$

Données expérimentales de Virkler



 \hookrightarrow dispersion importante!

PDMP: processus hybride

$$X_t = (\nu_t, \zeta_t)$$

- $\nu_t \in K$: le mode, un processus de saut
- ullet $\zeta_t \in \mathcal{F}_{
 u_t}$: le vecteur des variables physiques

PDMP: processus hybride

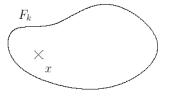
$$X_t = (\nu_t, \zeta_t)$$

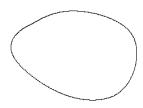
- $\nu_t \in K$: le mode, un processus de saut
- $\zeta_t \in F_{\nu_t}$: le vecteur des variables physiques

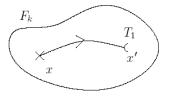
E: espace d'états de (X_t)

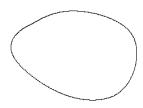
- K : espace d'états du mode, fini ou dénombrable
- Pour tout $k \in K$, F_k : ouvert de \mathbb{R}^{d_k}

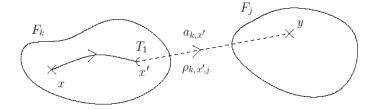
$$\hookrightarrow E = \bigcup_{k \in K} \{k\} \times F_k$$

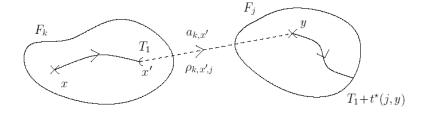


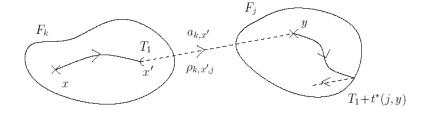












Dynamique de (X_t)

à
$$t = 0$$
, $X_0 = (k, x)$

1 - Evolution déterministe pendant un temps aléatoire

$$\forall 0 \leq t < S_1, \ \zeta_t = \phi_k(0, x, t)$$

avec
$$\mathbb{P}(S_1 > s) = \exp\left\{-\int_0^s \lambda((k, \zeta_r)) dr\right\} \mathbb{1}_{[0, t^*(k, x)[}(s)$$

- 2 Transition markovienne
- x' : limite à gauche de (ζ_t) en $\mathcal{T}_1 = \mathcal{S}_1$
- à $t = T_1$
 - saut du mode selon $a_{k,x'}: \nu_{T_1} = j$
 - saut de la variable physique selon $\rho_{k,x',j}:\zeta_{T_1}=y$

Dynamique de (X_t)

à
$$t = 0$$
, $X_0 = (k, x)$

1 - Evolution déterministe pendant un temps aléatoire

$$\forall 0 \leq t < S_1, \ \zeta_t = \phi_k(0, x, t)$$

avec
$$\mathbb{P}(S_1>s)=\exp\Big\{-\int_0^s\lambdaig((k,\zeta_r)ig)\mathrm{d}r\Big\}\mathbb{1}_{[0,t^*(k,\mathbf{x})[}(s)$$

2 - Transition markovienne

x': limite à gauche de (ζ_t) en $T_1=S_1$

- à $t = T_1$,
 - saut du mode selon $a_{k,x'}: \nu_{T_1} = j$
 - saut de la variable physique selon $\rho_{k,x',j}:\zeta_{T_1}=y$

Dynamique de (X_t) (suite)

à
$$t = T_1, X_{T_1} = (j, y)$$

1 bis - Evolution déterministe pendant un temps aléatoire

$$\forall 0 \leq t < S_2, \ \zeta_{T_1+t} = \phi_j(0, y, t)$$

avec
$$\mathbb{P}(S_2 > s) = \exp\left\{-\int_0^s \lambda((j, \zeta_{T_1+r})) dr\right\} \mathbb{1}_{[0, t^*(j, y)]}(s)$$

- 2 bis Transition markovienne
- y': limite à gauche de (ζ_t) en $T_2 = T_1 + S_2$
- à $t = T_2$,
 - saut du mode selon $a_{i,v'}: \nu_{T_2} = I$
 - saut de la variable physique selon $\rho_{i,v',l}$

Et ainsi de suite!

Dynamique de (X_t) (suite)

à
$$t = T_1, X_{T_1} = (j, y)$$

1 bis - Evolution déterministe pendant un temps aléatoire

$$\forall 0 \leq t < S_2, \ \zeta_{T_1+t} = \phi_j(0,y,t)$$

$$\text{evec } \mathbb{P}(S_2 > s) = \exp\Big\{-\int_0^s \lambda\big((j,\zeta_{T_1+r})\big) \mathrm{d}r\Big\} \mathbb{1}_{[0,t^\star(j,y)]}(s)$$

2 bis - Transition markovienne

y': limite à gauche de (ζ_t) en $T_2 = T_1 + S_2$

- à $t = T_2$,
 - saut du mode selon $a_{j,y'}: \nu_{T_2} = I$
 - saut de la variable physique selon $\rho_{i,v',l}$

Et ainsi de suite!

Dynamique de (X_t) (suite)

à
$$t = T_1, X_{T_1} = (j, y)$$

1 bis - Evolution déterministe pendant un temps aléatoire

$$orall 0 \leq t < S_2, \; \zeta_{\mathcal{T}_1+t} = \phi_j(0,y,t)$$

$$\text{evec } \mathbb{P}(S_2 > s) = \exp\Big\{-\int_0^s \lambda\big((j,\zeta_{\mathcal{T}_1+r})\big) \mathrm{d}r\Big\} \mathbb{1}_{[0,t^\star(j,y)]}(s)$$

2 bis - Transition markovienne

y' : limite à gauche de (ζ_t) en $T_2=T_1+S_2$

- à $t = T_2$,
 - saut du mode selon $a_{j,y'}$: $\nu_{T_2} = I$
 - saut de la variable physique selon $\rho_{i,v',l}$

Et ainsi de suite!

Loi de (X_t)

- $\lambda : E \to \mathbb{R}+$: application mesurable
- $\forall i \in K, \ \forall \zeta \in F_i, \ a_{i,\zeta}$: loi sur $K \setminus \{i\}$
- $\forall i \in K, \ \forall \zeta \in F_i, \ \forall j \in K \setminus \{i\}, \ \rho_{i,\zeta,j}$: loi sur F_j

Et aussi...

- $\forall k \in K$, ϕ_k : flot déterministe sur F_k
- $\forall k \in K, \ \forall \zeta \in F_k, \ t^*(k,\zeta)$: temps d'atteinte de ∂F_k de $\phi_k(0,\zeta,\cdot)$

Loi de (X_t)

- $\lambda : E \to \mathbb{R}+:$ application mesurable
- $\forall i \in K, \ \forall \zeta \in F_i, \ a_{i,\zeta} : \text{loi sur } K \setminus \{i\}$
- $\forall i \in K, \ \forall \zeta \in F_i, \ \forall j \in K \setminus \{i\}, \ \rho_{i,\zeta,j}$: loi sur F_j

Et aussi...

- $\forall k \in K$, ϕ_k : flot déterministe sur F_k
- $\forall k \in K, \ \forall \zeta \in F_k, \ t^*(k,\zeta)$: temps d'atteinte de ∂F_k de $\phi_k(0,\zeta,\cdot)$

Plan

- Modèle PDMP pour la propagation de fissure
 - Pourquoi un modèle stochastique?
 - Qu'est-ce qu'un PDMP?
- 2 Ajustement sur les données de Virkler
 - Ajustement par morceaux
 - Statistiques des résultats obtenus
- 3 Modèles de propagation de fissure
 - Modèle général
 - Principe d'actualisation
- 4 Simulations et validation du modèle
 - Modèle général
 - Principe d'actualisation

Données de Virkler

68 courbes :
$$\{(N_q^{(k)}, a_q^{(k)})_{1 \le q \le 164}\}_{1 < k < 68}$$

Données de Virkler

68 courbes : $\left\{ (N_q^{(k)}, a_q^{(k)})_{1 \leq q \leq 164} \right\}_{1 < k < 68}$

$a_{th}(m_1, C_1, T, m_2, C_2)$: courbe théorique définie par morceaux

$$\forall 0 \le t < T, \ a_{th}(t) = \phi_{(m_1, C_1)}(0, 9, t)$$

$$\forall t \geq T, \qquad \textit{a}_{\textit{th}}(t) \ = \ \phi_{(\textit{m}_2,\textit{C}_2)}(\textit{T},\alpha,t) \quad \text{avec } \alpha = \phi_{(\textit{m}_1,\textit{C}_1)}(0,9,\textit{T})$$

$$\phi_{(m,C)}$$
: $\frac{\mathrm{d}y}{\mathrm{d}t} = C(\Delta\sigma\sqrt{\pi})^m \cos\left(\frac{\pi}{\omega}y\right)^{-\frac{m}{2}} y^{\frac{m}{2}}$ (P-E)

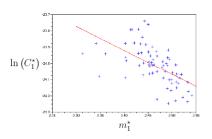
Ajustement par morceaux

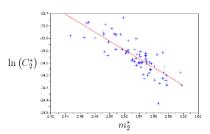
Pour chaque fissure k, on minimise

$$\sum_{q=1}^{164} \left\{ a_q^{(k)} - a_{th}(m_1, C_1, T, m_2, C_2)(N_q^{(k)}) \right\}^2$$

$$\hookrightarrow \ \left(\textit{m}_{1}^{(k)\star}, \textit{C}_{1}^{(k)\star}, \textit{T}^{(k)\star}, \textit{m}_{2}^{(k)\star}, \textit{C}_{2}^{(k)\star} \right)$$

Quelques statistiques des résultats obtenus





Plan

- 🕕 Modèle PDMP pour la propagation de fissure
 - Pourquoi un modèle stochastique?
 - Qu'est-ce qu'un PDMP?
- 2 Ajustement sur les données de Virkler
 - Ajustement par morceaux
 - Statistiques des résultats obtenus
- 3 Modèles de propagation de fissure
 - Modèle général
 - Principe d'actualisation
- 4 Simulations et validation du modèle
 - Modèle général
 - Principe d'actualisation

PDMP pour la propagation de fissures

$$\forall t \geq 0, X_t = (\nu_t, \zeta_t)$$

Espace d'états du mode

$$K = \mathcal{M} \times \mathcal{C}$$
 de cardinal fini

Description du PDMP

à
$$t = 0$$
, $\nu_0 = (m, C) \in K$ et $\zeta_0 = 9$

1 - Evolution déterministe

$$\forall 0 \le t < T, \ \zeta_t = \phi_{(m,C)}(0,9,t)$$

avec
$$\mathbb{P}(T > s) = \exp\{-\lambda_{(m,C)}s\}$$
 et $\alpha = \phi_{(m,C)}(0,9,T)$

Description du PDMP (suite)

à
$$t=T^-$$
, $u_{T^-}=(m,C)$ et $\zeta_{T^-}=lpha$

2 - Transition aléatoire

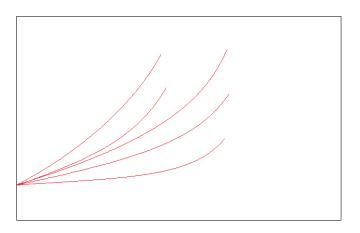
saut du mode selon $a_{(m,C),\not \bowtie}$:

$$u_{\mathcal{T}} = (\tilde{m}, \tilde{C}) \in K$$

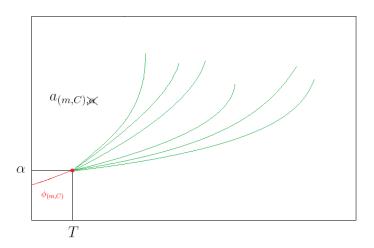
1 bis - Nouvelle évolution déterministe

$$\forall t \geq T, \ \zeta_t = \phi_{(\tilde{m},\tilde{C})}(T,\alpha,t)$$

Loi initiale du mode



Transition du mode



Actualisation

Pour la fissure k, on dispose des l premières mesures

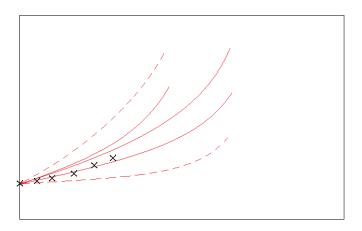
$$(N_q^{(k)}, a_q^{(k)})_{1 \leq q \leq l}$$

Principe d'actualisation ← modèle général modifié

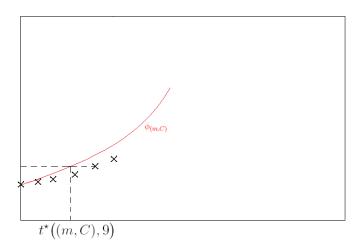
On prend en compte les / mesures :

- nouvelle loi initiale du mode
- saut contraint au bout d'un temps ne dépendant que de ν_0
- nouvelle loi de transition

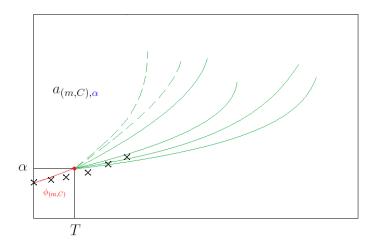
Nouvelle loi initiale du mode



Instant de transition forcée



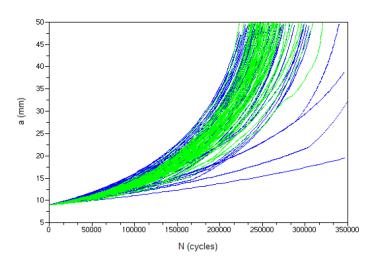
Nouvelle loi de transition



Plan

- 🕕 Modèle PDMP pour la propagation de fissure
 - Pourquoi un modèle stochastique?
 - Qu'est-ce qu'un PDMP?
- 2 Ajustement sur les données de Virkler
 - Ajustement par morceaux
 - Statistiques des résultats obtenus
- 3 Modèles de propagation de fissure
 - Modèle général
 - Principe d'actualisation
- Simulations et validation du modèle
 - Modèle général
 - Principe d'actualisation

Simulations



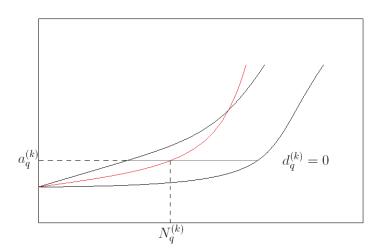
faisceau simulé (Card(K) = 40) et données de Virkler

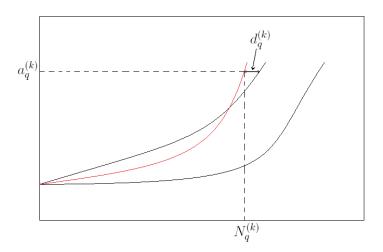
Faisceau simulé selon le principe d'actualisation

$$\mathcal{F}^{(k)} = \left\{f_1^{(k)}, \dots, f_{100}^{(k)}
ight\}$$
 où $f_j^{(k)}$: courbe simulée

Critère numérique : distance de \mathcal{F}_k à la courbe k

$$\mathcal{D}(\mathcal{F}^{(k)}, \ll \text{ fissure } k \gg) = \frac{1}{N_Q^{(k)}} \sum_{q=l+1}^Q d_q^{(k)}$$





Validation croisée : leave one out

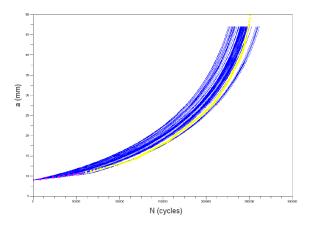
Modèle PDMP avec actualisation – Card(K) = 20

• pour 40% des fissures : $\mathcal{D}(\mathcal{F}^{(k)}, \ll \text{ fissure } k \gg) = 0$

• pour 70% des fissures : $\mathcal{D}(\mathcal{F}^{(k)}, \ll \text{ fissure } k \gg) < 1$

• pour 66% des fissures : $d_Q^{(k)} = 0$

Faisceau de prédiction pour la fissure 67



$$\mathcal{D}(\mathcal{F}^{(67)}, \ll \text{ fissure } 67 \ \gg) = 0.018$$

Bibliographie

- J. Chiquet, N. Limnios & M. Eid: **PDMPs applied to fatigue crack growth modelling**, J.S.P.I. 139 (2009) 1657-1667
- M.H.A. Davis: Piecewise-deterministic Markov Processes: A General Class of Non-diffusion Stochastic Models, J.R.Statist. Soc. B. (1984), 46, No.3, pp. 353-388
- F. Perrin : Prise en compte des données expérimentales dans les modèles probabilistes pour la prévision de la durée de vie des structures, thèse de doctorat
- D.A. Virkler, B.M. Hillberry & P.K. Goel, 1979, **The statistical nature of fatigue crack propagation**, J. Engng Mater Tech , Trans. ASME, 101: 148-153

