Finite-sample analysis of Least Squares Temporal Differences

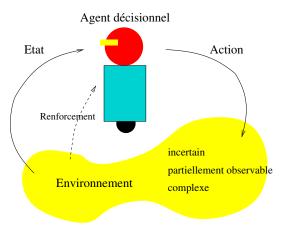
Rémi Munos, joint work with A. Lazaric, M. Ghavamzadeh

Sequential Learning project INRIA Lille - Nord Europe, France

Journées MAS 2010, Bordeaux

Reinforcement Learning, the big picture

Learning to make decisions from interactions with an unknown environment.



Markov decision Process

A MDP is defined by

- State space X,
- Action space A,
- Transition probabilities $P(\cdot|x,a)$,
- Reward function $r: \mathcal{X} \times A \mapsto \mathbb{R}$.

Goal: Find policy $\pi: \mathcal{X} \mapsto A$ that maximizes the (expected) sum of discounted rewards

$$V^{\pi}(x) = \mathbb{E}\Big[\sum_{t>0} \gamma^t r(X_t, \pi(X_t))|X_0 = x; \pi\Big],$$

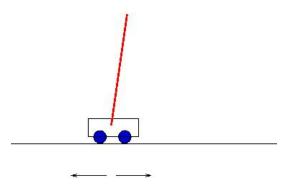
where the discount factor $\gamma < 1$.

Definitions:

- V^{π} is called the value funcion for policy π ,
- $V^*(x) = \sup_{\pi} V^{\pi}(x) = V^{\pi^*}(x)$ is the optimal value function and π^* an optimal policy.

Policy iteration: illustration

Inverted pendulum:



(click to start movie. Thanks to Martin Riedmiller)

Policy iteration: setting

Start with a policy π_0 , then iterate: for $k \geq 0$,

- **Policy evaluation step:** For policy π_k , compute an approximation V_k of the value function V^{π_k}
- Policy improvement step: Build a new policy

$$\pi_{k+1}(x) \stackrel{\text{def}}{=} \arg \max_{a \in A} \left[r(x, a) + \gamma \int_{\mathcal{X}} P(dy|x, a) V_k(y) \right].$$

How good is π_k compared to π^* ?

Policy iteration: results

Known results:

- Exact policy evaluation: If $V_k = V^{\pi_k}$, then $V^{\pi_{k+1}} \ge V^{\pi_k}$ and $\lim_{k \to \infty} V^{\pi_k} = V^*$.
- Approximate policy evaluation in L_{∞} -norm [Bertsekas and Tsitsiklis, 1996]:

$$\limsup_{k\to\infty}||\mathit{V}^*-\mathit{V}^{\pi_k}||_{\infty}\leq \frac{2}{(1-\gamma)^2}\limsup_{k\to\infty}||\mathit{V}_k-\mathit{V}^{\pi_k}||_{\infty}.$$

• Approximate policy evaluation in L_p -norm [Munos, 2003]:

$$\limsup_{k\to\infty}||\mathit{V}^*-\mathit{V}^{\pi_k}||_{\rho,\mu}\leq \frac{2}{(1-\gamma)^2}\mathit{C}(\mu,\rho)^{1/\rho}\limsup_{k\to\infty}||\mathit{V}_k-\mathit{V}^{\pi_k}||_{\rho,\rho}.$$

Performance of PI results from performance of the policy evaluation steps.

What this talk is about...

For a given policy, the MDP reduces to a Markov chain. Our goal is to approximate the corresponding value function V

$$V(x) \stackrel{\text{def}}{=} \mathbb{E}\Big[\sum_{t>0} \gamma^t r(X_t) | X_0 = x\Big]$$

Methodology:

- ullet Choose a function space ${\mathcal F}$
- Observe a trajectory X_1, \ldots, X_n following the policy
- Build an estimate $\widehat{V} \in \mathcal{F}$ of V
- Derive bounds on the approximation error $||\widehat{V} V||$ in terms of
 - How well the function space \mathcal{F} can approximate V
 - ullet Capacity of ${\mathcal F}$
 - Number of samples *n* (sample complexity)

Some properties of the value function

V is unique solution to the Bellman equation:

$$V(x) = r(x) + \gamma \int P(dy|x)V(y)$$
 (1)

Define the Bellman operator T:

$$TW(x) \stackrel{\text{def}}{=} r(x) + \gamma \int P(dy|x)W(y).$$

Then (1) writes

$$V = TV$$
.

- Property: T is a contration in $||\cdot||_{\infty}$.
- Thus from Banach fixed point theorem, T has a unique fixed point, which is V.

Linear approximation

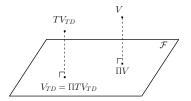
Let $\varphi_1, \ldots, \varphi_d$ be a set of functions $\mathcal{X} \to \mathbb{R}$, and the linear space

$$\mathcal{F} \stackrel{\text{def}}{=} \left\{ f_{\alpha}(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{i=1}^{d} \alpha_{i} \varphi_{i}(\mathbf{x}), \alpha \in \mathbb{R}^{d} \right\}$$

Best approximation of V in \mathcal{F} is

$$\Pi V = \arg\min_{f \in \mathcal{F}} ||V - f||$$

(i.e. Π is the projection onto \mathcal{F})



LSTD solution: fixed point of ΠT , i.e. $V_{TD} = \Pi T V_{TD}$.

Question: what norm should we use in the projection?

Known result [Tsitsiklis and Van Roy, 1997]

Assuming that the Markov chain has a stationary distribution μ (i.e. $\mu P = \mu$), then T is a contraction mapping in $L_{2,\mu}$ -norm (i.e. such that $||f||_{\mu}^2 = \int f(x)^2 \mu(dx)$).

Thus ΠT is a contraction mapping and there exits a TD solution V_{TD} , fixed-point of ΠT . We have

$$||V - V_{TD}||_{\mu} \leq \frac{1}{\sqrt{1 - \gamma^2}} ||V - \Pi V||_{\mu}.$$

Now we wish to address those questions:

- Is it possible to approximate V_{TD} using a finite number of samples?
- What is the quality of that approximation?
- What if the chain does not possess a stationary distribution?

Pathwise LSTD

Observe a sample path (X_1, \ldots, X_n) of the Markov chain.

- Consider $\mathcal{F}_n = \{(f_{\alpha}(X_1), \dots, f_{\alpha}(X_n))^T, \alpha \in \mathbb{R}^d\} \subset \mathbb{R}^n$.
- Define the empirical projection: $\widehat{\Pi}u = \inf_{w \in \mathcal{F}_n} ||u w||$,
- Define the empirical Bellman operator:

$$(\widehat{T}u)_t = \begin{cases} r(X_t) + \gamma u_{t+1} & \text{for } t < n, \\ r(X_n) & \text{otherwise} \end{cases}$$

Property: \widehat{T} is a contraction mapping. Thus $\widehat{\Pi}\widehat{T}$ has a unique fixed-point, $\widehat{v} \in \mathcal{F}_n$, whose corresponding $\widehat{\alpha}$ solves the linear system $\widehat{A}\alpha = \widehat{b}$ with

$$\widehat{A}_{i,j} \stackrel{\text{def}}{=} \frac{1}{n} \Big(\sum_{t=1}^{n-1} \varphi_i(X_t) [\varphi_j(X_t) - \gamma \varphi_j(X_{t+1})] + \varphi_i(X_n) \varphi_j(X_n) \Big)$$

$$\widehat{b}_i \stackrel{\text{def}}{=} \frac{1}{n} \sum_{t=1}^{n} r(X_t) \varphi_i(X_t).$$

 $\widehat{V} = f_{\widehat{\alpha}}$ is called the **pathwise LSTD** solution.

Finite-time analysis of pathwise LSTD

Define the empirical norm $||f||_n \stackrel{\text{def}}{=} \left[\frac{1}{n} \sum_{t=1}^n f(X_t)^2\right]^{1/2}$.

Theorem

With probability 1 $-\delta$ (w.r.t. the sample path),

$$||V - \widehat{V}||_{n} \leq \frac{1}{\sqrt{1 - \gamma^{2}}} \inf_{f \in \mathcal{F}} ||V - f||_{n} + \frac{2\gamma V_{\text{max}} L}{1 - \gamma} \sqrt{\frac{2d \log(2d/\delta)}{n \nu}} + O\left(\frac{1}{n}\right),$$

where $L = \max_{1 \le i \le d} ||\varphi_i||_{\infty}$ and $\nu > 0$ is the smallest strictly positive eigenvalue of the Gram matrix:

$$M \stackrel{\text{def}}{=} \frac{1}{n} \sum_{t=1}^{n} \varphi(X_t) \varphi(X_t)^{T}.$$

Properties

- This is a no-assumption theorem...
- \hat{V} is well-defined for any n and any Markov chain.
- No assumption about stationarity!

Example:

 \bullet Markov chain on the real line where transitions always move to the right \to no stationary distribution

 A good estimate of the value function at a state X_t is learned from noisy pieces of information at states that may be far away from X_t.

Learning the value function at a given state does not require making an average over many samples close to that state.

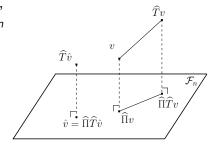
Sketch of proof

Let
$$v, \hat{v} \in \mathbb{R}^n$$
, $v_t = V(X_t)$, $\hat{v}_t = \hat{V}(X_t)$, $\mathcal{F}_n = \{(f(X_1), \dots, f(X_n)), f \in \mathcal{F}\} \subset \mathbb{R}^n$

Empirical projection operator: $\widehat{\Pi}$

Empirical Bellman operator: \hat{T} $(\hat{T}u)_t = \begin{cases} r_t + \gamma v_{t+1} & \text{for } t < n, \\ r_n & \text{otherwise} \end{cases}$

Property: \hat{T} is a contraction



$$\begin{split} ||\widehat{v} - v||_{n}^{2} & \leq \underbrace{\left(\underbrace{||\widehat{v} - \widehat{\Pi}\widehat{T}v||_{n}} + ||\widehat{\Pi}\widehat{T}v - \widehat{\Pi}v||_{n}\right)^{2} + ||\widehat{\Pi}v - v||_{n}^{2}}_{= ||\widehat{\Pi}\widehat{T}\widehat{v} - \widehat{\Pi}\widehat{T}v||_{n} \leq ||\widehat{T}\widehat{v} - \widehat{T}v||_{n} \leq \gamma ||\widehat{v} - v||_{n}} \\ & \leq \underbrace{\left(\gamma ||\widehat{v} - v||_{n} + \underbrace{||\widehat{\Pi}\widehat{T}v - \widehat{\Pi}v||_{n}}\right)^{2} + \underbrace{||\widehat{\Pi}v - v||_{n}^{2}}_{approx. \ error}}_{= \text{estimation error}}.$$

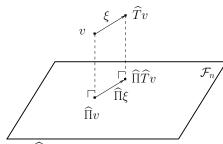
Estimation error term

Estimation error:

$$||\widehat{\Pi}v - \widehat{\Pi}\widehat{T}v||_n^2 = ||\widehat{\Pi}\xi||_n^2$$
, where

$$\xi_t = V(X_t) - [r(X_t) + \gamma V(X_{t+1})]$$

We have $\mathbb{E}[\xi_t|X_t] = 0$, thus $\mathbb{E}[\xi] = 0$.



... but the ξ_t are NOT independent! and $\widehat{\Pi}$ is itself random... Thus $\mathbb{E}[\widehat{\Pi}\xi] \neq 0$ and

$$\mathbb{E}[||\widehat{\Pi}\xi||_n^2] = \frac{1}{n} \mathbb{E}[\xi^T \widehat{\Pi}\xi] \neq \mathbb{E}[||\xi||_n^2] \operatorname{tr}(\widehat{\Pi}) \leq C \frac{d}{n}.$$

(which would be the case with a deterministic design).

Regression with Markov design

Let X_1, \ldots, X_n be a sample path of the Markov chain. Let

$$Y_t = f(X_t) + \xi_t$$
, with $\mathbb{E}[\xi_t | X_1, \dots, X_t] = 0$,

and ξ_t adapted to the filtration generated by X_1, \dots, X_{t+1} . Write $\widehat{\Pi}\xi$ the projection of the noise ξ onto \mathcal{F}_n .

Lemma

For any $\delta > 0$, with probability $1 - \delta$,

$$||\widehat{\Pi}\xi||_n \leq CL\sqrt{\frac{2d\log(2d/\delta)}{n\nu}},$$

where C is a bound on $||\xi_t||_{\infty}$, L is a bound on $||f||_{\infty}$, and ν is the smallest strictly-positive eigenvalue of the Gram matrix $\frac{1}{n}\sum_{t=1}^{n}\varphi(X_t)\varphi(X_t)^T$.

Corollary: This concludes the proof of the Theorem since the estimation error $||\widehat{\Pi}v - \widehat{\Pi}\widehat{T}v||_n = ||\widehat{\Pi}\xi||_n$.

Proof of the Lemma

Since $\widehat{\Pi}\xi \in \mathcal{F}_n$, there exists $\widehat{\alpha} \in \mathbb{R}^d$ such that $\widehat{\Pi}\xi = \sum_{i=1}^d \varphi_i \alpha_i$ (choose the one of minimal norm if there are several). Thus

$$||\widehat{\Pi}\xi||_{n}^{2} = \langle \xi, \widehat{\Pi}\xi \rangle_{n} = \frac{1}{n} \sum_{t=1}^{n} \xi_{t} \sum_{i=1}^{d} \varphi_{i}(X_{t}) \widehat{\alpha}_{i} = \frac{1}{n} \sum_{i=1}^{d} \widehat{\alpha}_{i} \sum_{t=1}^{n} \xi_{t} \varphi_{i}(X_{t})$$

$$\leq \frac{1}{n} ||\widehat{\alpha}||_{2} \Big[\sum_{i=1}^{d} \Big(\underbrace{\sum_{t=1}^{n} \xi_{t} \varphi_{i}(X_{t})}_{\text{martingale}} \Big)^{2} \Big]^{1/2}.$$

Concentration for martingale: $O(\sqrt{n \log 1/\delta})$, w.p. $1 - \delta$. Now, $\widehat{\alpha}$ is orthogonal to the null-space of the Gram matrice:

$$||\widehat{\alpha}||_2^2 = \widehat{\alpha}^{\top} \widehat{\alpha} \le \frac{1}{n\nu} \widehat{\alpha}^{\top} \Phi^{\top} \Phi \widehat{\alpha} = \frac{1}{\nu} ||\widehat{\Pi} \xi||_n^2.$$

from which we deduce that $||\widehat{\Pi}\xi||_n = O(\sqrt{\frac{d \log d/\delta}{n\nu}})$.

Generalization bound

Recall the result in empirical norm:

$$||V - \widehat{V}||_n \leq \frac{1}{\sqrt{1 - \gamma^2}} \inf_{f \in \mathcal{F}} ||V - f||_n + O\left(\sqrt{\frac{d \log(d/\delta)}{n\nu}}\right),$$

Now, in the case the Markov chain possesses a stationary distribution μ and is β -mixing, then we have the generalization bound: with probability 1 $-\delta$,

$$||\widehat{V} - V||_{\mu} \leq \frac{c}{\sqrt{1 - \gamma^2}} \inf_{f \in \mathcal{F}} ||V - f||_{\mu} + O\left(\sqrt{\frac{d \log(d/\delta)}{n\nu}}\right),$$

expressed in terms of

- ullet the best possible approximation of V in ${\mathcal F}$ measured with μ
- ullet the smallest eigenvalue u of the Gram matrix $\left(\int \varphi_i \varphi_j d\mu\right)_{i,j}$
- β -mixing coefficients of the chain (hidden in O).

Conclusions

We derived finite-sample high probability bounds for LSTD:

- Empirical bound at the states of the Markov chain, without any assumption about the chain
- Generalization bound in the case the Markov chain has a stationary distribution and is β -mixing.

Those approximation error bounds can be used to derive performance bounds for Policy Iteration (i.e. bounds on $||V^* - V^{\pi}||$).

Open questions:

- can we get rid of ν ?
- Similar analysis for Bellman residual minimization?
- Similar analysis for off-policy LSTD?