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Reinforcement Learning, the big picture

Learning to make decisions from interactions with an unknown
environment.

Agent décisionnel

Etat Action

Renforcement

Environnement

incertain

partiellement observable

complexe
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Markov decision Process

A MDP is defined by
State space X ,
Action space A,
Transition probabilities P(·|x ,a),
Reward function r : X × A 7→ R.

Goal: Find policy π : X 7→ A that maximizes the (expected)
sum of discounted rewards

Vπ(x) = E
[∑

t≥0

γt r(Xt , π(Xt ))|X0 = x ;π
]
,

where the discount factor γ < 1.
Definitions:

Vπ is called the value funcion for policy π,
V ∗(x) = supπ Vπ(x) = Vπ∗(x) is the optimal value function
and π∗ an optimal policy.
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Policy iteration: illustration

Inverted pendulum:

(click to start movie. Thanks to Martin Riedmiller)

Rémi Munos, joint work with A. Lazaric, M. Ghavamzadeh Finite-sample analysis of Least Squares Temporal Differences



Policy iteration: setting

Start with a policy π0, then iterate: for k ≥ 0,
Policy evaluation step: For policy πk , compute an
approximation Vk of the value function Vπk

Policy improvement step: Build a new policy

πk+1(x)
def
= arg max

a∈A

[
r(x ,a) + γ

∫
X

P(dy |x ,a)Vk (y)
]
.

How good is πk compared to π∗?
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Policy iteration: results

Known results:
Exact policy evaluation:
If Vk = Vπk , then Vπk+1 ≥ Vπk and limk→∞ Vπk = V ∗.
Approximate policy evaluation in L∞-norm [Bertsekas
and Tsitsiklis, 1996]:

lim sup
k→∞

||V ∗ − Vπk ||∞ ≤ 2
(1− γ)2 lim sup

k→∞
||Vk − Vπk ||∞.

Approximate policy evaluation in Lp-norm [Munos,
2003]:

lim sup
k→∞

||V ∗−Vπk ||p,µ ≤ 2
(1− γ)2 C(µ, ρ)1/p lim sup

k→∞
||Vk−Vπk ||p,ρ.

Performance of PI results from performance of the policy
evaluation steps.
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What this talk is about...

For a given policy, the MDP reduces to a Markov chain. Our
goal is to approximate the corresponding value function V

V (x)
def
= E

[∑
t≥0

γt r(Xt )|X0 = x
]

Methodology:
Choose a function space F
Observe a trajectory X1, . . . ,Xn following the policy
Build an estimate V̂ ∈ F of V
Derive bounds on the approximation error ||V̂ − V || in
terms of

How well the function space F can approximate V
Capacity of F
Number of samples n (sample complexity)
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Some properties of the value function

V is unique solution to the Bellman equation:

V (x) = r(x) + γ

∫
P(dy |x)V (y) (1)

Define the Bellman operator T :

TW (x)
def
= r(x) + γ

∫
P(dy |x)W (y).

Then (1) writes
V = TV .

Property: T is a contration in || · ||∞.
Thus from Banach fixed point theorem, T has a unique
fixed point, which is V .
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Linear approximation

Let ϕ1, . . . , ϕd be a set of functions X → R, and the linear
space

F def
=
{

fα(x)
def
=

d∑
i=1

αiϕi(x), α ∈ Rd
}

Best approximation of V in F is

ΠV = arg min
f∈F
||V − f ||

(i.e. Π is the projection onto F)

F

V
TVTD

VTD = ΠTVTD

ΠV

LSTD solution: fixed point of ΠT , i.e. VTD = ΠTVTD.

Question: what norm should we use in the projection?

Rémi Munos, joint work with A. Lazaric, M. Ghavamzadeh Finite-sample analysis of Least Squares Temporal Differences



Known result [Tsitsiklis and Van Roy, 1997]

Assuming that the Markov chain has a stationary distribution µ
(i.e. µP = µ), then T is a contraction mapping in L2,µ-norm
(i.e. such that ||f ||2µ =

∫
f (x)2µ(dx)).

Thus ΠT is a contraction mapping and there exits a TD solution
VTD, fixed-point of ΠT . We have

||V − VTD||µ ≤ 1√
1− γ2

||V − ΠV ||µ.

Now we wish to address those questions:
Is it possible to approximate VTD using a finite number of
samples?
What is the quality of that approximation?
What if the chain does not possess a stationary
distribution?
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Pathwise LSTD

Observe a sample path (X1, . . . ,Xn) of the Markov chain.

Consider Fn = {(fα(X1), . . . , fα(Xn))T , α ∈ Rd} ⊂ Rn.
Define the empirical projection: Π̂u = infw∈Fn ||u − w ||,
Define the empirical Bellman operator:

(T̂ u)t =
{ r(Xt ) + γut+1 for t < n,

r(Xn) otherwise

Property: T̂ is a contraction mapping. Thus Π̂T̂ has a unique
fixed-point, v̂ ∈ Fn, whose corresponding α̂ solves the linear
system Âα = b̂ with

Âi,j
def
=

1
n

( n−1∑
t=1

ϕi (Xt )[ϕj (Xt )− γϕj (Xt+1)] + ϕi (Xn)ϕj (Xn)
)

b̂i
def
=

1
n

n∑
t=1

r(Xt )ϕi (Xt ).

V̂ = fbα is called the pathwise LSTD solution.
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Finite-time analysis of pathwise LSTD

Define the empirical norm ||f ||n def
=
[1

n
∑n

t=1 f (Xt )
2]1/2.

Theorem
With probability 1− δ (w.r.t. the sample path),

||V − V̂ ||n ≤ 1√
1− γ2

inf
f∈F
||V − f ||n

+
2γVmaxL

1− γ

√
2d log(2d/δ)

n ν
+ O

(1
n

)
,

where L = max1≤i≤d ||ϕi ||∞ and ν > 0 is the smallest strictly
positive eigenvalue of the Gram matrix:

M def
=

1
n

n∑
t=1

ϕ(Xt )ϕ(Xt )
T .
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Properties

This is a no-assumption theorem...
V̂ is well-defined for any n and any Markov chain.
No assumption about stationarity!

Example:
Markov chain on the real line where transitions always
move to the right→ no stationary distribution

X1 X2 Xt Xn

A good estimate of the value function at a state Xt is
learned from noisy pieces of information at states that may
be far away from Xt .

Learning the value function at a given state does not require
making an average over many samples close to that state.
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Sketch of proof

Let v , v̂ ∈ Rn, vt = V (Xt ), v̂t = V̂ (Xt ),

Fn = {(f (X1), . . . , f (Xn)), f ∈ F} ⊂ Rn

Empirical projection operator: Π̂

Empirical Bellman operator: T̂

(T̂ u)t =
{ rt + γvt+1 for t < n,

rn otherwise

Property: T̂ is a contraction

v

T̂ v

Fn

Π̂v

T̂ v̂

v̂ = Π̂T̂ v̂

Π̂T̂ v

||v̂ − v ||2n ≤ ( ||v̂ − Π̂T̂ v ||n︸ ︷︷ ︸+||Π̂T̂ v − Π̂v ||n
)2

+ ||Π̂v − v ||2n
= ||Π̂T̂ v̂ − Π̂T̂ v ||n ≤ ||T̂ v̂ − T̂ v ||n ≤ γ||v̂ − v ||n

≤ (
γ||v̂ − v ||n + ||Π̂T̂ v − Π̂v ||n︸ ︷︷ ︸

estimation error

)2
+ ||Π̂v − v ||2n︸ ︷︷ ︸

approx. error

.
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Estimation error term

Estimation error:
||Π̂v − Π̂T̂ v ||2n = ||Π̂ξ||2n, where

ξt = V (Xt )−
[
r(Xt ) + γV (Xt+1)

]
We have E[ξt |Xt ] = 0,
thus E[ξ] = 0.

ξ T̂ v

Π̂T̂ v

Π̂ξ

Π̂v

v

Fn

... but the ξt are NOT independent! and Π̂ is itself random...
Thus E[Π̂ξ] 6= 0 and

E[||Π̂ξ||2n] =
1
n

E[ξT Π̂ξ] 6= E[||ξ||2n]tr(Π̂) ≤ C
d
n
.

(which would be the case with a deterministic design).
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Regression with Markov design

Let X1, . . . ,Xn be a sample path of the Markov chain. Let

Yt = f (Xt ) + ξt , with E[ξt |X1, . . . ,Xt ] = 0,

and ξt adapted to the filtration generated by X1, . . . ,Xt+1.
Write Π̂ξ the projection of the noise ξ onto Fn.

Lemma
For any δ > 0, with probability 1− δ,

||Π̂ξ||n ≤ CL

√
2d log(2d/δ)

nν
,

where C is a bound on ||ξt ||∞, L is a bound on ||f ||∞, and ν is
the smallest strictly-positive eigenvalue of the Gram matrix
1
n
∑n

t=1 ϕ(Xt )ϕ(Xt )
T .

Corollary: This concludes the proof of the Theorem since the
estimation error ||Π̂v − Π̂T̂ v ||n = ||Π̂ξ||n.
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Proof of the Lemma

Since Π̂ξ ∈ Fn, there exists α̂ ∈ Rd such that Π̂ξ =
∑d

i=1 ϕiαi
(choose the one of minimal norm if there are several). Thus

||Π̂ξ||2n = 〈ξ, Π̂ξ〉n =
1
n

n∑
t=1

ξt

d∑
i=1

ϕi(Xt )α̂i =
1
n

d∑
i=1

α̂i

n∑
t=1

ξtϕi(Xt )

≤ 1
n
||α̂||2

[ d∑
i=1

( n∑
t=1

ξtϕi(Xt )︸ ︷︷ ︸
martingale

)2]1/2
.

Concentration for martingale: O(
√

n log 1/δ), w.p. 1− δ.
Now, α̂ is orthogonal to the null-space of the Gram matrice:

||α̂||22 = α̂>α̂ ≤ 1
nν
α̂>Φ>Φα̂ =

1
ν
||Π̂ξ||2n.

from which we deduce that ||Π̂ξ||n = O(
√

d log d/δ
nν ).
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Generalization bound

Recall the result in empirical norm:

||V − V̂ ||n ≤ 1√
1− γ2

inf
f∈F
||V − f ||n + O

(√d log(d/δ)

nν

)
,

Now, in the case the Markov chain possesses a stationary
distribution µ and is β-mixing, then we have the generalization
bound: with probability 1− δ,

||V̂ − V ||µ ≤ c√
1− γ2

inf
f∈F
||V − f ||µ + O

(√d log(d/δ)

nν

)
,

expressed in terms of
the best possible approximation of V in F measured with µ
the smallest eigenvalue ν of the Gram matrix

( ∫
ϕiϕjdµ

)
i,j

β-mixing coefficients of the chain (hidden in O).
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Conclusions

We derived finite-sample high probability bounds for LSTD:
Empirical bound at the states of the Markov chain, without
any assumption about the chain
Generalization bound in the case the Markov chain has a
stationary distribution and is β-mixing.

Those approximation error bounds can be used to derive
performance bounds for Policy Iteration (i.e. bounds on
||V ∗ − Vπ||).
Open questions:

can we get rid of ν?
Similar analysis for Bellman residual minimization?
Similar analysis for off-policy LSTD?
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