Localized spherical deconvolution

T. M. Pham Ngoc
joint work with
G. Kerkyacharian and D. Picard

Laboratoire de Probabilités et Modèles Aléatoires

Statistical model

We observe

$$
Z_{i}=\varepsilon_{i} X_{i} \quad i=1 \ldots N
$$

Z_{i}, X_{i} i.i.d random elements of \mathbb{S}^{2}, the unit sphere of \mathbb{R}^{3},
$\varepsilon_{i} \in S O(3)$ are i.i.d., X_{i} and ε_{i} are supposed to be independent.

- Distributions of X, Z, ε are absolutely continuous with respect to the uniform probability measure on $\mathbb{S}^{2}, \mathbb{S}^{2}$ and the Haar measure on $S O(3)$ with densities f, f_{Z} et f_{ε}.

Convolution product

We have the following formula :

$$
f_{Z}=f_{\varepsilon} * f
$$

For $f_{\varepsilon} \in \mathbb{L}_{2}(S O(3))$, $f \in \mathbb{L}_{2}\left(\mathbb{S}^{2}\right)$, we define as follows the convolution product :

$$
f_{\varepsilon} * f(\omega)=\int_{S O(3)} f_{\varepsilon}(u) f\left(u^{-1} \omega\right) d u
$$

Bibliography

- A. van Rooij et F. Ruymgaart (1991). Regularized deconvolution on the circle and the sphere
- D. Healy, J. Hendriks et P. Kim (1998). Spherical deconvolution.
- P. Kim et J. Y. Koo (2002). Optimal spherical deconvolution.

Motivations

- Astrophysics:
study of the origins of UHECR i.e Ultra High Energy cosmic rays, extreme kinetic energy 10^{20} electronvolts.
- Identify their sources :

Supermassive black holes at the AGN centers (active galactic nuclei), Hypernovae, relic particles from the Big Bang.

- UHECR arrive with a probability law that we aim at estimating. We observe the cosmic ray incident points on the Earth. They might be deviated by several phenomenons.

Fourier Analysis on $S O(3)$ and \mathbb{S}^{2}

Definition

We define the rotational Fourier transform on $S O(3)$

$$
f_{m n}^{\star \prime}=\int_{S O(3)} f(g) D_{m n}^{\prime}(g) d g, \quad I=0,1,2 \ldots, \quad-I \leq m, n \leq I
$$

where the $D_{m n}^{\prime}$ are the rotational harmonics which form an orthonormal basis of $L_{2}(S O(3))$

- $f^{\star l}=\left[f_{m, n}^{\star l}\right]$ is a matrix of dimension $(2 I+1) \times(2 l+1)$ with

$$
I=0,1,2, \ldots \text { et }-I \leq m, n \leq I
$$

Fourier Analysis on $S O(3)$ et \mathbb{S}^{2}

Definition

The Fourier transform on \mathbb{S}^{2} is defined as

$$
f_{m}^{\star l}=\int_{\mathbb{S}^{2}} f(g) \overline{Y_{m}^{\prime}}(g) d g, \quad I=0,1,2 \ldots, \quad-I \leq m \leq I
$$

where the Y_{m}^{\prime} are the spherical harmonics which form an orthonormal basis of $L_{2}\left(\mathbb{S}^{2}\right)$

- $f^{\star l}=\left[f_{m}^{\star l}\right]$ is an array of size $2 I+1$ with $I=0,1,2, \ldots$ et $-I \leq m \leq I$.

Classical approach of inverse problems

$$
f_{\varepsilon} * f(\omega)=\int_{S O(3)} f_{\varepsilon}(u) f\left(u^{-1} \omega\right) d u
$$

Lemma

We have for all $-I \leq m \leq I, I=0,1, \ldots$:

$$
\begin{equation*}
\left(f_{\varepsilon} * f\right)_{m}^{\star \prime}=\sum_{n=-1}^{\prime}{f_{\varepsilon, m n}^{\star \prime}}^{\star \star \prime}:=\left(f_{\varepsilon}^{\star \prime} f^{\star \prime}\right)_{m} . \tag{1}
\end{equation*}
$$

- We inverse the convolution operator thanks to the Fourier Transform.

Classical approach of inverse problems

- By considering the vectors $f^{\star l}, f_{Z}^{\star \prime}$ and the matrix $f_{\varepsilon}^{\star l}$, for all $I \geq 0$, using (1), we get :

$$
\begin{aligned}
& f^{\star \prime}=\left(f_{\varepsilon}^{\star \prime}\right)^{-1} f_{Z}^{\star \prime} \\
& f_{m}^{\star \prime}=\sum_{n=-1}^{l} f_{\varepsilon}^{\star l}{ }^{-1}, m n \\
& f_{Z, n}^{\star \prime}
\end{aligned}
$$

where $f_{\varepsilon^{-1}, m n}^{\star l}:=\left(f_{\varepsilon}^{\star l}\right)_{m n}^{-1}$

- We consider the empirical Fourier transform $\hat{f}_{Z}^{\star l}$ of $f_{Z}^{\star l}$

$$
\hat{f}_{Z, n}^{\star l}=1 / N \sum_{j=1}^{N} \overline{Y_{n}^{\prime}\left(Z_{j}\right)}
$$

- We deduce the following estimator $\hat{f}_{m}^{\star l}$

$$
\hat{f}_{m}^{\star \prime}:=\frac{1}{N} \sum_{j=1}^{N} \sum_{n=-1}^{\prime} f_{\varepsilon^{-1}, m n}^{\star 1} \overline{Y_{n}^{\prime}\left(Z_{j}\right)}
$$

Classical approach of inverse problems

- We get by the inversion formula an estimator of the distribution f

$$
\hat{f}(\omega)=\sum_{l=0}^{\tilde{N}} \sum_{m=-1}^{l} \hat{f}_{m}^{\star l} Y_{m}^{\prime}(\omega)
$$

with \tilde{N} a parameter depending on the number of observations.

- Drawbacks of this method :

The spherical harmonics are not localized on the sphere. This method may be unable to detect irregularities of the target function f.

Spherical harmonic $I=8 m=2$

Needlet $j=3 \eta=250$

Needlet $j=5 \eta=5000$

Bibliography about Needlets

- F. Narcowich, P. Petrushev and J. Ward. Local tight frames on spheres. SIAM J. Math. Anal., 2006.
- G. Kerkyacharian, P. Petrushev, D. Picard and T. Willer. Needlet algorithms for estimation in inverse problems. Electron. J. Stat. 2007.
- P. Baldi, G. Kerkyacharian, D. Marinucci and D. Picard. Adaptive density estimation for directional data using needlets. Ann. Statist., 2009.
- P. Baldi, G. Kerkyacharian, D. Marinucci and D. Picard. Subsampling needlet coefficients on the sphere. Bernoulli, 2009.
- G. Kerkyacharian, G. Kyriazis, E. Le Pennec, P. Petrushev and D. Picard. Inversion of noisy radon transform by svd based needlets. ACHA, 2009.

Bibliography

- Delabrouille, Cardoso, Le Jeune, Betoule, Faÿ, Guilloux. A full sky, low foreground, high resolution CMB map from WMAP Astronomy and Astrophysics, 2009.
- Faÿ, Guilloux, Betoule, Cardoso, Delabrouille, Le Jeune. CMB power spectrum estimation using wavelets Physical Review D, 2008.
- Guilloux, Faÿ, Cardoso. Practical wavelet design on the sphere. Applied and Computational Harmonic Analysis, 2009.

Localization result

$$
\psi_{j \eta}(x)=\sqrt{\lambda_{j \eta}} \sum_{I=2^{j-1}}^{2^{j+1}} b\left(I / 2^{j}\right) \sum_{m=-1}^{l} \overline{Y_{m}^{l}\left(\xi_{j \eta}\right)} Y_{m}^{\prime}(x)
$$

For all $k \in \mathbb{N}$ there exists a constant c_{k} such that for all $\xi \in \mathbb{S}^{2}$:

$$
\left|\psi_{j, \eta}(\xi)\right| \leq \frac{c_{k} 2^{j}}{\left(1+2^{j} d(\eta, \xi)\right)^{k}}
$$

Thresholding estimation procedure

$$
f=\sum_{j} \sum_{\eta \in \mathscr{Z}_{j}}\left(f, \psi_{j \eta}\right)_{\mathbb{L}_{2}\left(\mathbb{S}^{2}\right)} \psi_{j \eta}
$$

- By Parseval equality $\beta_{j \eta}=\left(f, \psi_{j \eta}\right)_{\mathbb{L}_{2}\left(\mathbb{S}^{2}\right)}=\sum_{l m} f_{m}^{\star l} \psi_{j \eta, m}^{\star l}$ but we already had

$$
\hat{f}_{m}^{\star l}:=\frac{1}{N} \sum_{j=1}^{N} \sum_{n=-1}^{\prime} f_{\varepsilon^{-1}, m n}^{\star 1} \overline{Y_{n}^{I}\left(Z_{j}\right)}
$$

hence an unbiased estimator of $\beta_{j \eta}$

$$
\begin{equation*}
\hat{\beta}_{j \eta}=\sum_{l m} \hat{f}_{m}^{\star l} \psi_{j \eta, m}^{\star l} \tag{2}
\end{equation*}
$$

Finally, an estimator of f is

$$
\hat{f}=\sum_{j=-1}^{J} \sum_{\eta \in \mathscr{Z}_{j}} t\left(\hat{\beta}_{j \eta}\right) \psi_{j \eta}
$$

Thresholding estimation procedure

where t is a thresholding procedure defined as follows :

$$
\begin{aligned}
t\left(\hat{\beta}_{j \eta}\right) & =\hat{\beta}_{j \eta} \mid\left\{\left|\hat{\beta}_{j \eta}\right| \geq \kappa t_{N}\left|\sigma_{j}\right|\right\} \quad \text { with } \\
t_{N} & =\sqrt{\frac{\log N}{N}} \\
\sigma_{j}^{2} & =A \sum_{l n}\left|\sum_{m} \psi_{j \eta, m}^{\star l} f_{\varepsilon^{-1} m n}^{\star l}\right|^{2}
\end{aligned}
$$

with $\left\|f_{Z}\right\|_{\infty} \leq A$.

Theorem
Let $1 \leq p<\infty, \nu>0$, we suppose that

$$
\begin{equation*}
\sigma_{j}^{2}:=A \sum_{l n}\left|\sum_{m} \psi_{j \eta, m}^{\star l} f_{\varepsilon^{-1} m n}^{\star l}\right|^{2} \leq C 2^{2 j \nu}, \forall j \geq 0 . \tag{3}
\end{equation*}
$$

Take $\kappa^{2} \geq \sqrt{3 \pi A}, \sqrt{3 \pi A} \kappa>\max 8 p, 2 p+12^{J}=d\left[t_{N}\right]^{\frac{-1}{(\nu+1)}}$ with $t_{N}=\sqrt{\frac{\log N}{N}}$ et $d>0$. Then if $\pi \geq 1, s>2 / \pi, r \geq 1$ (with the restriction $r \leq \pi$ if $\left.s=(\nu+1)\left(\frac{p}{\pi}-1\right)\right)$, there exists a constant C such that :

$$
\begin{equation*}
\sup _{f \in B_{\pi, r}^{s}(M)} \mathbb{E}\|\hat{f}-f\|_{p}^{p} \leq C(\log (N))^{p-1}\left[N^{-1 / 2} \sqrt{\log (N)}\right]^{\mu p} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\mu & =\frac{s}{s+\nu+1}, \quad \text { if } s \geq(\nu+1)\left(\frac{p}{\pi}-1\right) \\
\mu & =\frac{s-2 / \pi+2 / p}{s+\nu-2 / \pi+1}, \quad \text { if } \frac{2}{\pi}<s<(\nu+1)\left(\frac{p}{\pi}-1\right) .
\end{aligned}
$$

The case of an unknown noise

$$
\hat{\beta}_{j \eta}=\frac{1}{N} \sqrt{\lambda_{j \eta}} \sum_{I=2^{j-1}}^{2^{j+1}} b\left(I / 2^{j}\right) \sum_{m=-I}^{I} \overline{Y_{m}^{l}\left(\xi_{j \eta}\right)} \sum_{n=-I}^{I} f_{\varepsilon^{-1}, m n}^{\star l} \sum_{u=1}^{N} Y_{n}^{\prime}\left(Z_{u}\right) .
$$

- We replace the rotational Fourier transform $\left(f_{\varepsilon}^{\star \prime}\right)_{m n}:=\hat{f}_{\varepsilon, m n}^{\star \prime}$ by its empirical version.
- $f_{\varepsilon^{-1}, m n}^{\star l}$ denotes the (m, n) element of the matrix $\left(f_{\varepsilon}^{\star \prime}\right)^{-1}:=f_{\varepsilon^{-1}}^{\star l}$ which is the inverse of the $(2 I+1) \times(2 I+1)$ matrix $\left(f_{\varepsilon}^{\star l}\right)$.
- To get the empirical version $\hat{f}_{\varepsilon^{-1}, m n}^{\star 1}$ of $f_{\varepsilon^{-1}, m n}^{\star l}$ Compute the empirical matrix $\left(\hat{f}_{\varepsilon}^{\star l}\right)$ then inverse it to get the matrix $\left(\hat{f}_{\varepsilon}^{\star l}\right)^{-1}:=\hat{f}_{\varepsilon}^{\star 1}$. The (m, n) entry of the matrix $\left(\hat{f}_{\varepsilon}^{\star /}\right)$ is given by the formula :

$$
\hat{f}_{\varepsilon, m n}^{\star \mid}=\frac{1}{N} \sum_{j=1}^{N} D_{m, n}^{\prime}\left(\varepsilon_{j}\right)
$$

Simulations: Estimation of the uniform density probability $f=\frac{1}{4 \pi} \mathbf{1}_{\mathbb{S}^{2}}$

	$j=0$	$j=1$	$j=2$	$j=3$
$\kappa=0.2$	0	7	30	110
$\kappa=0.3$	0	0	2	6
$\kappa=0.4$	0	0	0	3

TAble: Number of non zero coefficients surviving thresholding $\phi \sim U[0, \pi / 8]$

	$j=0$	$j=1$	$j=2$	$j=3$
$\kappa=0.2$	2	3	77	350
$\kappa=0.3$	0	0	4	10
$\kappa=0.4$	0	0	0	6

TABLE: Number of nonzero coefficients surviving thresholding $\phi \sim U[0, \pi]$

Case of an unimodal density probability $f=C e^{-4\left|\omega-\omega_{1}\right|^{2}} \mathbf{1}_{\mathbb{S}^{2}}$ with $\omega_{1}=(0,1,0), \omega_{1}=\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$

Observations $\phi \sim U[0, \pi / 8]$

Observations $\phi \sim U[0, \pi / 8]$

Estimated density $\kappa=0.5$

Estimated density by the first method

Observations $\phi \sim U[0, \pi / 4]$

Observations $\phi \sim U[0, \pi / 4]$

Estimated density $\kappa=0.5$

Estimated density by the first method

Kerkyacharian, Picard and Pham Ngoc. (2010). Localized spherical deconvolution. In minor revision for the Annals of Statistics.

