Localized spherical deconvolution

T. M. Pham Ngoc joint work with G. Kerkyacharian and D. Picard

Laboratoire de Probabilités et Modèles Aléatoires

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We observe

$$Z_i = \varepsilon_i X_i \quad i = 1...N$$

 Z_i , X_i i.i.d random elements of \mathbb{S}^2 , the unit sphere of \mathbb{R}^3 , $\varepsilon_i \in SO(3)$ are i.i.d., X_i and ε_i are supposed to be independent.

► Distributions of X, Z, ε are absolutely continuous with respect to the uniform probability measure on S², S² and the Haar measure on SO(3) with densities f, f_Z et f_ε.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

We have the following formula :

$$f_Z = f_\varepsilon * f$$

For $f_{\varepsilon} \in \mathbb{L}_2(SO(3))$, $f \in \mathbb{L}_2(\mathbb{S}^2)$, we define as follows the convolution product :

$$f_{\varepsilon} * f(\omega) = \int_{SO(3)} f_{\varepsilon}(u) f(u^{-1}\omega) du$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ► A. van Rooij et F. Ruymgaart (1991). Regularized deconvolution on the circle and the sphere
- ► D. Healy, J. Hendriks et P. Kim (1998). Spherical deconvolution.
- ▶ P. Kim et J. Y. Koo (2002). Optimal spherical deconvolution.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

Astrophysics :

study of the origins of UHECR i.e Ultra High Energy cosmic rays, extreme kinetic energy 10^{20} electronvolts.

Identify their sources :

Supermassive black holes at the AGN centers (active galactic nuclei), Hypernovae, relic particles from the Big Bang.

 UHECR arrive with a probability law that we aim at estimating. We observe the cosmic ray incident points on the Earth. They might be deviated by several phenomenons.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

We define the rotational Fourier transform on SO(3)

$$f_{mn}^{\star l} = \int_{SO(3)} f(g) D_{mn}^{l}(g) dg, \quad l = 0, 1, 2..., \quad -l \le m, n \le l$$

where the D'_{mn} are the rotational harmonics which form an orthonormal basis of $L_2(SO(3))$

►
$$f^{\star l} = [f_{m,n}^{\star l}]$$
 is a matrix of dimension $(2l+1) \times (2l+1)$ with $l = 0, 1, 2, ...$ et $-l \le m, n \le l$.

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

Definition

The Fourier transform on \mathbb{S}^2 is defined as

$$f_m^{\star l} = \int_{\mathbb{S}^2} f(g) \overline{Y_m^l}(g) dg, \quad l = 0, 1, 2..., \quad -l \leq m \leq l$$

where the Y_m^l are the spherical harmonics which form an orthonormal basis of $L_2(\mathbb{S}^2)$

▶
$$f^{\star l} = [f_m^{\star l}]$$
 is an array of size $2l + 1$ with $l = 0, 1, 2, ...$ et $-l \le m \le l$.

・ロト ・ 理ト ・ ヨト ・ ヨー ・ つへぐ

Classical approach of inverse problems

$$f_{\varepsilon} * f(\omega) = \int_{SO(3)} f_{\varepsilon}(u) f(u^{-1}\omega) du$$

Lemma

We have for all
$$-l \leq m \leq l$$
, $l = 0, 1, ..., :$

$$(f_{\varepsilon} * f)_{m}^{\star l} = \sum_{n=-l}^{l} f_{\varepsilon,mn}^{\star^{l}} f_{n}^{\star l} := (f_{\varepsilon}^{\star^{l}} f^{\star^{l}})_{m}.$$
(1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 We inverse the convolution operator thanks to the Fourier Transform.

Classical approach of inverse problems

▶ By considering the vectors $f^{\star l}$, $f_Z^{\star l}$ and the matrix $f_{\varepsilon}^{\star l}$, for all $l \ge 0$, using (1), we get :

$$f^{\star l} = (f_{\varepsilon}^{\star l})^{-1} f_{Z}^{\star l}$$

$$f_{m}^{\star l} = \sum_{n=-l}^{l} f_{\varepsilon^{-1},mn}^{\star l} f_{Z,n}^{\star l}$$

where $f_{\varepsilon^{-1},mn}^{\star l} := (f_{\varepsilon}^{\star l})_{mn}^{-1}$

• We consider the empirical Fourier transform $\hat{f}_{Z}^{\star l}$ of $f_{Z}^{\star l}$

$$\hat{f}_{Z,n}^{\star l} = 1/N \sum_{j=1}^{N} \overline{Y_n^l(Z_j)}$$

• We deduce the following estimator $\hat{f}_m^{\star l}$

$$\hat{f}_m^{\star l} := \frac{1}{N} \sum_{j=1}^N \sum_{n=-l}^l f_{\varepsilon^{-1},mn}^{\star l} \overline{Y_n^l(Z_j)}$$

Classical approach of inverse problems

 We get by the inversion formula an estimator of the distribution f

$$\hat{f}(\omega) = \sum_{l=0}^{\tilde{N}} \sum_{m=-l}^{l} \hat{f}_m^{\star l} Y_m^l(\omega),$$

with \tilde{N} a parameter depending on the number of observations.

 Drawbacks of this method : The spherical harmonics are not localized on the sphere. This method may be unable to detect irregularities of the target function *f*.

Spherical harmonic I = 8 m = 2

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 回 ト

Needlet $j = 3 \eta = 250$

ゆうてい 山田 マルボマー 山下 ショー

Needlet $j = 5 \eta = 5000$

Bibliography about Needlets

- F. Narcowich, P. Petrushev and J. Ward. Local tight frames on spheres. SIAM J. Math. Anal., 2006.
- ► G. Kerkyacharian, P. Petrushev, D. Picard and T. Willer. Needlet algorithms for estimation in inverse problems. *Electron. J. Stat.* 2007.
- P. Baldi, G. Kerkyacharian, D. Marinucci and D. Picard. Adaptive density estimation for directional data using needlets. Ann. Statist., 2009.
- P. Baldi, G. Kerkyacharian, D. Marinucci and D. Picard. Subsampling needlet coefficients on the sphere. *Bernoulli*, 2009.
- G. Kerkyacharian, G. Kyriazis, E. Le Pennec, P. Petrushev and D. Picard. Inversion of noisy radon transform by svd based needlets. ACHA, 2009.

- Delabrouille, Cardoso, Le Jeune, Betoule, Faÿ, Guilloux. A full sky, low foreground, high resolution CMB map from WMAP Astronomy and Astrophysics, 2009.
- Faÿ, Guilloux, Betoule, Cardoso, Delabrouille, Le Jeune. CMB power spectrum estimation using wavelets *Physical Review D*, 2008.
- Guilloux, Faÿ, Cardoso. Practical wavelet design on the sphere. Applied and Computational Harmonic Analysis, 2009.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Localization result

$$\psi_{j\eta}(x) = \sqrt{\lambda_{j\eta}} \sum_{l=2^{j-1}}^{2^{j+1}} b(l/2^j) \sum_{m=-l}^{l} \overline{Y_m^l(\xi_{j\eta})} Y_m^l(x).$$

For all $k \in \mathbb{N}$ there exists a constant c_k such that for all $\xi \in \mathbb{S}^2$:

$$|\psi_{j,\eta}(\xi)|\leq rac{c_k2^j}{(1+2^jd(\eta,\xi))^k}\;.$$

<ロト < 団 > < 三 > < 三 > < 三 > < ○</p>

Thresholding estimation procedure

$$f = \sum_{j} \sum_{\eta \in \mathscr{Z}_{j}} (f, \psi_{j\eta})_{\mathbb{L}_{2}(\mathbb{S}^{2})} \psi_{j\eta}.$$

► By Parseval equality $\beta_{j\eta} = (f, \psi_{j\eta})_{\mathbb{L}_2(\mathbb{S}^2)} = \sum_{lm} f_m^{\star l} \psi_{j\eta,m}^{\star l}$ but we already had

$$\hat{f}_m^{\star l} := \frac{1}{N} \sum_{j=1}^N \sum_{n=-l}^l f_{\varepsilon^{-1},mn}^{\star l} \overline{Y_n^l(Z_j)}$$

hence an unbiased estimator of $\beta_{j\eta}$

$$\hat{\beta}_{j\eta} = \sum_{lm} \hat{f}_m^{\star l} \psi_{j\eta,m}^{\star l}.$$
 (2)

Finally, an estimator of f is

$$\hat{f} = \sum_{j=-1}^J \sum_{\eta \in \mathscr{Z}_j} t(\hat{eta}_{j\eta}) \psi_{j\eta}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

where t is a thresholding procedure defined as follows :

$$\begin{split} t(\hat{\beta}_{j\eta}) &= \hat{\beta}_{j\eta} I\{|\hat{\beta}_{j\eta}| \geq \kappa t_N |\sigma_j|\} \quad \text{with} \\ t_N &= \sqrt{\frac{\log N}{N}}, \\ \sigma_j^2 &= A \sum_{ln} |\sum_m \psi_{j\eta,m}^{\star l} f_{\varepsilon^{-1}mn}^{\star l}|^2, \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

with $||f_Z||_{\infty} \leq A$.

Theorem

Let $1 \leq p < \infty$, $\nu > 0$, we suppose that

$$\sigma_j^2 := A \sum_{ln} |\sum_m \psi_{j\eta,m}^{\star l} f_{\varepsilon^{-1}mn}^{\star l}|^2 \le C 2^{2j\nu}, \ \forall \ j \ge 0.$$
(3)

Take $\kappa^2 \ge \sqrt{3\pi A}$, $\sqrt{3\pi A}\kappa > \max 8p$, 2p + 1, $2^J = d[t_N]^{\frac{-1}{(\nu+1)}}$ with $t_N = \sqrt{\frac{\log N}{N}}$ et d > 0. Then if $\pi \ge 1$, $s > 2/\pi$, $r \ge 1$ (with the restriction $r \le \pi$ if $s = (\nu + 1)(\frac{p}{\pi} - 1)$), there exists a constant C such that :

 $\sup_{f \in B^{s}_{\pi,r}(M)} \mathbb{E} \| \hat{f} - f \|_{p}^{p} \le C(\log(N))^{p-1} [N^{-1/2} \sqrt{\log(N)}]^{\mu p}, \quad (4)$

where

$$\mu = \frac{s}{s+\nu+1}, \quad \text{if } s \ge (\nu+1)(\frac{p}{\pi}-1)$$

$$\mu = \frac{s-2/\pi+2/p}{s+\nu-2/\pi+1}, \quad \text{if } \frac{2}{\pi} < s < (\nu+1)(\frac{p}{\pi}-1).$$

500

The case of an unknown noise

$$\hat{\beta}_{j\eta} = \frac{1}{N} \sqrt{\lambda_{j\eta}} \sum_{l=2^{j-1}}^{2^{j+1}} b(l/2^j) \sum_{m=-l}^{l} \overline{Y'_m(\xi_{j\eta})} \sum_{n=-l}^{l} f_{\varepsilon^{-1},mn}^{\star l} \sum_{u=1}^{N} Y'_n(Z_u).$$

- We replace the rotational Fourier transform (f^{*1}_ε)_{mn} := f^{*1}_{ε,mn} by its empirical version.
- ► $f_{\varepsilon^{-1},mn}^{\star l}$ denotes the (m, n) element of the matrix $(f_{\varepsilon}^{\star l})^{-1} := f_{\varepsilon^{-1}}^{\star l}$ which is the inverse of the $(2l + 1) \times (2l + 1)$ matrix $(f_{\varepsilon}^{\star l})$.
- ► To get the empirical version \$\hfrac{f}_{\varepsilon^{-1},mn}\$ of \$f_{\varepsilon^{-1},mn}^{\star l}\$ of \$f_{\varepsilon^{-1},mn}^{\star l}\$ Compute the empirical matrix \$(\hfrac{f}_{\varepsilon}^{\star l})\$ then inverse it to get the matrix \$(\hfrac{f}_{\varepsilon}^{\star l})^{-1} := \$\hfrac{f}_{\varepsilon^{-1}}^{\star l}\$. The \$(m,n)\$ entry of the matrix \$(\hfrac{f}_{\varepsilon}^{\star l})\$ is given by the formula :

$$\hat{f}_{\varepsilon,mn}^{\star l} = \frac{1}{N} \sum_{j=1}^{N} D_{m,n}^{l}(\varepsilon_{j}),$$

Simulations : Estimation of the uniform density probability $f = \frac{1}{4\pi} \mathbf{1}_{\mathbb{S}^2}$

	<i>j</i> = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3
$\kappa = 0.2$	0	7	30	110
$\kappa = 0.3$	0	0	2	6
$\kappa = 0.4$	0	0	0	3

TABLE: Number of non zero coefficients surviving thresholding $\phi \sim U[0,\pi/8]$

	<i>j</i> = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3
$\kappa = 0.2$	2	3	77	350
$\kappa = 0.3$	0	0	4	10
$\kappa = 0.4$	0	0	0	6

TABLE: Number of nonzero coefficients surviving thresholding $\phi \sim \textit{U}[0,\pi]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Case of an unimodal density probability $f = Ce^{-4|\omega-\omega_1|^2} \mathbf{1}_{\mathbb{S}^2}$ with $\omega_1 = (0, 1, 0)$, $\omega_1 = (\frac{\pi}{2}, \frac{\pi}{2})$

- ◆ □ ▶ ◆ 注 ▶ ◆ 注 ▶ ● ○ ○ ○ ○

Observations $\phi \sim U[0, \pi/8]$

Х

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日</p>

Observations $\phi \sim U[0, \pi/8]$

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Estimated density $\kappa = 0.5$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Estimated density by the first method

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- イロト イ団ト イミト イミト 三 - のくぐ

Observations $\phi \sim U[0, \pi/4]$

Э 500 E

Observations $\phi \sim U[0, \pi/4]$

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日</p>

Estimated density $\kappa = 0.5$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Estimated density by the first method

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kerkyacharian, Picard and Pham Ngoc. (2010). Localized spherical deconvolution. *In minor revision for the Annals of Statistics.*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ