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Statistical model

We observe

Zi = εiXi i = 1...N

Zi , Xi i.i.d random elements of S2, the unit sphere of R3,
εi ∈ SO(3) are i.i.d., Xi and εi are supposed to be independent.

◮ Distributions of X , Z , ε are absolutely continuous with
respect to the uniform probability measure on S

2, S2 and the
Haar measure on SO(3) with densities f , fZ et fε.



Convolution product

We have the following formula :

fZ = fε ∗ f

For fε ∈ L2(SO(3)), f ∈ L2(S
2), we define as follows the

convolution product :

fε ∗ f (ω) =
∫

SO(3)
fε(u)f (u

−1ω)du



Bibliography

◮ A. van Rooij et F. Ruymgaart (1991). Regularized
deconvolution on the circle and the sphere

◮ D. Healy, J. Hendriks et P. Kim (1998). Spherical
deconvolution.

◮ P. Kim et J. Y. Koo (2002). Optimal spherical deconvolution.



Motivations

◮ Astrophysics :
study of the origins of UHECR i.e Ultra High Energy cosmic
rays, extreme kinetic energy 1020 electronvolts.

◮ Identify their sources :
Supermassive black holes at the AGN centers (active galactic
nuclei), Hypernovae, relic particles from the Big Bang.

◮ UHECR arrive with a probability law that we aim at
estimating. We observe the cosmic ray incident points on the
Earth. They might be deviated by several phenomenons.



Fourier Analysis on SO(3) and S2

Definition

We define the rotational Fourier transform on SO(3)

f ⋆lmn =

∫

SO(3)
f (g)D l

mn(g)dg , l = 0, 1, 2..., −l ≤ m, n ≤ l

where the D l
mn are the rotational harmonics which form an

orthonormal basis of L2(SO(3))

◮ f ⋆l = [f ⋆lm,n] is a matrix of dimension (2l + 1)× (2l + 1) with
l = 0, 1, 2, . . . et −l ≤ m, n ≤ l .



Fourier Analysis on SO(3) et S2

Definition

The Fourier transform on S
2 is defined as

f ⋆lm =

∫

S2

f (g)Y l
m(g)dg , l = 0, 1, 2..., −l ≤ m ≤ l

where the Y l
m are the spherical harmonics which form an

orthonormal basis of L2(S
2)

◮ f ⋆l = [f ⋆lm ] is an array of size 2l + 1 with l = 0, 1, 2, . . . et
−l ≤ m ≤ l .



Classical approach of inverse problems

fε ∗ f (ω) =
∫

SO(3)
fε(u)f (u

−1ω)du

Lemma

We have for all −l ≤ m ≤ l , l = 0, 1, . . . , :

(fε ∗ f )⋆lm =

l
∑

n=−l

f ⋆
l

ε,mnf
⋆l
n := (f ⋆lε f ⋆l )m. (1)

◮ We inverse the convolution operator thanks to the Fourier
Transform.



Classical approach of inverse problems

◮ By considering the vectors f ⋆l , f ⋆lZ and the matrix f ⋆lε , for all
l ≥ 0, using (1), we get :

f ⋆l = (f ⋆lε )−1f ⋆lZ

f ⋆lm =
l

∑

n=−l

f ⋆lε−1,mnf
⋆l
Z ,n

where f ⋆lε−1,mn
:= (f ⋆lε )−1

mn

◮ We consider the empirical Fourier transform f̂ ⋆lZ of f ⋆lZ

f̂ ⋆lZ ,n = 1/N
N
∑

j=1

Y l
n(Zj)

◮ We deduce the following estimator f̂ ⋆lm

f̂ ⋆lm :=
1

N

N
∑

j=1

l
∑

n=−l

f ⋆lε−1,mnY
l
n(Zj)



Classical approach of inverse problems

◮ We get by the inversion formula an estimator of the
distribution f

f̂ (ω) =

Ñ
∑

l=0

l
∑

m=−l

f̂ ⋆lm Y l
m(ω),

with Ñ a parameter depending on the number of observations.

◮ Drawbacks of this method :
The spherical harmonics are not localized on the sphere.
This method may be unable to detect irregularities of the
target function f .



Spherical harmonic l = 8 m = 2
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Needlet j = 3 η = 250
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Needlet j = 5 η = 5000
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Localization result

ψjη(x) =
√

λjη

2j+1
∑

l=2j−1

b(l/2j)

l
∑

m=−l

Y l
m(ξjη)Y

l
m(x).

For all k ∈ N there exists a constant ck such that for all ξ ∈ S
2 :

|ψj ,η(ξ)| ≤
ck2

j

(1 + 2jd(η, ξ))k
·



Thresholding estimation procedure

◮

f =
∑

j

∑

η∈Zj

(f , ψjη)L2(S2)ψjη.

◮ By Parseval equality βjη = (f , ψjη)L2(S2) =
∑

lm f ⋆lm ψ
⋆l
jη,m

but we already had

f̂ ⋆lm :=
1

N

N
∑

j=1

l
∑

n=−l

f ⋆lε−1,mnY
l
n(Zj)

hence an unbiased estimator of βjη

β̂jη =
∑

lm

f̂ ⋆lm ψ
⋆l
jη,m. (2)

Finally, an estimator of f is

f̂ =
J

∑

j=−1

∑

η∈Zj

t(β̂jη)ψjη .



Thresholding estimation procedure

where t is a thresholding procedure defined as follows :

t(β̂jη) = β̂jηI{|β̂jη | ≥ κtN |σj |} with

tN =

√

logN

N
,

σ2j = A
∑

ln

|
∑

m

ψ⋆l
jη,mf

⋆l
ε−1mn|2,

with ‖fZ‖∞ ≤ A.



Theorem

Let 1 ≤ p <∞, ν > 0, we suppose that

σ2j := A
∑

ln

|
∑

m

ψ⋆l
jη,mf

⋆l
ε−1mn|2 ≤ C22jν , ∀ j ≥ 0. (3)

Take κ2 ≥
√
3πA,

√
3πAκ > max 8p, 2p + 1 2J = d [tN ]

−1
(ν+1) with

tN =
√

logN
N

et d > 0. Then if π ≥ 1, s > 2/π, r ≥ 1 (with the

restriction r ≤ π if s = (ν + 1)( pπ − 1)), there exists a constant C

such that :

sup
f ∈Bs

π,r (M)
E‖f̂ − f ‖pp ≤ C (log(N))p−1[N−1/2

√

log(N)]µp , (4)

where

µ =
s

s + ν + 1
, if s ≥ (ν + 1)(

p

π
− 1)

µ =
s − 2/π + 2/p

s + ν − 2/π + 1
, if

2

π
< s < (ν + 1)(

p

π
− 1).



The case of an unknown noise

β̂jη =
1

N

√

λjη

2j+1
∑

l=2j−1

b(l/2j)
l

∑

m=−l

Y l
m(ξjη)

l
∑

n=−l

f ⋆lε−1,mn

N
∑

u=1

Y l
n(Zu).

◮ We replace the rotational Fourier transform (f ⋆lε )mn := f̂ ⋆lε,mn

by its empirical version.
◮ f ⋆l

ε−1,mn
denotes the (m, n) element of the matrix

(f ⋆lε )−1 := f ⋆lε−1 which is the inverse of the (2l + 1)× (2l + 1)
matrix (f ⋆lε ).

◮ To get the empirical version f̂ ⋆lε−1,mn
of f ⋆lε−1,mn

Compute the empirical matrix (f̂ ⋆lε ) then inverse it to get the
matrix (f̂ ⋆lε )−1 := f̂ ⋆lε−1. The (m, n) entry of the matrix (f̂ ⋆lε ) is
given by the formula :

f̂ ⋆lε,mn =
1

N

N
∑

j=1

D l
m,n(εj ),

where ε ’s are i.i.d realizations of the variable ε ∈ SO(3).



Simulations : Estimation of the uniform density probability

f = 1
4π1S

2

j = 0 j = 1 j = 2 j = 3

κ = 0.2 0 7 30 110

κ = 0.3 0 0 2 6

κ = 0.4 0 0 0 3

Table: Number of non zero coefficients surviving thresholding
φ ∼ U[0, π/8]

j = 0 j = 1 j = 2 j = 3

κ = 0.2 2 3 77 350

κ = 0.3 0 0 4 10

κ = 0.4 0 0 0 6

Table: Number of nonzero coefficients surviving thresholding
φ ∼ U[0, π]



Case of an unimodal density probability f = Ce−4|ω−ω1|21S2
with ω1 = (0, 1, 0), ω1 = (π2 ,

π
2 )

0

1

2

3

4

01234567
0

0.2

0.4

0.6

0.8

1

1.2

1.4

THETA
PHI



Observations φ ∼ U [0, π/8]



Observations φ ∼ U [0, π/8]



Estimated density κ = 0.5
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Estimated density by the first method
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Observations φ ∼ U [0, π/4]



Observations φ ∼ U [0, π/4]



Estimated density κ = 0.5
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Estimated density by the first method
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