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Convolution models

Classical model
Observations Y1, . . . , Yn i.i.d. such that Yk = Xk + εk,

I Xk i.i.d. with unknown density f ,

I εk i.i.d. with known density f ε,

I {Xk} and {εk} independent.

Observations density: fY (y) =
∫
f ε (y − x) f(x)dx = (f ε ∗ f)(y).

Corresponding Fourier transforms: ΦY (u) = Φ(u)Φε(u).

Applications

I Mendelsohn & Rice (82): fluorometric data,

I Carroll & Hall (88): nonparametric empirical Bayes pbm (prior
estimation for location parameters),

I Errors-in-variable regression models

{
Yk = Xk + εk
Zk = r(Xk) + ηk

Known noise distribution = Setup not realistic !
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Convolution models

Alternatives

I Repeated measurements: observe an independent sample of
the noise distribution: ε′1, . . . , ε

′
m i.i.d ∼ f ε.

I Modelling the noise: semiparametric convolution models.

I Assumptions on the distributions supports.

I · · ·
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Semiparametric convolution model

Model
Observations Y1, . . . , Yn i.i.d. such that Yk = Xk + εk,

I Xk i.i.d. with unknown density f ,

I εk i.i.d. with partially known density f ε,

I {Xk} and {εk} independent.

Only specific forms of f ε may be identifiable.

Examples

1) Unknown Gaussian noise variance: Yk = Xk + σεk,, where σ
is unknown and εk ∼ N (0, 1).Observations density:

fY (y) =
∫

1
σ
f ε
(
y − θ
σ

)
f(θ)dθ =

[
1
σ
f ε
( ·
σ

)
∗ f
]

(y).

May be viewed as a continuous mixture model.
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Semiparametric convolution model

Examples

2) Unknown scale parameter of a stable noise: εk i.i.d. with
stable density f ε and Fourier transform Φε(u) = exp(−|σu|s)
where s > 0 is known and σ is unknown.

3) Unknown smoothing parameter of a stable noise: Same
context but with s > 0 unknown and σ is known.

For those 3 examples, under additional assumptions on the density
f of Xk, the model parameters are identifiable.

Aims

I Estimate the finite dimensional parameters (σ or s),

I Use a plug-in technique in the methods for known noise
density case,

I Evaluate its impact on estimation/goodness-of-fit testing on f
(minimax risk setting).
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Some general results about convolution

I Regularity assumptions are needed. Usually, two classes of
regularities

super smooth (SS): |Φ(u)| ∼+∞ c exp(−α|u|r).
ex: Gaussian, Cauchy, stable laws, Student, logistic, EVD. . .
ordinary smooth (OS): |Φ(u)| ∼+∞ c|u|−β .
ex: χ2, Gamma, Laplace, Exponential. . .

I In general, the rates of convergence are slow. Example: SS
noise + OS signal = logarithmic rate.

I The smoother is the noise, the lower are the rates of
deconvolution.

I For fixed noise regularity, faster rates are obtained for more
regular signal densities.
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Some general results about convolution

noise
signal

OS SS

OS n−a (log n)−a

SS (logn)a
√
n

exp(−c(log n)a), a < 1

These results exist with adaptive/minimax/optimal versions, for
different risks (pointwise, L2,Lp, . . . ).



Main differences in the semiparametric setting
The parameter may or may not act as a nuisance. We illustrate
this in two cases:

The scale parameter: a real nuisance (Butucea, CM)

I Estimation of the parameter is the one who determines the
rates.

I Rates for the unknown density f are overall slower than in the
case of known noise distribution.

I In particular, lower bounds can not be deduced from the
known σ case.

The smoothness parameter: free adaptation (Butucea, CM,
Pouet)

I Rates of convergence for the parameter are slow, but overall
faster than those for estimating f .

I Thus adaptation with respect to noise smoothness may be
achieved with no loss in the convergence rates.



Main differences in the semiparametric setting
The parameter may or may not act as a nuisance. We illustrate
this in two cases:

The scale parameter: a real nuisance (Butucea, CM)

I Estimation of the parameter is the one who determines the
rates.

I Rates for the unknown density f are overall slower than in the
case of known noise distribution.

I In particular, lower bounds can not be deduced from the
known σ case.

The smoothness parameter: free adaptation (Butucea, CM,
Pouet)

I Rates of convergence for the parameter are slow, but overall
faster than those for estimating f .

I Thus adaptation with respect to noise smoothness may be
achieved with no loss in the convergence rates.



Main differences in the semiparametric setting
The parameter may or may not act as a nuisance. We illustrate
this in two cases:

The scale parameter: a real nuisance (Butucea, CM)

I Estimation of the parameter is the one who determines the
rates.

I Rates for the unknown density f are overall slower than in the
case of known noise distribution.

I In particular, lower bounds can not be deduced from the
known σ case.

The smoothness parameter: free adaptation (Butucea, CM,
Pouet)

I Rates of convergence for the parameter are slow, but overall
faster than those for estimating f .

I Thus adaptation with respect to noise smoothness may be
achieved with no loss in the convergence rates.



Outline



Parameter estimation: scale parameter case
Model: Yk = Xk + σεk, where σ unknown and

Assumptions

I SS noise: b exp(−|u|s) ≤ |Φε(u)| ≤ B exp(−|u|s), for large
enough |u|, s known,

I ∃r ∈ (0; s), α > 0 such that |Φ(u)| ≥ c exp(−α|u|r), for large
enough |u|.

Estimation
Observe that for u > 0, the function

|F (τ, u)| = |ΦY (u)|e(τu)s
= |Φ(u)|e(τs−σs)us →

u→∞

{
0 if τ ≤ σ
+∞ if τ > σ

Estimate F by F̂n(τ, u) = Φ̂Y
n (u)e(τu)s

. Let (un)↗ +∞ and

σ̂n = inf{τ, τ > 0, |F̂n(τ, un)| ≥ 1}.
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Parameter estimation: scale parameter case

Convergence results (Butucea, CM)

I The previous estimator is consistent.

I When the signal is SS, rate of convergence = O((log n)r/s−1).

I When the signal is OS, rate of convergence = O
(

log logn
logn

)
.

I Those rates of convergence are minimax and lower than the
classical rate for estimating f .



Parameter estimation: smoothing parameter case
Model: Yk = Xk + εk, where

Assumptions

I SS stable noise: Φε(u) = exp(−|σu|s) and σ known, s
unknown,

I ∃A, β′ > 0 such that |Φ(u)| ≥ A|u|−β′
, for large enough |u|.
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Assume ΦY
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s1 ≤ s2. Then we get
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Parameter estimation: smoothing parameter case
Model: Yk = Xk + εk, where

Assumptions

I SS stable noise: Φε(u) = exp(−|σu|s) and σ known, s
unknown,

I ∃A, β′ > 0 such that |Φ(u)| ≥ A|u|−β′
, for large enough |u|.

Estimation in [s; s̄]

I Construct a grid Sn = {s = s1 < s2 < · · · < sN = s̄}
I Note that for large enough |u|, there exists some k s.t.

[qβ′Φk](u) ≤ |ΦY (u)| ≤ Φk(u)

where qβ′(u) = A|u|−β′
and Φk(u) = exp(−γ|u|sk).

I Let un →∞ and select ŝn = index k on the grid Sn such that
|Φ̂Y (un)| is closest to the interval [[qβ′Φk](un); Φk(un)].



Parameter estimation: smoothing parameter case

Convergence results (Butucea, CM, Pouet)

I The previous estimator is consistent.

I Its rate of convergence is logarithmic but faster than the
classical rate for estimating f .

I This rate of convergence is minimax.
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Plug-in estimator for f

Classical deconvolution estimator

f̂n(x) = 1
nh

∑n
j=1 K̃

(
Yi−x
h

)
where ΦK̃(u) = ΦK(u)

Φε(u/h) .

Deconvolution estimator when scale parameter unknown

f̂n,bσ(x) = 1
nhbσ∑n

j=1 K̃
(
Yi−x
hbσ
)

where ΦK̃(u) = ΦK(u)
Φε(u/h) .

Deconvolution estimator when smoothing parameter unknown

f̂n(x) = 1
nĥn

∑n
j=1 K̂n

(
Yj−x
ĥn

)
, ΦK̂n(u) = ΦK(u) exp

{(
|u|
ĥn

)ŝn
}

and ĥn =
(

logn
2 − β̄−ŝn+1/2

ŝn
log logn

)−1/ŝn

.



Plug-in estimator for f

Classical deconvolution estimator

f̂n(x) = 1
nh

∑n
j=1 K̃

(
Yi−x
h

)
where ΦK̃(u) = ΦK(u)

Φε(u/h) .

Deconvolution estimator when scale parameter unknown

f̂n,bσ(x) = 1
nhbσ∑n

j=1 K̃
(
Yi−x
hbσ
)

where ΦK̃(u) = ΦK(u)
Φε(u/h) .

Difficulty: Kernel estimator with random bandwidth hσ̂.
Solution: Moments bounds for empirical processes.

Deconvolution estimator when smoothing parameter unknown

f̂n(x) = 1
nĥn
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Estimation of f : performances of f̂n

Unknown scale parameter case (Butucea, CM)

I The rate of convergence for f̂n is the same as for σ̂n.

I When the signal is SS, rate of convergence = O((log n)r/s−1).

I When the signal is OS, rate of convergence = O
(

log logn
logn

)
.

I Those rates of convergence are minimax and lower than the
classical rates for estimating f .

The scale parameter is thus a nuisance which limits the
performances of estimation of f .

Unknown smoothness parameter case (Butucea, CM, Pouet)

I It is possible to estimate f when s is unknown with the
classical rates of convergence for deconvolution.

I Such a plug-in procedure is then automatically minimax and
adaptive w.r.t s.
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Nonparametric goodness-of-fit testing for f

Framework (unknown smoothness parameter)

I OS Signal belongs to Sobolev class S (β, L) ={
f : R→ R+,

∫
f = 1, 1

2π

∫
|Φ(u)|2 |u|2βdu ≤ L

}
,

I SS noise with unknown smoothness parameter s.

I We want to test H0 : f = f0 versus H1(C,Ψn) : f ∈
∪β∈[β,β̄]{f ∈ S(β, L) and ψ−2

n,β‖f − f0‖22 ≥ C}.

Remarks

I We test f = f0 rather than fY = fY0 .

I We consider alternatives expressed in L2-norm, thus the
problem is strongly related to estimation of

∫
(f − f0)2.
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Nonparametric goodness-of-fit testing for f

Approach

I (Upper-bound) ∀ε ∈ (0; 1), exhibit ∆?
n s.t. ∃C0 > 0, with

∀C > C0,

lim
n→∞

sup
s∈[s,s̄]

{
Pf0,s[∆

?
n = 1] + sup

f∈H1(C,Ψn)
Pf,s[∆?

n = 0]
}
≤ ε.

I (Lower bound) ∃C0 > 0 s.t. ∀0 < C < C0,

lim
n→∞

inf
∆n

sup
s∈[s,s̄]

{
Pf0,s[∆n = 1] + sup

f∈H1(C,Ψn)
Pf,s[∆n = 0]

}
≥ ε,

where the infimum is taken over all test statistics ∆n.
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{
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n = 1] + sup

f∈H1(C,Ψn)
Pf,s[∆?

n = 0]
}
≤ ε.

I (Lower bound) ∃C0 > 0 s.t. ∀0 < C < C0,

lim
n→∞

inf
∆n

sup
s∈[s,s̄]

{
Pf0,s[∆n = 1] + sup

f∈H1(C,Ψn)
Pf,s[∆n = 0]

}
≥ ε,

where the infimum is taken over all test statistics ∆n.



Goodness-of-fit test: procedure

The test statistic
Define

T̂ 0
n =

2
n(n− 1)

∑
1≤k<j≤n

<
1

ĥn
K̂n

( · − Yk
ĥn

)
−f0 ,

1

ĥn
K̂n

( · − Yj
ĥn

)
−f0 >

and

∆?
n =

{
1 if |T̂ 0

n |t̂−2
n > C?

0 otherwise,

for some constant C? > 0 and a random threshold t̂2n to be
specified.



Goodness-of-fit-test: results

Theorem (Butucea, CM, Pouet)

For any f0 ∈ S(β̄, L), choose

t̂2n =
(

log n
2

)−2β̄/ŝn

; ĥn =
(

log n
2
− 2β̄
ŝn

log log n
)−1/ŝn

and any large enough positive constant C?. The testing procedure
satisfies the testing upper-bound for any ε ∈ (0, 1) with testing rate

Ψn = {ψn,β}β∈[β,β̄] given by ψn,β =
(

log n
2

)−β/s
.

Moreover, if f0 ∈ S(β̄, cL) for some 0 < c < 1 and if Assumption
(T) holds, then this testing rate is asymptotically adaptive optimal
over the family of classes {S(β, L), β ∈ [β; β̄]} and for any
s ∈ [s; s̄] (i.e. the testing lower-bound holds).



Take home message

Assumptions on the noise distribution have a strong impact on the
quality of the estimators.



Outline



Other setups

Dependent observations

I Works by C. Lacour in the HMM context.

I See the following talk by N. Hilgert.

Exotic spaces

Sphere. See the following talk by T. M. Pham Ngoc.


