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Convolution models
Classical model
Observations Y7,...,Y,, i.i.d. such that Y, = X + ¢,
» X i.i.d. with unknown density f,
» ¢ i.i.d. with known density f¢,
» {X})} and {1} independent.

Observations density: ¥ (y) = [ £ (y — z) f(z)dz = (£ * f)(y).
Corresponding Fourier transforms <I>Y( ) O (u) P (u).
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Convolution models

Classical model
Observations Y7,...,Y,, i.i.d. such that Y, = X + ¢,

» X i.i.d. with unknown density f,

» ¢ i.i.d. with known density f¢,

» {X})} and {1} independent.
Observations density: ¥ (y) = [ £ (y — z) f(z)dz = (£ * f)(y).
Corresponding Fourier transforms <I>Y( ) D (u) D (u).
Applications

» Mendelsohn & Rice (82): fluorometric data,
» Carroll & Hall (88): nonparametric empirical Bayes pbm (prior
estimation for location parameters),

» Errors-in-variable regression models { Vi =Xt
Zr =1(Xk) +m

Known noise distribution = Setup not realistic !



Convolution models

Alternatives

» Repeated measurements: observe an independent sample of
the noise distribution: &,... e/ iid ~ fc.

» Modelling the noise: semiparametric convolution models.

» Assumptions on the distributions supports.

> ...
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Semiparametric convolution model
Model
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» X i.i.d. with unknown density f,
» ¢ i.i.d. with partially known density f¢,
» {X} and {&} independent.
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Semiparametric convolution model

Model
Observations Y7,...,Y,, i.i.d. such that Y, = X + ¢,

» X i.i.d. with unknown density f,

» ¢ i.i.d. with partially known density f¢,
» {X} and {&} independent.

Only specific forms of f¢ may be identifiable.

Examples

1) Unknown Gaussian noise variance: Yy = Xy + o¢g,, where o
is unknown and e ~ N (0, 1).Observations density:

o= [ 2 (U0) s = | L (D) | )

May be viewed as a continuous mixture model.
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Examples

2) Unknown scale parameter of a stable noise: ¢ i.i.d. with
stable density f¢ and Fourier transform ®°(u) = exp(—|oul|*)
where s > 0 is known and o is unknown.
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Semiparametric convolution model
Examples

2) Unknown scale parameter of a stable noise: ¢ i.i.d. with
stable density f¢ and Fourier transform ®°(u) = exp(—|oul|*)
where s > 0 is known and o is unknown.

3) Unknown smoothing parameter of a stable noise: Same
context but with s > 0 unknown and ¢ is known.

For those 3 examples, under additional assumptions on the density
f of X, the model parameters are identifiable.
Aims
» Estimate the finite dimensional parameters (o or s),
» Use a plug-in technique in the methods for known noise
density case,
» Evaluate its impact on estimation/goodness-of-fit testing on f
(minimax risk setting).



Some general results about convolution

» Regularity assumptions are needed. Usually, two classes of
regularities
super smooth (SS): |®(u)| ~4c0 cexp(—alul”).
ex: Gaussian, Cauchy, stable laws, Student, logistic, EVD. ..
ordinary smooth (OS): |®(u)| ~ 1o c|u|P.
ex: x2, Gamma, Laplace, Exponential. ..
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Some general results about convolution

» Regularity assumptions are needed. Usually, two classes of
regularities
super smooth (SS): |®(u)| ~4c0 cexp(—alul”).
ex: Gaussian, Cauchy, stable laws, Student, logistic, EVD. ..
ordinary smooth (OS): |®(u)| ~ 1o c|u|P.
ex: x2, Gamma, Laplace, Exponential. ..
» In general, the rates of convergence are slow. Example: SS
noise + OS signal = logarithmic rate.

» The smoother is the noise, the lower are the rates of
deconvolution.

» For fixed noise regularity, faster rates are obtained for more
regular signal densities.



Some general results about convolution

noise

. 0S SS
signal
0S n-¢ (logn)~®
SS % exp(—c(logn)®),a < 1

These results exist with adaptive/minimax/optimal versions, for
different risks (pointwise, Lo, L,, ... ).
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Main differences in the semiparametric setting
The parameter may or may not act as a nuisance. We illustrate
this in two cases:

The scale parameter: a real nuisance (Butucea, CM)

» Estimation of the parameter is the one who determines the
rates.

» Rates for the unknown density f are overall slower than in the
case of known noise distribution.

» In particular, lower bounds can not be deduced from the
known o case.

The smoothness parameter: free adaptation (Butucea, CM,
Pouet)

» Rates of convergence for the parameter are slow, but overall
faster than those for estimating f.

» Thus adaptation with respect to noise smoothness may be
achieved with no loss in the convergence rates.
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Parameter estimation: scale parameter case
Model: Y), = X, + oe, where o unknown and

Assumptions
» SS noise: bexp(—|ul®) < |P°(u)| < Bexp(—|ul®), for large
enough |u|, s known,

» Jr € (0;s),a > 0 such that |®(u)| > cexp(—alu|"), for large
enough |ul.
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Parameter estimation: scale parameter case
Model: Y), = X, + oe, where o unknown and

Assumptions
» SS noise: bexp(—|ul®) < |P%(u)| < Bexp(—|ul®), for large
enough |u|, s known,

» Jr € (0;5), @ > 0 such that |®(u)| > cexp(—alul”), for large
enough |ul.

Estimation
Observe that for © > 0, the function

0 ifr <o

o Y (tu)s _ (r5—0%)us
Flra)] =18 @l = jo(le o 10 HT=0

Estimate F by F,,(7,u) = ®Y (u)e™". Let (u,) / 400 and

Gp = inf{r,7 > 0, |Fy(7, un)| > 1}.



Parameter estimation: scale parameter case

Convergence results (Butucea, CM)

» The previous estimator is consistent.

» When the signal is SS, rate of convergence = O((logn)™/*~1).

» When the signal is OS, rate of convergence = O (M).

logn
» Those rates of convergence are minimax and lower than the
classical rate for estimating f.



Parameter estimation: smoothing parameter case
Model: Y, = X + €, where

Assumptions

» SS stable noise: ®(u) = exp(—|ou|®) and o known, s
unknown,

» JA, 3 > 0 such that |®(u)| > Alu|~7, for large enough |ul.
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|

log |®1(u)| — |o1uf* = log |®2(u)| — |o2u
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Parameter estimation: smoothing parameter case
Model: Y, = X + €, where

Assumptions

» SS stable noise: ®(u) = exp(—|ou|®) and o known, s
unknown,

» JA, 3 > 0 such that |®(u)| > Alu|~7, for large enough |ul.

|dentifiability of (f,s)
Assume ®) = @Y, where ®) (u) = ®;(u)e 17" i = 1,2 and
s1 < s2. Then we get

lim |u|™*" log |®1 (u)|—07" = 1|1mOO\UI_81 log [®g(u)[—0y* [u|>~*

u|—o0

which implies s1 = s, 01 = 02 and then & = ®,.



Parameter estimation: smoothing parameter case
Model: Y, = X + €, where

Assumptions

> SS stable noise: ®°(u) = exp(—|ou|®) and o known, s
unknown,

» 3A, ' > 0 such that |®(u)| > Alu|~", for large enough |ul.
Estimation in [s; 5]

» Constructagrid S, ={s =51 <s3<---< sy =35}

» Note that for large enough |u|, there exists some k s.t.

45 @] (u) < @Y (u)] < @*(u)

where gg(u) = Alu|=%" and ®*(u) = exp(—y|u|*).
» Let u,, — 0o and select §,, = index k on the grid S,, such that
|®Y (uy,)| is closest to the interval [[qs ®F](uy); ©F (uy)].



Parameter estimation: smoothing parameter case

Convergence results (Butucea, CM, Pouet)

» The previous estimator is consistent.

» lIts rate of convergence is logarithmic but faster than the
classical rate for estimating f.

» This rate of convergence is minimax.
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Plug-in estimator for f

Classical deconvolution estimator

N n [ Yi—=x K _ oK
fn(z) = % Zj:1K< - > where &K (u) = W%'




Plug-in estimator for f

Classical deconvolution estimator

N n o (Yi—x % oK
fn(z) = #ijll(« - > where X (u) = <I>5(u(/f2)'

Deconvolution estimator when scale parameter unknown

~ n ~ Kl_x % _ @K u
Fng(®) = 7iz X1 K< I ) where @ (u) = W(/fz)'

Difficulty: Kernel estimator with random bandwidth ho.
Solution: Moments bounds for empirical processes.



Plug-in estimator for f

Classical deconvolution estimator

N n o (Yi—x % oK
fn(z) = #ijlf(« - > where &% (u) = qﬁ(u(/}z).

Deconvolution estimator when scale parameter unknown

~ n ~ Kl_x % _ @K u
frg(@) = 2= > K( = ) where &K (u) = W(/fz)'

Deconvolution estimator when smoothing parameter unknown

), @Fn(u) = 05 (u) exp { (WH}

1/3n

fn(@) = i Z?:l K, (YJ

and h, = (k’% wloglogn)



Estimation of f: performances of f,
Unknown scale parameter case (Butucea, CM)

» The rate of convergence for f,, is the same as for &,,.

» When the signal is SS, rate of convergence = O((logn)™/*~1).

» When the signal is OS, rate of convergence = O (%).

» Those rates of convergence are minimax and lower than the
classical rates for estimating f.

The scale parameter is thus a nuisance which limits the
performances of estimation of f.



Estimation of f: performances of f,
Unknown scale parameter case (Butucea, CM)

» The rate of convergence for fn is the same as for 7,,.
» When the signal is SS, rate of convergence = O((logn)™/5~1).

» When the signal is OS, rate of convergence = O (%).

» Those rates of convergence are minimax and lower than the
classical rates for estimating f.

The scale parameter is thus a nuisance which limits the
performances of estimation of f.

Unknown smoothness parameter case (Butucea, CM, Pouet)

> It is possible to estimate f when s is unknown with the
classical rates of convergence for deconvolution.

» Such a plug-in procedure is then automatically minimax and
adaptive w.r.t s.



Nonparametric goodness-of-fit testing for f

Framework (unknown smoothness parameter)

» OS Signal belongs to Sobolev class S (3, L) =
{FiR=Ry [ =1, [|9() ju?bdu < L},

» SS noise with unknown smoothness parameter s.
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Nonparametric goodness-of-fit testing for f

Framework (unknown smoothness parameter)

» OS Signal belongs to Sobolev class S (3, L) =
{FiR=Ry [ =1, [|9() ju?bdu < L},
» SS noise with unknown smoothness parameter s.

» We want to test Hy : f = fo versus Hi(C,V,,) : f €
Useip,p{f € S(B,L) and w;%”f — Rl2>c)

Remarks

> We test f = fo rather than f¥ = fY.
» We consider alternatives expressed in LLo-norm, thus the
problem is strongly related to estimation of [(f — fo)2.



Nonparametric goodness-of-fit testing for f

Approach

» (Upper-bound) Ve € (0;1), exhibit A% s.t. 3CY > 0, with
Ve > CY,

T swp {Ppofdt =11+ swp  PrlAl =0} <
00 5¢(s,3] feH1(C,V,)



Nonparametric goodness-of-fit testing for f

Approach

» (Upper-bound) Ve € (0;1), exhibit A% s.t. 3CY > 0, with
Ve > CY,

T swp {Ppofdt =11+ swp  PrlAl =0} <
00 5¢(s,3] feH1(C,V,)

» (Lower bound) 3Cy > 0 s.t. VO < C < Cp,

lim inf sup {mes[An =1+ sup Pr A, = 0}} > €,
n—oo An s¢(s, 5] fEH1(C,¥n)

where the infimum is taken over all test statistics A,,.



Goodness-of-fit test: procedure

The test statistic

0 otherwise,

Define
. Y, Y
P e ER T CONS
j n
and oo
1 if |T,)|t,° > C*
n={ 1 T

for some constant C* > 0 and a random threshold 72 to be
specified.



Goodness-of-fit-test: results

Theorem (Butucea, CM, Pouet)
For any fy € S(B3, L), choose

) ] ~26/4n . 1 23 ~1/8n
t?L: <o§n> I <O§nﬁloglogn>

Sn

and any large enough positive constant C*. The testing procedure
satisfies the testing upper-bound for any € € (0, 1) with testing rate

| log n —B/s
v, — {ﬂ’nﬂ},@e[ﬁ,/@ given by v, g = < 2 ) ’

Moreover, if fo € S(f3,cL) for some 0 < ¢ < 1 and if Assumption
(T) holds, then this testing rate is asymptotically adaptive optimal
over the family of classes {S(3, L), 3 € [3; 3]} and for any

s € [s;5] (i.e. the testing lower-bound holds).



Take home message

Assumptions on the noise distribution have a strong impact on the
quality of the estimators.
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Other setups

Dependent observations

» Works by C. Lacour in the HMM context.
» See the following talk by N. Hilgert.

Exotic spaces
Sphere. See the following talk by T. M. Pham Ngoc.



