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Type of data

Scientific questions :

1 Independence or interaction ? regular or clustered distribution ?

2 Spatial variation in the density and marks ?

3 Interaction in each sub-pattern, between sub-patterns...
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Another example in computer graphics

(Hurtut, Landes, Thollot, Gousseau, Drouilhet, C.’09.)

Problem : simulation at large scale of a pattern drawn in a small window.
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Examples with geometrical structures
1 Epithelial cells

2 Materials interface
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Marked point processes

State space : S = Rd ×M associated to µ = λ⊗ λm.

Let xm = (x ,m) an element of S, i.e. a marked point.

Ω is the space of locally finite point configurations ϕ in S
For Λ b Rd : Λ bounded borelian set of Rd .

ϕΛ is the restriction of ϕ on Λ and |ϕΛ| is the number of points ϕΛ.

Definition (marked point process)

A marked point process is a random variable, Φ, on Ω.

Poisson process

For z > 0, the standard (non-marked) poisson point process πz with
intensity zλ is defined by{

∀ Λ, |πz
Λ| := πz(Λ) ∼ P(zλ(Λ))

∀ Λ,Λ′ with Λ ∩ Λ′ = ∅, πz
Λ and πz

Λ′ are independent.
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Stationary Gibbs models on Rd

Consider a parametric family of energies (VΛ(·; θ))ΛbRd for θ ∈ Rp defined on Ω
and with value on R ∪ {+∞}.

Definition

A probability measure Pθ on Ω is a stationary marked Gibbs measure for the
compatible and invariant by translation family of energies (VΛ(.; θ))ΛbRd if for
every Λ b Rd , for Pθ-a.e. outside configuration ϕΛc , the distribution of Pθ

conditionally to ϕΛc admits the following conditional density with respect to πΛ

(:= π1
Λ) :

fΛ(ϕΛ|ϕΛc ; θ) =
1

ZΛ(ϕΛc ; θ)
e−VΛ(ϕ;θ),

where ZΛ(ϕΛc ; θ) is the normalizing constant called partition function.

Compatibility for all Λ ⊂ Λ′ b Rd , there exists a measurable function ψΛ,Λ′ from
Ω to R ∪ {+∞} such that

∀ϕ ∈ Ω, VΛ′(ϕ; θ) = VΛ(ϕ; θ) + ψΛ,Λ′(ϕΛc ; θ).
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Existence/unicity problem

The choice of (VΛ(·; θ))ΛbRd entirely defines the Gibbs measure Pθ.
But, given a family : does there exist a Gibbs measure Pθ ? Is it unique (phase
transition problem) ?

Ruelle(69), Preston(76) : Superstable and lower regular potentials (e.g.
Lennard-Jones model).

BBD(99) : local stability and finite range (actually quasilocality) assumptions.

D(05) : non hereditary energies.
[
A family (VΛ(·; θ))ΛbRd is hereditary if

∀Λ b Rd , VΛ(ϕ; θ) = +∞⇒ VΛ(ϕ ∪ xm; θ) = +∞.
]

DDG(10) : stability and locality (to the configuration) assumptions.

Existence assumption [Mod]

we observe a realization of Φ with marked Gibbs measure Pθ? , where θ? ∈ Θ̊, Θ is a compact
set of Rp and for all θ ∈ Θ, there exists a stationary marked Gibbs measure Pθ for the family
(VΛ(.; θ))ΛbRd assumed to be invariant by translation, compatible.
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Local energy function

Definition

The energy required to insert xm in ϕ is defined for every Λ 3 x by

V (xm|ϕ; θ) := VΛ(ϕ ∪ xm; θ)− VΛ(ϕ; θ),

which from the compatibility assumption is independent of Λ.

For every mark m, every configuration ϕ and for all θ ∈ Θ

[LS] Local stability : ∃ K > 0 such that V (0m|ϕ; θ) ≥ −K .

[FR] Finite range : ∃ D > 0 such that V (0m|ϕ; θ) = V
(
0m|ϕB(0,D); θ

)
.

D,K independent of θ, m, ϕ.

BBD(99)

[LS] + [FR] =⇒ [Mod]
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Poisson point process, M = {0}
VΛ(ϕ; θ) = θ1|ϕΛ|
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Multi-type Poisson point process, M = {1, 2}
VΛ(ϕ; θ) = θ1

1|ϕ1
Λ|+ θ2

1|ϕ2
Λ|
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Strauss marked point process, M = {1, 2}

VΛ(ϕ; θ) =
2∑

m=1

θm
1 |ϕm

Λ |+
∑

1≤m≤m′≤2

θm,m′

2

∑
{xm,ym′}∈P2(ϕ)

{xm,ym′}∩Λ 6=∅

1[0,Dm,m′ ](‖y − x‖),
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Multi-Strauss point process, M = {0} on a planar structured graph

VΛ(ϕ; θ) = θ1|ϕΛ|+
K∑

k=1

θk
2

∑
{x,y}∈G2(ϕ)
{x,y}∩Λ 6=∅

1[Dk−1,Dk ](‖y − x‖),

G2(ϕ) = P2(ϕ) G2(ϕ) = Del2(ϕ)

D0 = 0,D1 = 20,D2 = 80, θ = (1, 2, 4)
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Lennard-Jones model

V LJ
Λ (ϕ; θ) := θ1|ϕΛ|+ 4θ2

∑
{x,y}∈P2(ϕ)
{x,y}∩Λ 6=∅

((
θ3

‖y − x‖

)12

−
(

θ3
‖y − x‖

)6
)

with θ = (θ1, θ2, θ3) ∈ R× (R+)2.

θ2 = 0 θ2 = 0.1 θ2 = 2
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Gibbs Voronoi tessellation

VΛ(ϕ) =
∑

C∈ Vor(ϕ)
C∩Λ 6=∅

V1(C ) +
∑

C ,C ′∈ Vor(ϕ)
C and C ′are neighbors

(C∪C ′)∩Λ 6=∅

V2(C ,C
′)

V1(C ) : deals with the shape of the cell and V2(C ,C
′) = θ d(vol(C ), vol(C ′)).

θ > 0 θ < 0
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Quermass model M = [0,R]

For finite configuration ϕ

V (ϕ; θ) = θ1|ϕ|+ θ2 P(Γ) + θ3 A(Γ) + θ4 E(Γ) where Γ =
⋃

(x,R)∈ϕ

B(x ,R)

where P(Γ), A(Γ) and E(Γ) respectively denote the perimeter, the volume and
the Euler-Poincaré characteristic of Γ.

Simulation for a uniform distribution on [0, 2] on the radius : θ1 constant

(θ2, θ3, θ4) = (0, 0.2, 0) (θ2, θ3, θ4) = (0, 0, 1) (θ2, θ3, θ4) = (−1,−1, 0)
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Maximum likelihood method

We observe ϕΛn , a realization of a hereditary marked point process satisfying
[Mod] in Λn.

θ̂MLE
n = argmax

θ∈Θ

1

ZΛn(ϕ; θ)
e−V (ϕΛn ;θ)

where

ZΛ(ϕ; θ) =
∑
k≥0

1

k!

∫
Λ

. . .

∫
Λ

e−VΛ({x1,...,xk};θ)dx1 . . . dxk .

ZΛn(ϕ; θ) is untractable ! !

Remarks

Intensive Monte-Carlo based simulations (Møller(07)) have to be used to
estimate Z (θ).

Only few theoretical results are available for θ̂MLE
n (e.g. consistency in

general ?)
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Pseudo-likelihood method (1)
Idea on the lattice (Besag (68), Ripley (88) : consider the product of the conditional
densities in each site conditionally on the other ones.

For point processes JM(94) extended the definition of log-pseudolikelihood function

LPLΛn (ϕ; θ) = −
∫

Λn×M
e−V (xm|ϕ;θ)µ(dxm)−

∑
xm∈ϕΛn

V (xm|ϕ \ xm; θ) .

Define θ̂MPLE
n := argmax

θ∈Θ
LPLΛn(ϕ; θ).

Remarks

“computable”estimate, quick and easy implementation.

Seems less accurate than the MLE (when available).

Asymptotic results available for a large class of energies
BCD(08),CD(10),DL(09)
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Pseudo-likelihood method (2)

Let Λn be a cube with volume growing to +∞.

Proposition BCD(08),CD(10),DL(09)

Under [Mod] and [FR], the assumption [Id-MPLE]

∀θ 6= θ?, P
(
V
(
0M |Φ; θ

)
6= V

(
0M |Φ; θ?

))
> 0,

regularity and integrability assumptions on the local energy function

(i) θ̂MPLE (Φ)
a.s.→ θ?.

(ii) if Pθ? is ergodic, ∃ ΣMPLE ≥ 0 : |Λn|1/2
(
θ̂MPLE (Φ)− θ?

)
d→ N (0,ΣMPLE ).

(iii) If Pθ? is not ergodic but with additional assumptions on ΣMPLE , one can

define a consistent estimate of Σ̂
−1/2
MPLE of Σ

−1/2
MPLE and derive a normalized CLT.
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Takacs-Fiksel method (1)

Theorem (Georgii-Nguyen-Zessin)

For any h(·, ·; θ) : S× Ω → R, for any θ ∈ Θ,

Eθ?

(∑
xm∈ϕ

h (xm, ϕ \ xm; θ)

)
= Eθ?

(∫
Rd×M

h (xm, ϕ; θ) e−V (xm|ϕ;θ?)µ(dxm)

)

Define

IΛ(ϕ; h, θ) =

∫
Λ×M

h (xm, ϕ; θ) e−V (xm|ϕ;θ)µ(dxm)−
∑

xm∈ϕΛ

h (xm, ϕ \ xm; θ) .

Idea of TF method : ergodic theorem and GNZ formula ⇒ IΛn(ϕ; θ?) ' 0.

Let us give K test functions hk(·, ·; θ) : S× Ω → R (for k = 1, . . . ,K ).

θ̂TF (ϕ) := arg min
θ∈Θ

K∑
k=1

IΛn(ϕ; hk , θ)
2,
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Takacs-Fiksel method (2)

bθTF (ϕ) := arg min
θ∈Θ

KX
k=1

0@Z
Λn×M

hk (xm, ϕ; θ) e−V (xm|ϕ;θ)µ(dxm) −
X

xm∈ϕΛn

hk (xm, ϕ \ xm; θ)

1A2

Remarks and interest of the TF method :

when h = V(1), θ̂TF (ϕ) = θ̂MPLE (ϕ).

quick estimator : for example hk(x
m, ϕ; θ) := 1B(0,rk )(‖x‖)eV (xm|ϕ;θ?).

allows the identification of the Quermass model with a pertinent choice of
test functions allowing to compute the sum term.

The consistency and the CLT may be obtained (CDDL(10)) under [Mod],
[FR], regularity and integrability assumptions and the identifiability
condition [Id-TF]

K∑
k=1

E
(
hk(0

M ,Φ; θ)
(
e−V (0M |Φ;θ) − e−V (0M |Φ;θ?)

))2

= 0 =⇒ θ = θ?.

Problem with the choice of test functions, [Id-TF] may fail ! More practical
criterion have been proposed in CDDL(10).
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Variational principle method (non-marked)Baddeley and Dereudre (10)

VP equation : ∀ function h : S× Ω → R

Eθ?

(∑
x∈Φ

∇h(x |ϕ \ Φ)

)
= Eθ?

(∑
x∈Φ

h(x |Φ \ x)∇V (x |Φ; θ?)

)
.

If V (x |ϕ; θ?) → V (x |ϕ; θ?) + c : same VP equ. ⇒ cannot estimate θ?
1 .

Assume V (x |ϕ; θ?) = θ1 + θ̃T Ṽ(x |ϕ), VP equ. leads to

Eθ?

0@X
x∈Φ

div h(x |ϕ \ x)

1A = eθT

0@X
x∈Φ

h(x |ϕ \ x)div eVi (x |ϕ \ x)

1A
i=1,...,p

Let us give h1, . . . , hp and define the vector G and the matrix D by

Gk :=
X

x∈ϕΛn

div hk (x |ϕ \ x) and Dk,i :=
X

x∈ϕΛn

hk (x |ϕ \ x) div eVi (x |ϕ \ x)

̂̃
θ := D−1G .

Rmk : hk = div Ṽk ⇒ D ≥ 0, and asymptotic results can be obtained.

J.-F. Coeurjolly () Gibbs models 03/09/2010 25 / 29



Outline

1 Type of data of interest

2 Gibbs models
Brief background
Examples

3 Identification
Maximum likelihood
Pseudo-likelihood method
Takacs-Fiksel method
Variational Principle method

4 Validations through residuals
Residuals for spatial point processes
Measures of departures to the true model
Asymptotics

J.-F. Coeurjolly () Gibbs models 03/09/2010 26 / 29



Validation through residuals

Baddeley et al (05,08) have proposed to use the GNZ formula as a diagnostic tool :

1 Let us give a model and define an estimate θ̂ of θ?.

2 Let us give a test function and define the h-residuals RΛn (ϕ; h) = IΛn (ϕ; h, bθ), i.e.

RΛn(ϕ; h) :=

∫
Λn×M

h
(
xm, ϕ; θ̂

)
e−V(xm|ϕ;bθ)µ(dxm)−

∑
xm∈ϕΛn

h
(
xm, ϕ \ xm; θ̂

)
If the model is valid, then one may expect that RΛn(ϕ; h)/|Λn| ' 0 !

Examples :

Classical examples h = 1, eV , eV/2 leading to the raw, the inverse and the
Pearson residuals.

A more evolved one : let hr (x
m, ϕ; θ) := 1[0,r ](d(xm, ϕ)) eV (xm|ϕ;θ) where

d(xm, ϕ) = infym∈ϕ ‖y − x‖, RΛn(ϕ; hr ) corresponds to a difference of two
estimates of the empty space function F (r) := P

(
d(0M ,Φ) ≤ r

)
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Measures of departures to the true model

1 Objective 1 : fix some test function h (ex : h = 1) and split Λn = ∪j∈JΛj

1 compute the h-residuals in each Λj

2 construct ‖R1‖2 where

R1 :=
(
RΛj (ϕ, h, θ̂n)

)
j∈J

.

2 Objective 2 : fix h = (h1, . . . , hs)
T

(ex : hj = hrj , r1 < r2 < · · · < rs)

θ̂ is based on ϕΛn

8>>>>>>>>>><>>>>>>>>>>:

RΛn (Φ, h1, bθn)

.

.

.

RΛn (Φ, hj , bθn)

.

.

.

RΛn (Φ, hs , bθn)

1 compute the s hj -residuals in Λn

2 construct ‖R2‖2 where

R2 :=
(
RΛn(ϕ, hj , θ̂n)

)
j=1,...,s

.
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Towards goodness-of-fit tests

Under similar assumptions as previously and with general assumptions on θ̂
(essentially consistency and CLT)

Proposition (CL(10))

(i) As n → +∞, R1(Φ; h)/|Λ0,n| and R2(Φ;h)/|Λn| converge a.s. to 0.
(ii) If Pθ? is not ergodic (but with additional assumptions) a normalized CLT holds for
R1 and R2, leading to

|Λ0,n|−1‖Σ̂−1/2
1 R1(Φ; h)‖2 d→ χ2

|J | and |Λn|−1‖Σ̂−1/2
2 R2(Φ;h)‖2 d→ χ2

s .

Σ1 = λInn I|J | + |J |−1(λRes − λInn) J with J = eeT and e = (1, . . . , 1)T .

λInn = f (P?
θ ,V , h) and λRes = f (θ?,V , h, θ̂).

This form suggested us to study the centered residuals for which we may
prove

|Λ0,n|−1 λ̂−1
Inn ‖R1(Φ; h)− R1(Φ; h)‖2 d−→ χ2

|J |−1.
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