Gibbs point processes : modelling and inference

J.-F. Coeurjolly (Grenoble University)

et J.-M Billiot, D. Dereudre, R. Drouilhet, F. Lavancier

03/09/2010

Outline

Type of data of interest

Gibbs models

- Brief background
- Examples

3 Identification

- Maximum likelihood
- Pseudo-likelihood method
- Takacs-Fiksel method
- Variational Principle method

Validations through residuals

- Residuals for spatial point processes
- Measures of departures to the true model
- Asymptotics

Outline

Type of data of interest

Gibbs models

- Brief background
- Examples

3 Identification

- Maximum likelihood
- Pseudo-likelihood method
- Takacs-Fiksel method
- Variational Principle method

Validations through residuals

- Residuals for spatial point processes
- Measures of departures to the true model
- Asymptotics

Type of data

Scientific questions :

- Independence or interaction ? regular or clustered distribution ?
- Spatial variation in the density and marks?
- Interaction in each sub-pattern, between sub-patterns...

Another example in computer graphics

<u>Problem</u> : simulation at large scale of a pattern drawn in a small window.

Examples with geometrical structures

Epithelial cells

Materials interface

Outline

Type of data of interest

Gibbs models

- Brief background
- Examples

3 Identification

- Maximum likelihood
- Pseudo-likelihood method
- Takacs-Fiksel method
- Variational Principle method

Validations through residuals

- Residuals for spatial point processes
- Measures of departures to the true model
- Asymptotics

Marked point processes

- State space : $\mathbb{S} = \mathbb{R}^d \times \mathbb{M}$ associated to $\mu = \lambda \otimes \lambda^{\mathbb{m}}$.
- Let $x^m = (x, m)$ an element of \mathbb{S} , i.e. a marked point.
- Ω is the space of locally finite point configurations φ in $\mathbb S$
- For $\Lambda \Subset \mathbb{R}^d : \Lambda$ bounded borelian set of \mathbb{R}^d .
- φ_{Λ} is the restriction of φ on Λ and $|\varphi_{\Lambda}|$ is the number of points φ_{Λ} .

Definition (marked point process)

A marked point process is a random variable, Φ , on Ω .

Marked point processes

- State space : $\mathbb{S} = \mathbb{R}^d \times \mathbb{M}$ associated to $\mu = \lambda \otimes \lambda^m$.
- Let $x^m = (x, m)$ an element of S, i.e. a marked point.
- Ω is the space of locally finite point configurations φ in $\mathbb S$
- For $\Lambda \Subset \mathbb{R}^d : \Lambda$ bounded borelian set of \mathbb{R}^d .
- φ_{Λ} is the restriction of φ on Λ and $|\varphi_{\Lambda}|$ is the number of points φ_{Λ} .

Definition (marked point process)

A marked point process is a random variable, Φ , on Ω .

Poisson process

For z>0, the standard (non-marked) poisson point process π^z with intensity $z\lambda$ is defined by

$$\begin{cases} \forall \ \Lambda, \quad |\pi_{\Lambda}^{z}| := \pi^{z}(\Lambda) \sim \mathcal{P}(z\lambda(\Lambda)) \\ \forall \ \Lambda, \Lambda' \text{ with } \Lambda \cap \Lambda' = \emptyset, \quad \pi_{\Lambda}^{z} \text{ and } \pi_{\Lambda'}^{z} \text{ are independent.} \end{cases}$$

Stationary Gibbs models on \mathbb{R}^d

Consider a parametric family of energies $(V_{\Lambda}(\cdot; \theta))_{\Lambda \Subset \mathbb{R}^d}$ for $\theta \in \mathbb{R}^p$ defined on Ω and with value on $\mathbb{R} \cup \{+\infty\}$.

Definition

A probability measure P_{θ} on Ω is a stationary marked Gibbs measure for the compatible and invariant by translation family of energies $(V_{\Lambda}(.;\theta))_{\Lambda \Subset \mathbb{R}^d}$ if for every $\Lambda \Subset \mathbb{R}^d$, for P_{θ} -a.e. outside configuration φ_{Λ^c} , the distribution of P_{θ} conditionally to φ_{Λ^c} admits the following conditional density with respect to π_{Λ} $(:=\pi_{\Lambda}^1)$:

$$f_{\Lambda}(arphi_{\Lambda}|arphi_{\Lambda^c}; heta)=rac{1}{Z_{\Lambda}(arphi_{\Lambda^c}; heta)}e^{-V_{\Lambda}(arphi; heta)},$$

where $Z_{\Lambda}(\varphi_{\Lambda^c}; \theta)$ is the normalizing constant called partition function.

Compatibility for all $\Lambda \subset \Lambda' \Subset \mathbb{R}^d$, there exists a measurable function $\psi_{\Lambda,\Lambda'}$ from $\overline{\Omega}$ to $\mathbb{R} \cup \{+\infty\}$ such that

$$\forall \varphi \in \Omega, \quad V_{\Lambda'}(\varphi; \theta) = V_{\Lambda}(\varphi; \theta) + \psi_{\Lambda,\Lambda'}(\varphi_{\Lambda^c}; \theta).$$

Existence/unicity problem

The choice of $(V_{\Lambda}(\cdot; \theta))_{\Lambda \in \mathbb{R}^d}$ entirely defines the Gibbs measure P_{θ} . But, given a family : does there exist a Gibbs measure P_{θ} ? Is it unique (phase transition problem)?

- Ruelle(69), Preston(76) : Superstable and lower regular potentials (*e.g.* Lennard-Jones model).
- BBD(99) : local stability and finite range (actually quasilocality) assumptions.
- D(05) : non hereditary energies. [A family $(V_{\Lambda}(\cdot; \theta))_{\Lambda \Subset \mathbb{R}^d}$ is hereditary if $\forall \Lambda \Subset \mathbb{R}^d, V_{\Lambda}(\varphi; \theta) = +\infty \Rightarrow V_{\Lambda}(\varphi \cup x^m; \theta) = +\infty.$]
- DDG(10) : stability and locality (to the configuration) assumptions.

Existence assumption [Mod]

we observe a realization of Φ with marked Gibbs measure $P_{\theta^{\star}}$, where $\theta^{\star} \in \mathring{\Theta}$, Θ is a compact set of \mathbb{R}^p and for all $\theta \in \Theta$, there exists a stationary marked Gibbs measure P_{θ} for the family $(V_{\Lambda}(.;\theta))_{\Lambda \in \mathbb{R}^d}$ assumed to be invariant by translation, compatible.

Local energy function

Definition

The energy required to insert x^m in φ is defined for every $\Lambda \ni x$ by

$$V(x^m|\varphi;\theta) := V_{\Lambda}(\varphi \cup x^m;\theta) - V_{\Lambda}(\varphi;\theta),$$

which from the compatibility assumption is independent of Λ .

Local energy function

Definition

The energy required to insert x^m in φ is defined for every $\Lambda \ni x$ by

$$V\left(x^{m}|arphi; heta
ight):=V_{\Lambda}(arphi\cup x^{m}; heta)-V_{\Lambda}(arphi; heta),$$

which from the compatibility assumption is independent of Λ .

For every mark *m*, every configuration φ and for all $\theta \in \Theta$

[LS] Local stability : $\exists K > 0$ such that $V(0^m | \varphi; \theta) \ge -K$.

[FR] Finite range : $\exists D > 0$ such that $V(0^m | \varphi; \theta) = V(0^m | \varphi_{\mathcal{B}(0,D)}; \theta)$.

D, K independent of θ, m, φ .

BBD(99)

$[\mathsf{LS}] + [\mathsf{FR}] \Longrightarrow [\mathsf{Mod}]$

Poisson point process, $\mathbb{M} = \{0\}$

$$V_{\Lambda}(arphi; heta) = heta_1 |arphi_{\Lambda}|$$

 $\theta_1 = 5$

Multi-type Poisson point process, $\mathbb{M} = \{1, 2\}$

$$V_{\Lambda}(arphi; heta) = heta_1^1 |arphi_{\Lambda}^1| + heta_1^2 |arphi_{\Lambda}^2|$$

$$\theta_1^1 = 6, \ \theta_2^2 = 6$$

 $\theta_1^1 = 6, \ \theta_1^2 = 8$

Strauss marked point process, $\mathbb{M} = \{1, 2\}$

$$V_{\Lambda}(\varphi;\theta) = \sum_{m=1}^{2} \theta_{1}^{m} |\varphi_{\Lambda}^{m}| + \sum_{1 \leq m \leq m' \leq 2} \theta_{2}^{m,m'} \sum_{\substack{\{x^{m}, y^{m'}\} \in \mathcal{P}_{2}(\varphi) \\ \{x^{m}, y^{m'}\} \cap \Lambda \neq \emptyset}} \mathbf{1}_{[0,D^{m,m'}]}(\|y-x\|),$$

 $\theta_1 = (2,2), \ \theta_2 = (2,2,2)$

 $\theta_1 = (2,2), \ \theta_2 = (6,6,10)$

Multi-Strauss point process, $\mathbb{M} = \{0\}$ on a planar structured graph

 $D_0 = 0, D_1 = 20, D_2 = 80, \ \theta = (1, 2, 4)$

Lennard-Jones model

 $V_{\Lambda}^{LJ}(\varphi;\theta) := \theta_1 |\varphi_{\Lambda}| + 4\theta_2 \sum_{\substack{\{x,y\} \in P_2(\varphi) \\ \{x,y\} \cap \Lambda \neq \emptyset}} \left(\left(\frac{\theta_3}{\|y-x\|}\right)^{12} - \left(\frac{\theta_3}{\|y-x\|}\right)^6 \right)$

with $\theta = (\theta_1, \theta_2, \theta_3) \in \mathbb{R} \times (\mathbb{R}^+)^2$.

0 0 ° ° ° ° ° ° 0 0000 0000 0 0 ۰. 0 0 00 ы. Го 0 0 0 ° ,°°°' o °. ° ° ° ° ö ò n ° 0 0 ő 0 0

 $\theta_2 = 0$

 $\theta_2 = 0.1$

 $\theta_2 = 2$

Gibbs Voronoi tessellation

$$V_{\Lambda}(\varphi) = \sum_{\substack{C \in \operatorname{Vor}(\varphi) \\ C \cap \Lambda \neq \emptyset}} V_1(C) + \sum_{\substack{C, C' \in \operatorname{Vor}(\varphi) \\ C \text{ and } C' \text{ are neighbors} \\ (C \cup C') \cap \Lambda \neq \emptyset}} V_2(C, C')$$

 $V_1(C)$: deals with the shape of the cell and $V_2(C, C') = \theta \ d(vol(C), vol(C'))$.

 $\theta > 0$

J.-F. Coeurjolly ()

Quermass model $\mathbb{M} = [0, \overline{R}]$

For finite configuration φ

$$V(\varphi;\theta) = \theta_1 |\varphi| + \theta_2 \ \mathcal{P}(\Gamma) + \theta_3 \ \mathcal{A}(\Gamma) + \theta_4 \ \mathcal{E}(\Gamma) \quad \text{where } \Gamma = \bigcup_{(x,R) \in \varphi} \mathcal{B}(x,R)$$

where $\mathcal{P}(\Gamma)$, $\mathcal{A}(\Gamma)$ and $\mathcal{E}(\Gamma)$ respectively denote the perimeter, the volume and the Euler-Poincaré characteristic of Γ .

Simulation for a uniform distribution on [0,2] on the radius : θ_1 constant

 $(\theta_2, \theta_3, \theta_4) = (0, 0.2, 0)$ $(\theta_2, \theta_3, \theta_4) = (0, 0, 1)$ $(\theta_2, \theta_3, \theta_4) = (-1, -1, 0)$

J.-F. Coeurjolly ()

Outline

Type of data of interest

Gibbs models

- Brief background
- Examples

3 Identification

- Maximum likelihood
- Pseudo-likelihood method
- Takacs-Fiksel method
- Variational Principle method

Validations through residuals

- Residuals for spatial point processes
- Measures of departures to the true model
- Asymptotics

Maximum likelihood method

We observe φ_{Λ_n} , a realization of a **hereditary** marked point process satisfying **[Mod]** in Λ_n .

$$\hat{\theta}_{n}^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} \frac{1}{Z_{\Lambda_{n}}(\varphi; \theta)} e^{-V(\varphi_{\Lambda_{n}}; \theta)}$$

where

$$Z_{\Lambda}(\varphi;\theta) = \sum_{k\geq 0} \frac{1}{k!} \int_{\Lambda} \dots \int_{\Lambda} e^{-V_{\Lambda}(\{x_1,\dots,x_k\};\theta)} dx_1 \dots dx_k.$$

 $Z_{\Lambda_n}(\varphi; \theta)$ is untractable!!

Remarks

- Intensive Monte-Carlo based simulations (Møller(07)) have to be used to estimate Z(θ).
- Only few theoretical results are available for $\hat{\theta}_n^{MLE}$ (e.g. consistency in general ?)

Pseudo-likelihood method (1)

<u>Idea on the lattice</u> (Besag (68), Ripley (88) : consider the product of the conditional densities in each site conditionally on the other ones.

For point processes JM(94) extended the definition of log-pseudolikelihood function

$$LPL_{\Lambda_n}(\varphi;\theta) = -\int_{\Lambda_n\times\mathbb{M}} e^{-V(x^m|\varphi;\theta)} \mu(dx^m) - \sum_{x^m\in\varphi_{\Lambda_n}} V(x^m|\varphi\setminus x^m;\theta).$$

Define
$$\widehat{\theta}_n^{MPLE} := \underset{\theta \in \Theta}{\operatorname{argmax}} LPL_{\Lambda_n}(\varphi; \theta).$$

Remarks

- "computable" estimate, quick and easy implementation.
- Seems less accurate than the MLE (when available).
- Asymptotic results available for a large class of energies BCD(08),CD(10),DL(09)

Pseudo-likelihood method (2)

Let Λ_n be a cube with volume growing to $+\infty$.

Proposition BCD(08),CD(10),DL(09)

Under [Mod] and [FR], the assumption [Id-MPLE]

$$\forall \theta \neq \theta^{\star}, \quad P\left(V\left(0^{M}|\Phi;\theta\right) \neq V\left(0^{M}|\Phi;\theta^{\star}\right)\right) > 0,$$

regularity and integrability assumptions on the local energy function

(*i*) $\widehat{\theta}_{MPLE}(\Phi) \xrightarrow{a.s.} \theta^{\star}$. (*ii*) if $P_{\theta^{\star}}$ is ergodic, $\exists \Sigma_{MPLE} \ge 0 : |\Lambda_n|^{1/2} \left(\widehat{\theta}_{MPLE}(\Phi) - \theta^{\star}\right) \xrightarrow{d} \mathcal{N}(0, \Sigma_{MPLE})$.

(*iii*) If P_{θ^*} is not ergodic but with additional assumptions on Σ_{MPLE} , one can define a consistent estimate of $\widehat{\Sigma}_{MPLE}^{-1/2}$ of $\Sigma_{MPLE}^{-1/2}$ and derive a normalized CLT.

Takacs-Fiksel method (1)

Theorem (Georgii-Nguyen-Zessin)

For any $h(\cdot, \cdot; \theta) : \mathbb{S} \times \Omega \to \mathbb{R}$, for any $\theta \in \Theta$,

$$E_{\theta^{\star}}\left(\sum_{x^{m}\in\varphi}h(x^{m},\varphi\setminus x^{m};\theta)\right)=E_{\theta^{\star}}\left(\int_{\mathbb{R}^{d}\times\mathbb{M}}h(x^{m},\varphi;\theta)\,e^{-V(x^{m}|\varphi;\theta^{\star})}\mu(dx^{m})\right)$$

Define

$$I_{\Lambda}(\varphi;h,\theta) = \int_{\Lambda \times \mathbb{M}} h(x^{m},\varphi;\theta) e^{-V(x^{m}|\varphi;\theta)} \mu(dx^{m}) - \sum_{x^{m} \in \varphi_{\Lambda}} h(x^{m},\varphi \setminus x^{m};\theta).$$

<u>Idea of TF method</u> : ergodic theorem and GNZ formula $\Rightarrow I_{\Lambda_n}(\varphi; \theta^*) \simeq 0.$

Let us give K test functions $h_k(\cdot, \cdot; \theta) : \mathbb{S} \times \Omega \to \mathbb{R}$ (for $k = 1, \dots, K$).

$$\widehat{\theta}_{TF}(\varphi) := \operatorname*{arg\,min}_{\theta\in\Theta} \sum_{k=1}^{K} I_{\Lambda_n}(\varphi; h_k, \theta)^2,$$

Takacs-Fiksel method (2)

$$\widehat{\theta}_{TF}(\varphi) := \operatorname*{arg\,min}_{\theta \in \Theta} \sum_{k=1}^{K} \left(\int_{\Lambda_n \times \mathbb{M}} h_k\left(x^m, \varphi; \theta\right) e^{-V(x^m | \varphi; \theta)} \mu(dx^m) - \sum_{x^m \in \varphi_{\Lambda_n}} h_k\left(x^m, \varphi \setminus x^m; \theta\right) \right)^2$$

Remarks and interest of the TF method :

• when
$$\mathbf{h} = \mathbf{V}^{(1)}$$
, $\widehat{\theta}_{TF}(\varphi) = \widehat{\theta}_{MPLE}(\varphi)$.

- quick estimator : for example $h_k(x^m, \varphi; \theta) := 1_{\mathcal{B}(0, r_k)}(||x||)e^{V(x^m|\varphi; \theta^*)}$.
- allows the identification of the Quermass model with a pertinent choice of test functions allowing to compute the sum term.

Takacs-Fiksel method (2)

$$\widehat{\theta}_{TF}(\varphi) := \operatorname*{arg\,min}_{\theta \in \Theta} \sum_{k=1}^{K} \left(\int_{\Lambda_n \times \mathbb{M}} h_k\left(x^m, \varphi; \theta\right) e^{-V(x^m | \varphi; \theta)} \mu(dx^m) - \sum_{x^m \in \varphi_{\Lambda_n}} h_k\left(x^m, \varphi \setminus x^m; \theta\right) \right)^2$$

Remarks and interest of the TF method :

• when
$$\mathbf{h} = \mathbf{V}^{(1)}$$
, $\widehat{\theta}_{TF}(\varphi) = \widehat{\theta}_{MPLE}(\varphi)$.

- quick estimator : for example $h_k(x^m, \varphi; \theta) := 1_{\mathcal{B}(0, r_k)}(||x||)e^{V(x^m|\varphi; \theta^*)}$.
- allows the identification of the Quermass model with a pertinent choice of test functions allowing to compute the sum term.
- The consistency and the CLT may be obtained (CDDL(10)) under [Mod], [FR], regularity and integrability assumptions and the identifiability condition [Id-TF]

$$\sum_{k=1}^{K} E\left(h_k(0^M, \Phi; \theta)\left(e^{-V(0^M|\Phi; \theta)} - e^{-V(0^M|\Phi; \theta^*)}\right)\right)^2 = 0 \implies \theta = \theta^*.$$

• Problem with the choice of test functions, **[Id-TF]** may fail! More practical criterion have been proposed in CDDL(10).

Variational principle method (non-marked) Baddeley and Dereudre (10)

 $\mathsf{VP} \text{ equation} : \forall \text{ function } h : \mathbb{S} \times \Omega \to \mathbb{R}$

$$E_{\theta^{\star}}\left(\sum_{x\in\Phi}\nabla h(x|\varphi\setminus\Phi)\right)=E_{\theta^{\star}}\left(\sum_{x\in\Phi}h(x|\Phi\setminus x)\nabla V(x|\Phi;\theta^{\star})\right).$$

• If $V(x|\varphi; \theta^{\star}) \rightarrow V(x|\varphi; \theta^{\star}) + c$: same VP equ. \Rightarrow cannot estimate θ_1^{\star} .

• Assume $V(x|\varphi; \theta^{\star}) = \theta_1 + \widetilde{\theta}^T \widetilde{\mathbf{V}}(x|\varphi)$, VP equ. leads to

$$E_{\theta^{\star}}\left(\sum_{x\in\Phi} div \ h(x|\varphi\setminus x)\right) = \widetilde{\theta}^{T}\left(\sum_{x\in\Phi} h(x|\varphi\setminus x)div \ \widetilde{V}_{i}(x|\varphi\setminus x)\right)_{i=1,\ldots,p}$$

• Let us give h_1, \ldots, h_p and define the vector G and the matrix D by

$$G_k := \sum_{x \in \varphi_{\Lambda_n}} div \ h_k(x| \varphi \setminus x) \quad \text{ and } D_{k,i} := \sum_{x \in \varphi_{\Lambda_n}} h_k(x| \varphi \setminus x) \ div \ \widetilde{V}_i(x| \varphi \setminus x)$$

$$\widehat{\widetilde{\theta}} := D^{-1}G.$$

<u>Rmk</u> : $h_k = div \ \widetilde{V}_k \Rightarrow D \ge 0$, and asymptotic results can be obtained.

Outline

Type of data of interest

Gibbs models

- Brief background
- Examples

3 Identification

- Maximum likelihood
- Pseudo-likelihood method
- Takacs-Fiksel method
- Variational Principle method

Validations through residuals

- Residuals for spatial point processes
- Measures of departures to the true model
- Asymptotics

Validation through residuals

Baddeley et al (05,08) have proposed to use the GNZ formula as a diagnostic tool :

- **(1)** Let us give a model and define an estimate $\hat{\theta}$ of θ^{\star} .
- 2 Let us give a test function and define the *h*-residuals $R_{\Lambda_n}(\varphi; h) = I_{\Lambda_n}(\varphi; h, \hat{\theta})$, i.e.

$$R_{\Lambda_n}(\varphi;h) := \int_{\Lambda_n \times \mathbb{M}} h\left(x^m,\varphi;\widehat{\theta}\right) e^{-V\left(x^m \mid \varphi;\widehat{\theta}\right)} \mu(dx^m) - \sum_{x^m \in \varphi_{\Lambda_n}} h\left(x^m,\varphi \setminus x^m;\widehat{\theta}\right)$$

If the model is valid, then one may expect that $R_{\Lambda_n}(\varphi;h)/|\Lambda_n|\simeq 0!$

Validation through residuals

Baddeley et al (05,08) have proposed to use the GNZ formula as a diagnostic tool :

- **(1)** Let us give a model and define an estimate $\hat{\theta}$ of θ^{\star} .
- 2 Let us give a test function and define the *h*-residuals $R_{\Lambda_n}(\varphi; h) = I_{\Lambda_n}(\varphi; h, \hat{\theta})$, i.e.

$$\mathsf{R}_{\Lambda_n}(\varphi;h) := \int_{\Lambda_n \times \mathbb{M}} h\left(x^m,\varphi;\widehat{\theta}\right) e^{-V\left(x^m | \varphi;\widehat{\theta}\right)} \mu(dx^m) - \sum_{x^m \in \varphi_{\Lambda_n}} h\left(x^m,\varphi \setminus x^m;\widehat{\theta}\right)$$

If the model is valid, then one may expect that $R_{\Lambda_n}(\varphi;h)/|\Lambda_n|\simeq 0!$

Examples :

- Classical examples $h = 1, e^{V}, e^{V/2}$ leading to the raw, the inverse and the Pearson residuals.
- A more evolved one : let $h_r(x^m, \varphi; \theta) := \mathbf{1}_{[0,r]}(d(x^m, \varphi)) e^{V(x^m|\varphi;\theta)}$ where $d(x^m, \varphi) = \inf_{y^m \in \varphi} ||y x||$, $R_{\Lambda_n}(\varphi; h_r)$ corresponds to a difference of two estimates of the empty space function $F(r) := P(d(0^M, \Phi) \le r)$

Measures of departures to the true model

 $\underbrace{ \begin{array}{c} \textbf{Objective 1} \\ \widehat{\boldsymbol{\theta}} \text{ is based on } \phi_{\boldsymbol{\Lambda}_n} \text{ and } \boldsymbol{\Lambda}_n = \bigcup_{j \in \mathcal{J}} \boldsymbol{\Lambda}_j \end{array} }_{\widehat{\boldsymbol{\theta}} \text{ is based on } \phi_{\boldsymbol{\Lambda}_n} \text{ and } \boldsymbol{\Lambda}_n = \bigcup_{j \in \mathcal{J}} \boldsymbol{\Lambda}_j }$

2 <u>Objective 2</u>: fix $\mathbf{h} = (h_1, \dots, h_s)^T$ (ex: $h_j = h_{r_j}, r_1 < r_2 < \dots < r_s$) $\hat{\theta}$ is based on $\varphi_{\Delta r_j}$

 $\begin{cases} R_{\Lambda_n}(\Phi, h_1, \widehat{\theta}_n) \\ \vdots \\ R_{\Lambda_n}(\Phi, h_j, \widehat{\theta}_n) \\ \vdots \\ R_{\Lambda_n}(\Phi, h_s, \widehat{\theta}_n) \end{cases}$

- **(**) compute the *s* h_j -residuals in Λ_n
- **2** construct $\|\mathbf{R}_2\|^2$ where

$$\mathbf{R}_2 := \left(R_{\Lambda_n}(\varphi, h_j, \widehat{\theta}_n) \right)_{j=1,...,s}$$

Towards goodness-of-fit tests

Under similar assumptions as previously and with general assumptions on $\hat{\theta}$ (essentially consistency and CLT)

Proposition (CL(10))

(i) As $n \to +\infty$, $\mathbf{R}_1(\Phi; h)/|\Lambda_{0,n}|$ and $\mathbf{R}_2(\Phi; \mathbf{h})/|\Lambda_n|$ converge a.s. to 0. (ii) If P_{θ^*} is not ergodic (but with additional assumptions) a normalized CLT holds for \mathbf{R}_1 and \mathbf{R}_2 , leading to

$$\Lambda_{0,n}|^{-1}\|\widehat{\boldsymbol{\Sigma}}_1^{-1/2}\mathbf{R}_1(\Phi;h)\|^2 \xrightarrow{d} \chi^2_{|\mathcal{J}|} \quad \text{ and } \quad |\Lambda_n|^{-1}\|\widehat{\boldsymbol{\Sigma}}_2^{-1/2}\mathbf{R}_2(\Phi;h)\|^2 \xrightarrow{d} \chi^2_s.$$

•
$$\Sigma_1 = \lambda_{\mathit{Inn}} \, \underline{\mathsf{I}}_{|\mathcal{J}|} + |\mathcal{J}|^{-1} (\lambda_{\mathit{Res}} - \lambda_{\mathit{Inn}}) \, \underline{\mathsf{J}}$$
 with $\underline{\mathsf{J}} = \mathbf{e} \mathbf{e}^{\mathsf{T}}$ and $\mathbf{e} = (1, \dots, 1)^{\mathsf{T}}$.

•
$$\lambda_{Inn} = f(P_{\theta}^{\star}, V, h)$$
 and $\lambda_{Res} = f(\theta^{\star}, V, h, \widehat{\theta}).$

• This form suggested us to study the centered residuals for which we may prove

$$|\Lambda_{0,n}|^{-1} \widehat{\lambda}_{lnn}^{-1} \|\mathbf{R}_1(\Phi;h) - \overline{\mathbf{R}}_1(\Phi;h)\|^2 \stackrel{d}{\longrightarrow} \chi^2_{|\mathcal{J}|-1}.$$