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Introduction

Clustering has become a recurring problem:
it usually occurs in all applications for which a partition is
necessary (interpretation, decision, ...),
but modern data are very often high-dimensional (p large),
and the number of observations is sometimes small as well
(n� p).

Example : segmentation of hyper-spectral images
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The classification problem

The classification problem consists in:
organizing the observations x1, ..., xn ∈ Rp into K classes,
i.e. associating the labels z1, ..., zn ∈ {1, ...,K} to the data.

Supervised approach: complete dataset (x1, z1), ..., (xn, zn)
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Non-supervised approach : only the observations x1, ..., xn
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Probabilistic classification and the MAP rule

The classical probabilistic framework assumes that:
the observations x1, ..., xn are independant realizations of a
random vector X ∈ X p,
the labels z1, ..., zn are independant realizations of a random
variable Z ∈ {1, ...,K},
where zi = k indicates that xi belongs to the kth class.

The classification aims to build a decision rule δ :

δ : X p → {1, ...,K},
x → z.

The optimal rule δ∗ is the one which assigns x to the class with the
highest posterior probability (called the MAP rule):

δ∗(x) = argmax
k=1,...,K

P (Z = k|X = x).
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Generative and discriminative approaches

The difference between both approaches:
the way they estimate the posterior probability P (Z|X)
which is used in the MAP decision rule.

Discriminative methods:
they directly model the posterior probability P (Z|X),
by building a boundary between the classes.

Generative methods:
they first model the joint distribution P (X,Z),
and then deduce the posterior probability using the
Bayes’ rule:

P (Z|X) = P (X,Z)
P (X) ∝ P (Z)P (X|Z).
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Generative and discriminative approaches
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Fig. Discriminative (left) and generative (right) methods.

Discriminative methods:
logistic regression (it models log(f1(x)/f2(x))),
Support Vector Machines (SVM), decision trees, ...

Generative methods:
mainly, model-based classification methods,
but it exists also non-parametric methods.
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The mixture model

The mixture model:
the observations x1, ..., xn are assumed to be independant
realizations of a random vector X ∈ X p with a density:

f(x) =
K∑
k=1

πkf(x, θk),

K is the number of classes,
πk are the mixture proportions,
f(x, θk) is a probability density with its parameters θk.

The Gaussian mixture model:
among all mixture models, the Gaussian mixture model is
certainly the most used in the classification context,
in this case, f(x, θk) is the Gaussian density N (µk,Σk)
with θk = {µk,Σk}.
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The mixture model

The MAP decision rule becomes in the mixture model framework:

δ∗(x) = argmax
k=1,...,K

P (Z = k|X = x),

= argmax
k=1,...,K

P (Z = k)P (X = x|Z = k),

= argmin
k=1,...,K

Hk(x),

where Hk is defined by Hk(x) = −2 log(πkf(x, θk)).

The building of the decision rule consists in:
1 estimate the parameters θk of the mixture model,
2 calculate the value of Hk(x) for each new observation x.
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Gaussian mixtures for classification

Gaussian model Full-GMM (QDA in discrimination):

Hk(x) = (x− µk)tΣ−1
k (x− µk) + log(det Σk)− 2 log(πk) + Cst.

Gaussian model Com-GMM which assumes that ∀k, Σk = Σ (LDA
in discrimination):

Hk(x) = µtkΣ−1µk − 2µtkΣ−1x− 2 log(πk) + Cst.

−3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

3

4

Fig. Decision boundaries for Full-GMM (left) and Com-GMM (right).
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The curse of dimensionality

The curse of dimensionality:
this term was first used by R. Bellman in the introduction of
his book “Dynamic programming” in 1957:

All [problems due to high dimension] may be subsumed under
the heading “the curse of dimensionality”. Since this is a
curse, [...], there is no need to feel discouraged about the
possibility of obtaining significant results despite it.

he used this term to talk about the difficulties to find an
optimum in a high-dimensional space using an exhaustive
search,
in order to promotate dynamic approaches in programming.
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The curse of dimensionality

In the mixture model context:
the building of the data partition mainly depends on:

Hk(x) = −2 log(πkf(x, θk)),

model Full-GMM:

Hk(x) = (x− µk)tΣ−1
k (x− µk) + log(det Σk)− 2 log(πk) + γ.

model Com-GMM which assumes that ∀k, Σk = Σ:

Hk(x) = µtkΣ−1µk − 2µtkΣ−1x− 2 log(πk) + γ.

Important remarks :
it is necessary to invert Σk or Σ,
and this will cause big difficulties in certain cases!
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The curse of dimensionality

In the mixture model context:
the number of parameters grows up with p2,
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if n is small compared to p2, the estimates of Σk are
ill-conditionned or singular,
it is therefore difficult or impossible to invert Σk.
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The blessings of dimensionality

As Bellman thought:
all is not bad in high-dimensional spaces (hopefully!)
there are interesting things which happen in high-dimensional
spaces.

The empty-space phenomenum [Scott83]:
classical thoughts true in 1, 2 or 3-dimensional spaces are in
fact wrong in higher dimensions,
particularly, high-dimensional spaces are almost empty!
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The blessings of dimensionality

First example : the volume of a sphere

V (p) = πp/2

Γ(p/2 + 1) ,
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The blessings of dimensionality

Second example:
since high-dimensional spaces are almost empty,
it should be easier to separate groups in high-dimensional
space with an adapted classifier.
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Classical ways to avoid the curse of dimensionality

Dimension reduction:
the problem comes from that p is too large,
therefore, reduce the data dimension to d� p,
such that the curse of dimensionality vanishes!

Parsimonious models:
the problem comes from that the number of parameters to
estimate is too large,
therefore, make additional assumptions to the model,
such that the number of parameters to estimate becomes
more “decent”!

Regularization:
the problem comes from that parameter estimates are instable,
therefore, regularize these estimates,
such that the parameter are correctly estimated!
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Dimension reduction

Linear dimension reduction methods:
feature combination: PCA,
feature selection: ...

Non linear dimension reduction methods:
Kohonen algorithms, Self Organising Maps,
LLE, Isomap, ...
Kernel PCA, principal curves, ...

Supervised dimension reduction methods:
the old fashion method: Fisher Discriminant Analysis (FDA),
many recent works on this topic... but useless in our context!
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Parsimonious models

Parsimonious models:
can be obtained by making additional assumptions on the
original model
in order to adapt the model to the available data.

Parsimonious Gaussian models:
com-GMM:

the assumption: Σk = Σ,
nb of par. for K = 4 and p = 100: 5453

diag-GMM:
the assumption: Σk = diag(σk1, ..., σkp),
nb of par. for K = 4 and p = 100: 803

sphe-GMM:
the assumption: Σk = σkIp,
nb of par. for K = 4 and p = 100: 407
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Parsimonious models

A family of parsimonious Gaussian models [Banfield93, Celeux95]:

Fig. The family of 14 parsimonious Gaussian models [Celeux95].
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Regularization

Regularization of the covariance matrix estimates:
ridge-like regularization: Σ̃k = Σ̂k + σkIp,

PDA [Hast95] : Σ̃k = Σ̂k + σkΩ,

RDA [Frie89] proposed a regularized classifier which varies
between a quadratic and a linear classifier:

Σ̃k(λ, γ) = (1− γ)Sk(λ) + γ

(
tr(Sk(λ))

p

)
Ip

where Sk is defined by:

Sk(λ) = (nk − 1)(1− λ)Σ̂k + (n−K)λΣ̂
(1− λ)(nk − 1) + λ(n−K) .
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Regularization
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Fig. 4. Influence des paramètres γ et λ sur le classifieur RDA.
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Subspace clustering methods

Recent approaches propose:
to model the data of each group in specific subspaces,
to keep all dimensions in order to facilitate the discrimination
of the groups.

Several works on this topic in the last years:
mixture of factor analyzers: Ghahramani et al. (1996) and
McLachlan et al. (2003),
mixture of probabilistic PCA: Tipping & Bishop (1999) ,
mixture of HD Gaussian models: Bouveyron & Girard (2007),
mixture of parsimonious FA: McNicholas and Murphy (2008),
mixture of common FA: Beak et al. (2009).
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Subspace clustering methods

Mixture of Factor Analyzers

Beak et al. McNicholas & Murphy Tipping & Bishop Bouveyron & Girard

Common FA:
- 1 model,
- unconstrained 
noise variance,
- common 
orientations,
- common 
dimensions

Parsimonious 
GMM:
- 8 models,
- constrained or 
unconstrained 
noise variance,
- free or 
common 
orientations,
- common 
dimensions

Mixture of 
PPCA:
- 1 model,
- isotropic noise 
variance,
- free 
orientations,
- common 
dimensions

HDDC:
- 24 models,
- isotropic noise 
variance
- free or 
common 
orientations
- free or 
common 
dimensions

Figure: A tentative family tree of subspace clustering methods.
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The model [akjbkQkdk]

Bouveyron & Girard (2007) proposed to consider the Gaussian mix-
ture model:

f(x) =
K∑
k=1

πkf(x, θk),

where θk = {µk,Σk} for each k = 1, ...,K.

Based on the spectral decomposition of Σk, we can write:

Σk = Qk ∆kQ
t
k,

where:
Qk is an orthogonal matrix containing the eigenvectors of Σk,
∆k is diagonal matrix containing the eigenvalues of Σk.
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The model [akjbkQkdk]

We assume that ∆k has the following form:

∆k =



ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .
0 bk



 dk

 (p− dk)

where:
akj ≥ bk, for j = 1, ..., dk and k = 1, ...,K,
and dk < p, for k = 1, ...,K.
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The model [akjbkQkdk]

Fig. The subspace Ek and its supplementary E⊥k .

We also define:
the affine space Ek generated by eigenvectors associated to
the eigenvalues akj and such that µk ∈ Ek,
the affine space E⊥k such that Ek ⊕ E⊥k = Rp and µk ∈ E⊥k ,
the projectors Pk and P⊥k respectively on Ek and E⊥k .
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The model [akjbkQkdk] and its submodels

We thus obtain a re-parameterization of the Gaussian model:
which depends on akj , bk, Qk and dk,
the model complexity is controlled by the subspace
dimensions.

We obtain increasingly regularized models:
by fixing some parameters to be common within or between
the classes,
from the most complex model to the simplest model.

Our family of GMM contains 28 models and can be splitted into
three branches:

14 models with free orientations,
12 models with common orientations,
2 models with common covariance matrices.
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The model [akjbkQkdk] and its submodels

Model Number of
parameters

Asymptotic
order

Nb of prms k = 4,
d = 10, p = 100

ML
estimation

[aijbiQidi] ρ+ τ̄ + 2k +D kpd 4231 CF
[aijbQidi] ρ+ τ̄ + k +D + 1 kpd 4228 CF
[aibiQidi] ρ+ τ̄ + 3k kpd 4195 CF
[abiQidi] ρ+ τ̄ + 2k + 1 kpd 4192 CF
[aibQidi] ρ+ τ̄ + 2k + 1 kpd 4192 CF
[abQidi] ρ+ τ̄ + k + 2 kpd 4189 CF
[aijbiQid] ρ+ k(τ + d+ 1) + 1 kpd 4228 CF
[ajbiQid] ρ+ k(τ + 1) + d+ 1 kpd 4198 CF
[aijbQid] ρ+ k(τ + d) + 2 kpd 4225 CF
[ajbQid] ρ+ kτ + d+ 2 kpd 4195 CF
[aibiQid] ρ+ k(τ + 2) + 1 kpd 4192 CF
[abiQid] ρ+ k(τ + 1) + 2 kpd 4189 CF
[aibQid] ρ+ k(τ + 1) + 2 kpd 4189 CF
[abQid] ρ+ kτ + 3 kpd 4186 CF
[aijbiQdi] ρ+ τ +D + 2k pd 1396 FG
[aijbQdi] ρ+ τ +D + k + 1 pd 1393 FG
[aibiQdi] ρ+ τ + 3k pd 1360 FG
[aibQdi] ρ+ τ + 2k + 1 pd 1357 FG
[abiQdi] ρ+ τ + 2k + 1 pd 1357 FG
[abQdi] ρ+ τ + k + 2 pd 1354 FG
[aijbiQd] ρ+ τ + kd+ k + 1 pd 1393 FG
[ajbiQd] ρ+ τ + k + d+ 1 pd 1363 FG
[aijbQd] ρ+ τ + kd+ 2 pd 1390 FG
[aibiQd] ρ+ τ + 2k + 1 pd 1357 IP
[abiQd] ρ+ τ + k + 2 pd 1354 IP
[aibQd] ρ+ τ + k + 2 pd 1354 IP
[ajbQd] ρ+ τ + d+ 2 pd 1360 CF
[abQd] ρ+ τ + 3 pd 1351 CF
Full-GMM ρ+ kp(p+ 1)/2 kp2/2 20603 CF
Com-GMM ρ+ p(p+ 1)/2 p2/2 5453 CF
Diag-GMM ρ+ kp 2kp 803 CF
Sphe-GMM ρ+ k kp 407 CF

Table 1: Properties of the HDDC models: ρ = kp+k−1 is the number of parameters
required for the estimation of means and proportions, τ̄ =

∑k
i=1 di[p − (di + 1)/2]

and τ = d[p− (d + 1)/2] are the number of parameters required for the estimation
of Q̃i and Q̃, and D =

∑k
i=1 di. For asymptotic orders, we assume that k ≪

d ≪ p. CF means that the ML estimates are closed form. IP means that the ML
estimation needs an iterative procedure. FG means that the ML estimation requires
the iterative FG algorithm.

1

Table: Properties of the sub-models of [akjbkQkdk]
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The model [akjbkQkdk] and its submodels

Model Nb of prms, K = 4
d = 10, p = 100 Classifier type

[akjbkQkdk] 4231 Quadratic
[akjbkQdk] 1396 Quadratic
[ajbQd] 1360 Linear
Full-GMM 20603 Quadratic
Com-GMM 5453 Linear

Table. Properties of the sub-models of [akjbkQkdk]
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The model [akjbkQkdk] and its submodels

model [akbkQkd] model [abkQkd] model [akbQkd]

model [akbkQd] model [abQd] model [abI2d]

Fig. Influence of parameters ak, bk et Qk on the densities
of 2 classes in dimension 2 with d1 = d2 = 1.
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Construction of the classifier

In the supervised context:
the classifier has been named HDDA,
the estimation of parameters is direct since we have complete
data,
parameters are estimated by maximum likelihood.

In the unsupervised context:
the classifier has been named HDDC,
the estimation of parameters is not direct since we do not
have complete data,
parameters are estimated through a EM algorithm which
iteratively maximizes the likelihood.
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HDDC: the E step

In the case of the model [akbkQkdk] :

Hk(x) = 1
ak
‖µk − Pk(x)‖2+ 1

bk
‖x− Pk(x)‖2+dk log(ak)+(p−dk) log(bk)−2 log(πk).

Fig. The subspaces Ek and E⊥k of the kth mixture composant.
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HDDC: the M step

The ML estimators for the model [akjbkQkdk] are closed forms:

Subspace Ek: the dk first columns of Qk are estimated by the
eigenvectors associated to the dk largest eigenvalues λkj of
the empirical covariance matrix Wk of the kth class.

Estimator of akj : the parameters akj are estimated by the dk
largest eigenvalues λkj of Wk.

Estimator of bk: the parameter of bk is estimated by:

b̂k = 1
(p− dk)

trace(Wk)−
dk∑
j=1

λkj

 .
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HDDC: hyper-parameter estimation
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Fig. The scree-test of Cattell based on the eigenvalue scree.

Estimation of the intrinsic dimensions dk :
we use the scree-test of Cattell [Catt66],
it allows to estimate the K parameters dk in a common way.

Estimation of the nomber of groups K :
in the supervised context, K is known,
in the unsupervised context, K is chosen using BIC.
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Numerical considerations

Numerical stability : the decision rule of HDDC does not
depend on the eigenvectors associated with the smallest
eigenvalues of Wk.

Reduction of computing time : there is no need to compute
the last eigenvectors of Wk → reduction of computing time
with a designed procedure (×60 for p = 1000).

Particular case n < p : from a numerical point of view, it is
better to compute the eigenvectors of X̄kX̄

t
k instead of

Wk = X̄t
kX̄k (×500 for n = 13 and p = 1000).
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Effect of the dimensionality
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Fig. Correct classification rate versus
data dimension (simulated data according to [aijbiQidi]).
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Estimation of intrinsic dimensions

Nb of classes k Chosen threshold s Dimensions di BIC value
2 0.18 2,16 414
3 0.21 2,5,10 407
4 0.25 2,2,5,10 414
5 0.28 2,5,5,10,12 416
6 0.28 2,5,6,10,10,12 424

Table. Selection of discrete parameters using BIC
on simulated data where di are equal to 2, 5 and 10.
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Comparison with variable selection

Model On original features With a dimension
reduction step (ACP)

Sphe-GMM 0.340 0.340
Diag-GMM 0.355 0.535
Com-GMM 0.625 0.635
Full-GMM 0.640 0.845
VS-GMM [Raft05] 0.925 /
HDDC [aibiQidi] 0.950 /

Table. Correct classification rate on a real dataset: Crabs ∈ R5.
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HDDC: an EM-based algorithm
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Fig. Projection of the «Crabs» data on the first principal axes.

«Crabs» data:
200 observations in a 5-dimensional space (5 morphological
features),
4 classes: BM, BF, OM and OF.
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HDDC: an EM-based algorithm
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Fig. Step n° 1 of HDDC on the «Crabs» data.
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HDDC: an EM-based algorithm
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Fig. Step n° 4 of HDDC on the «Crabs» data.
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HDDC: an EM-based algorithm
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Fig. Step n° 7 of HDDC on the «Crabs» data.
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HDDC: an EM-based algorithm
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Fig. Step n° 10 of HDDC on the «Crabs» data.
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HDDC: an EM-based algorithm
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Fig. Step n° 12 of HDDC on the «Crabs» data.
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Categorization of the Martian surface

0 50 100 150 200 250
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Spectral band

data1

data2

data3

data4

data5

Fig. Categorization of the Martian surface based on HD spectral images.
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Object localization in natural images

Fig. Object localization of an object “bike” in a natural image.
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Texture recognition

Fig. Segmentation of an image containing several textures: diag-GMM, HD-GMM,
diag-GMM with hidden Markov field and HD-GMM with hidden Markov field.
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Outline
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3 Recent model-based methods for HD data clustering

4 Intrinsic dimension selection by ML in subspace clustering
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Intrinsic dimension selection

In subspace clustering:
the different models are all parametrized by the intrinsic
dimension of the subspaces,
Bouveyron et al. have proposed to use the scree-test of
Cattell to determine the dimensions dk,
this approach works quite well in practice and can be combine
to either cross-validation or BIC to select the threshold.

A priori, ML should not be used to determine the dk:
since the dk determine the model complexity and therefore the
likelihood increases with dk,
except for the model [akbkQkdk]!
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The isotropic PPCA model

To simplify, let us define the isotropic PPCA model:
the observed variable Y ∈ Rp and the latent variable X ∈ Rd
are assumed to be linked:

Y = Q̄X + µ+ ε,

where X and ε have Gaussian distributions such that
∆k = QtΣQ has the following form:

∆k =



a 0
. . .

0 a

0

0

b 0
. . .

. . .
0 b



 d

 (p− d)

where a ≥ b and d < p.
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ML estimate of d is asymptically consistent

Proposition:
The maximum likelihood estimate of the actal intrinsic
dimension d∗ is asymptotically unique and consistent.
Sketch of the proof:
At the optimum, the maximization of `(θ̂) is equivalent to the minimization of:

fn(d) = d log(â) + (p− d) log(b̂) + p.

1 If d ≤ d∗: â→ a and b̂→ 1
p−d

[(d∗ − d)a+ (p− d∗)b] almost surely when
n→∞ and fn → f :

f(d) = d log(a) + (p− d) log
( (d∗ − d)

(p− d)
a+

(p− d∗)
(p− d)

)
,

which has a unique minimum in d = d∗.
2 If d ≥ d∗: â→ 1

d
(d∗a+ (d− d∗)b) and b̂→ b almost surely when n→∞ and

fn → f :
f(d) = d log

(
d∗

d
a+

d− d∗

d
b

)
+ (p− d) log(b),

which has as well a unique minimum in d = d∗.
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Experimental setup

To verify the practical interest of the result:
we define the parameters α and β:

α = n

p
,

β = d∗a

(p− d∗)b ,

α controls the estimation conditions through the ratio
between the number of observations and the observation
space dimension,
β controls the signal to noise ratio through the ratio between
the variances in the latent subspace and in its orthogonal
subspace.
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An introductory simulation
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Figure: Intrinsic dimension estimation with d∗ = 20 and α = 5.
Charles BOUVEYRON | Model-based clustering of high-dimensional data: an overview and some recent advances 57/64



Influence of the signal to noise ratio
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Figure: Average selected dimension according to β for α = 4, 3, 2 and 1.
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Influence of the n/p ratio
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Figure: Average selected dimension according to α for β = 4, 3, 2 and 1.
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A graphical summary
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Figure: Recommended criteria for intrinsic dimension selection according
to α and β for the isotropic PPCA model.
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Conclusion & further works

Dimension reduction:
is usefull for visualization purposes,
but clustering a reduced dataset is suboptimal.

Parsimonious models & regularization:
allow to adapt the model complexity to the data,
parsimonious models are usually valid for data with p<25,

Subspace clustering:
adapted for real high dimensional data (p>25,100,1000,...),
even when n is small compared to p,
the best of dimension reduction and parsimonious models.
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Conclusion & further works

Intrinsic dimension selection:
intrinsic dimension of the subspaces is the key parameter in
subspace clustering,
the old-fashion method of Cattell works quite well in practice,
BIC, AIC and even ML can also be used in specific contexts.

Further works:
use ML in HDDA and HDDC to make these methods fully
automatic,
integration of this approach in softwares.
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Softwares

HDDA / HDDC:
Matlab toolboxes are available at:

http://samm.univ-paris1.fr/-charles-bouveyron-

8 models are available in the Mixmod software:

http://www-math.univ-fcomte.fr/mixmod/

A R package, nammed HDclassif, is available for a few
weeks on the CRAN servers (thanks to L. Bergé & R. Aidan).

Fisher-EM:
a R package is planned for next year...
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