## Homologies et réseaux de capteurs

L. Decreusefond

MAT4NET







### Couverture



### Complexe simplicial

- Généralise la notion de graphes
- Constitué d'arêtes, de triangles, de tétrahèdres, ...



## Exemple





## Complexe de Cech







 $Sommets: \; \{ \text{ a, b, c, d, e } \} = \mathcal{C}_0$ 

Arêtes : {ab, bc, ca, be, ec, ed } =  $\mathcal{C}_1$ 

Triangles :  $\{bec\} = \mathcal{C}_2$ 

Tétrahèdre :  $\emptyset = \mathcal{C}_3$ 



## Exemple plus compliqué







## Opérateur de bord

#### Définition

$$\partial_k: C_k \longrightarrow C_{k-1}$$

$$[v_0, \cdots, v_k] \longmapsto \sum_{j=0}^k (-1)^j [v_0, \cdots, \hat{v}_j, \cdots]$$

#### Exemple

$$\partial(bec) = ec - bc + be$$
  
 $\partial^2(bec) = c - e - (c - b) + e - b = 0$ 



#### Théorème

$$\partial_k \partial_{k+1} = 0$$

#### Conséquence

$$\operatorname{Im}\, \partial_{k+1}\subset \ker \partial_k$$

#### Définition

$$\beta_k = \dim \ker \partial_k - \operatorname{range} \partial_{k+1}$$



### Interprétation

- $\beta_0$  : nb de composantes connexes
- ullet  $eta_1$  : nb de trous
- $\beta_2$  : nb de « vides »
- ...



## Exemple

### Rappel :

$$C_0 = \{a, b, c, d, e\}, C_1 = \{ab, bc, ca, be, ec, ed\}$$

$$\partial_0 \equiv 0, \ \partial_1 = \left( egin{array}{cccccc} -1 & 0 & 1 & -1 & 0 & 0 \ 1 & -1 & 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & -1 & 0 \end{array} 
ight)$$

Nb de composantes connexes

$$\dim \ker \partial_0 = 5, \text{ range } \partial_1 = 4 \text{ donc } \beta_0 = 1$$



### Nombre de trous

#### Rappel:

$$\mathcal{C}_1 = \{\textit{ab}, \textit{bc}, \textit{ca}, \textit{be}, \textit{ec}, \textit{ed}\}, \ \mathcal{C}_2 = \{\textit{bec}\}$$

$$\partial_2 = egin{pmatrix} 0 \ -1 \ 0 \ 1 \ 1 \ 0 \end{pmatrix}$$

 $\dim \, \ker \partial_1 = 2, \, \, \text{range} \, \, \partial_2 = 1 \, \, \text{donc} \, \, \beta_1 = 1$ 



## Caractéristique d'Euler

#### Définition

$$\chi = \sum_{j=0}^{d} (-1)^{j} \beta_{j} = \sum_{j=0}^{\infty} (-1)^{j} |\mathcal{C}_{k}|$$

Inégalité de Morse

$$-|\mathcal{C}_{k-1}| + |\mathcal{C}_k| - |\mathcal{C}_{k+1}| \le \beta_k \le |\mathcal{C}_k|$$



- Algorithme centralisé
- Nécessite de connaître les positions exactes

### Complexe de Rips

$$[x_0, \cdots, x_k] \in \mathcal{R}_k(\epsilon) \iff |x_i - x_j| \le \epsilon$$



## Propriétés

- Si distance  $= l^{\infty}$ ,  $C_k(\epsilon) = \mathcal{R}_k(\epsilon)$
- Pour la distance euclidienne

$$\mathcal{R}_k(\epsilon \ \sqrt{rac{d+1}{2d}}) \subset \mathcal{C}_k(\epsilon) \subset \mathcal{R}_k(2\epsilon)$$



## Quelques résultats (D-Ferraz-Randriam-Vergne)

n points, uniformément répartis sur un d-tore d'arête a

### k simplexes

$$\mathbf{E}[|\mathcal{C}_k(n)|] = \binom{n}{k+1} (k+1)^d \left(\frac{2\epsilon}{a}\right)^{dk}$$

### Caractéristique d'Euler

$$\mathbf{E}[\chi(n)] = \sum_{k=0}^{n} \binom{n}{k+1} (-1)^k (k+1)^d \left(\frac{2\epsilon}{a}\right)^{dk}$$



#### Dimension 5



#### Mise en œuvre

- Calculs algébriques classiques
- Base « minimale » des e.v. quotients donne les bords des trous



## Autre application (D.- Martins- Vergne)

#### Green networking

Eteindre des capteurs en maintenant la couverture

Hauteur d'une arête

Ordre du plus grand simplexe auquel elle appartient

Indice d'un sommet

Minimum des hauteurs des arêtes adjacentes



# Exemple





## Complexité (D.-Vergne)

### Régime sous-critique

Si

$$\frac{k^{\frac{1+\eta-d}{k-1}}}{n^{\frac{k}{k-1}}} < \theta := \left(\frac{\epsilon_n}{a}\right)^d < \frac{k^{-\frac{1+\eta+d}{k}}}{n^{\frac{k+1}{k}}}$$

alors la hauteur tend vers k quand n tend vers l'infini.

### Régime critique

Si  $n\theta_n o 1$  alors

$$(\ln n)^{1-\eta} < \text{hauteur} < \ln n, \quad \forall \eta > 0.$$

### Régime sur-critique

Si  $n\theta_n \to \infty$  alors hauteur $\sim n\theta_n$ .



## Rips-Cech (D-Feng-Martins

- Norme euclidienne
- Rayon de couverture  $R_S$
- Rayon de communication  $R_C$





Advances in Applied Probability., 2013.

A. Vergne, L. Decreusefond, and Ph. Martins. Reduction algorithm for simplicial complexes. In *Infocom*, April 2013.

F. Yan, Ph. Martins, and L. Decreusefond.

Connectivity-based distributed coverage hole detection in wireless sensor networks.

In Globecom'11, Houston, Texas, USA, August 2011.

F. Yan, Ph. Martins, and L. Decreusefond.

Accuracy of homology based approaches for coverage hole detection in wireless sensor networks.

In ICC 2012, June 2012.

