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Why uncertainty quantification ?

Objectives

Improve the Prediction of numerical simulation

Quality of numerical simulations → Verification and Validation (V&V)

Use of numerical code as a reliable tool to address an experiment

V&V

Verification: are we solving the equations correctly ?
→ Numerical analysis and tests

Validation: are we solving the correct equations ?
→ Comparisons of the numerical predictions to reality

Importance of Uncertainty Quantification
→ Estimate the error bars associated to given predictions
→ Evaluate the likelihood of a certain outcome
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Some definitions

Errors vs. uncertainties

Errors: associated to the translation of a mathematical formulation into a
numerical algorithm
→ Round-off errors and limited convergence of certain iterative algorithms
→ Implementation mistakes (bugs) or usage errors

Uncertainties: associated to the choice of the physical models and to the
specification of the input parameters

Uncertainty Classification

Aleatory: not strictly due to a lack of knowledge → can not be reduced
→ characterized using probabilistic approaches
→ Ex: determination of material properties or operating conditions

Epistemic: potential deficiency due to a lack of knowledge
→ It can arise from assumptions introduced in the derivation of the
mathematical model or from simplifications
→ can be reduced (for example by improving the measures)
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Predictions under uncertainty

Workflow in a Deterministic simulations

Characterize Geometry, initial/operating conditions, physical processes

Formulation of a mathematical representation
→ Governing equations, models to capture the relevant physical processes

Simplifications with respect to the real system

Formulate a discretized representation

Grid generation, numerical methods, simulation and output analysis

Introduction of UQ in numerical simulations: 3 Steps

Data assimilation: ex. boundary conditions inferred from experiments
→ define random variables with a specified probability distribution functions
(PDF)

Uncertainty propagation: compute the PDFs of the output quantities of
interest

Post-Processing analysis: reliability assessments, validation metrics
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The mathematical setting of the problem

Let the output of interest u(x, t, ξ(ω)) be governed by the equation:

L(x, t, ξ(ω);u(x, t, ξ(ω))) = S(x, t, ξ(ω)), (1)

where L (algebraic or differential operator) and S are on D × T × Ξ, x ∈ D ⊂ Rnd ,
with nd ∈ {1, 2, 3}, ξ(ω) = {ξ1(ω1), . . . , ξd(ωd)} ∈ Ξ with parameters space Ξ ⊂ Rd

Probability framework (on the probability space (Ω,F , P )):
realizations ω = {ω1, . . . , ωd} ∈ Ω ⊂ R with Ω set of outcomes, F ⊂ 2Ω is the
σ-algebra of events, P : F → [0, 1] is a probability measure.

The objective of uncertainty propagation is to find the probability distribution of
u(y, ξ) and its statistical moments µui(y) given by

µui(y) =

∫
Ξ

u(y, ξ)ifξ(ξ)dξ. (2)

How compute this integral in an efficient way ?
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UQ state of the art
About some classical methods

Actually two kind of methodologies exist:

Intrusive: the method requires intensive modifications of the numerical code
NOTE: the number of equations is not preserved!

Non-intrusive: No modifications of the deterministic scheme are demanded (the
CFD code is a black-box)

Sampling techniques (Monte Carlo, Latin Hypercube)

Stochastic collocation (Lagrangian interpolation)

Probabilistic collocation (Chaos version of Lagrangian interpolation)

(generalized-) Polynomial Chaos (gPC)

The gPC can be intrusive (Galerkin projection) or non-intrusive.
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The mathematical setting of the problem
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u(y, ξ) and its statistical moments µui(y) given by
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First Possibility : Sampling Methods

Repeated simulations with a proper selection of the input values

Results collected to generate a statistical characterization of the outcome
→ Efficient Monte Carlo (MC), pseudo-MC (Latin hypercube) or quasi-MC

Sampling is not the most efficient UQ method, but it is easy to implement,
robust, and transparent.
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Second Possibility : Quadrature Methods

Motivation

Evaluation of integrals needed
→ Natural to employ conventional numerical integration techniques

How ?

Quadratures based on Newton-Cotes formulas for equally spaced abscissas

Stochastic Collocation: Gaussian quadrature, i.e. the Gauss-Legendre
integration formula based on Legendre polynomials
→ Natural extension to multiple dimensions as tensor product of 1D interpolants
→ Curse of Dimensionality for high dimensions, Smolyak Algorithm
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Spectral Methods

Quantities expressed as series of orthogonal polynomials on the space of random
input variable

u(ξ) =
∞∑
k=0

βkΨk(ξ) (5)

Ψi form an Hilbert basis of L2(ξ, p(ξ)) in the space of the second-order random
variable spanned by ξ, u(ξ) ∈ L2(ξ, p(ξ))

It is a second order random field

||u(ξ)||2 =

∫
Ωd

u(ξ)2p(ξ)dξ <∞. (6)

The knowledge of the βk allows to fully characterize output random variable

Each polynomial Ψ(ξ) of total degree no is a multivariate polynomial involving
tensorization of 1D ones by a multi index mi:

Ψ(ξ) =

no∏
i=1

ψmi(ξi). (7)
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Spectral Methods

Truncation

In practical problems the infinite expansion has to be truncated:

u(ξ) = ũ(ξ) +OT =

P∑
k=0

βkΨk(ξ) +OT , (8)

where OT is a truncation error.

The truncated expansion converges in the mean square sense as N and the
polynomial order p →∞.

Generalized Polynomial Chaos

Optimal polynomial expansion
are built using the measure
corresponding to the probability
law of the random variable

Natural extension to the case
where random variables have
different measures
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Spectral Methods: Resolution, computation of βk

Intrusive Methods → Method of Weighted Residual

Define uncertainties in the numerical problem

L(x, t, ξ(ω);u(x, t, ξ(ω))) = S(x, t, ξ(ω)), (9)

where L (algebraic or differential operator) and S are on D × T × Ξ,
x ∈ D ⊂ Rnd , with nd ∈ {1, 2, 3}, ξ(ω) = {ξ1(ω1), . . . , ξd(ωd)} ∈ Ξ with Ξ ⊂ Rd

Spectral expansion and injection in the operator

L

(
x, t, ξ(ω);

P∑
k=0

βkΨk(ξ)

)
= S(x, t, ξ(ω)), (10)

Projection on the orthogonal polynomials. Obtention of a linear system to
solve〈

L

(
x, t, ξ(ω);

P∑
k=0

βkΨk(ξ)

)
,Ψi(ξ)

〉
= 〈S,Ψi(ξ)〉 i = 0, 1, ...P (11)

PC coefficients are coupled
Deterministic solver has to be modified
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Spectral Methods: Resolution, computation of βk

Non-intrusive Methods, Collocation Method

Define uncertainties in the numerical problem

L(x, t, ξ(ω);u(x, t, ξ(ω))) = S(x, t, ξ(ω)), (12)

where L (algebraic or differential operator) and S are on D × T × Ξ,
x ∈ D ⊂ Rnd , with nd ∈ {1, 2, 3}, ξ(ω) = {ξ1(ω1), . . . , ξd(ωd)} ∈ Ξ with Ξ ⊂ Rd

Coefficients obtained by projection on polynomial basis, i.e. taking inner
product of output PC expansion with Ψk, making use of basis orthogonality

βk =
〈u(ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉 , ∀k. (13)

The statistical moments of interest are the expected value and the variance

µ(u) ≈ µ(ũ) = β0, σ2(u) ≈ σ2(ũ) =

P∑
k=1

β2
k〈Ψ2

k(ξ)〉. (14)

Sensitivity analysis based on the analysis of variance decomposition (ANOVA)

Series of deterministic computations
Deterministic solver has not to be modified (Black box)
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Properties of classical methods in UQ

Sampling

Strengths: Simple and reliable, convergence rate is dimension-independent

Weaknesses: sqrt(N) convergence → expensive for accurate tail statistics

Stochastic expansions

Strengths: functional representation, exponential convergence rates

Problems
⇒ Discontinuity → Gibbs phenomena
⇒ Singularity → divergence in moments
⇒ Scaling to large n → exponential growth in number of simulation

PM Congedo (INRIA - Bordeaux) Rencontre GAMNI-MAIRCI 1er Février 16 / 47



Summary

Why uncertainty quantification ?

Global Perspective

Epistemic vs Aleatory
uncertainties

About some classical methods

State of the Art

Polynomial Chaos based
methods

Specific problems in CFD

Impact on Fluid Mechanics

Turbulence

Thermodynamics

Innovative approach for
unsteady shocked flow

Multi-resolution
finite-volume based
approach

Interaction
experiments/numerics

How to set-up the first
experiment on a rarefaction
shock tube

PM Congedo (INRIA - Bordeaux) Rencontre GAMNI-MAIRCI 1er Février 17 / 47



Study concerning the Model uncertainties in Thermodynamics1

Context: Complex compressible flows in aerodynamics

Choice of the appropriate thermodynamic model (i.e. p = p(ρ, T ))
→ tradeoff level of complexity/accuracy

For a given level → Multiple parameter constitutive models, different
mathematical forms

Model structure chosen by expert judgement → model-form uncertainty

Model constants (calibrated from experimental data) not univocally
determined → mixed aleatory/epistemic uncertainty

Thermodynamic models of increasing complexity

Soave-Redilich-Kwong Peng-Robinson
Martin-Hou

1P. Cinnella, P.M. Congedo, V. Pediroda, L. Parussini, Sensitivity analysis of dense gas
flow simulations to thermodynamic uncertainties, Physics of Fluids 23, 116101 (2011)
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Why the Need for an accurate TD model ?

s-sc [kJ/kg-K]

T
[°C

]

-0.01 0 0.01 0.02

350

355

360

365

370

375

Saturation Curve
Γ =0.0
Γ =0.1
Γ =0.2
Γ =0.5
Γ =1.0

Fundamental Derivative of
Gas-Dynamics, Γ

Ideal Gas → Γ = (γ+1)
2

> 1

Dense Gas → Γ = 1 + ρ
a

(
∂a
∂ρ

)
s

BZT fluids
Γ < 0 → compression shock
prohibited by 2nd law

For Γ, highly accurate
description of the fluid
thermodynamics

Accurate enough data only
available for simple fluids of
current use

A few, highly uncertain, input
data available for BZT fluids
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Study concerning the Model uncertainties

Influence of TD model in Dense gas flow simulations

Fluorocarbon PP10 by using three thermodynamic models
→ Soave-Redilich-Kwong (RKS, cubic EOS)
→ Peng-Robinson-Stryjeck-Vera (PRSV, cubic EOS)
→Martin-Hou (MAH, 5th-order virial) + power law for ideal-gas heat capacity

Dense gas flows over a NACA0012 airfoil with M∞=0.95, aoa=0, inviscid flow

Experimental uncertainties estimated in 3%

Gaussian distributed input uncertainties (also checked with uniform)

Third-order Hermite polynomials (good convergence)
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Study concerning the Model uncertainties

Influence of TD model in Dense gas flow simulations

For simpler models (RKS, PRSV), mean solutions very close to the
deterministic ones

For complex model (MAH), greater sensitivity to uncertainties

RKS, PRSV: std(Cd) about 12% and 22% E(Cd), E(Cd) ∼ Cddet
MAH model: std(Cd) about 100% or more then E(Cd) → low reliability

Model-form uncertainty overwhelms epistemic parametric uncertainty
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UQ analysis and interaction with an experiment2

Problem

Experimental campaign to
prove the existence of
non-classical gasdynamics
effects in a shock tube (FAST,
being commissioned at Delft)

→ occurring in dense gas flows

Figure: Rarefaction shock wave (RSW)

Need for a numerical
approach taking into
account the source of
uncertainties to ensure a
RELIABLE shock tube
experiment design

2 sources of uncertainties,
both in the
thermodynamic (TD)
model and initial
conditions (IC)

⇓

OBJECTIVE

Robust conditions ensuring a
RSW in the shock tube

2P.M. Congedo et al., Backward uncertainty propagation method in flow problems:
Application to the prediction of rarefaction shock waves, CMAME 213-216 (2012) 314-326
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UQ analysis and interaction with an experiment (2)

Statistics validation

Comparison between Montecarlo
(MC), PC and Simplex Stochastic
Collocation (SC), (unc. on TD and
on IC, 8 overall)

Stochastic Analysis on Rarefaction
Shock Wave (RSW) properties

Results for MC and PC very similar
(difference on σ of 1.6%), no
remarkable differences during time
evolution, huge difference in the
computational cost (3000 for MC,
256 for PC), SSC promising
reduction of computational cost (35)
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UQ analysis and interaction with an experiment (3)

Forward propagation problem

Stronger influence of uncertainty on
IC with respect to uncertainty on TD

No variations with respect to time

In order to ensure the occurrence of
a rarefaction shock wave, Ms should
always be greater then 1

Probability that Ms < 1 is 27.8%
→ Necessity for inverse analysis
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UQ analysis and interaction with an experiment (4)

Backward propagation problem

To prove the rarefaction shock,
Mach greater than 1

Initial conditions can not be
improved

Necessity for inverse analysis,
i.e. find the maximum allowable
uncertainty levels on IC/TD

Procedure for inverse analysis

ANOVA analysis on Montecarlo
simulations most influent
parameters to consider

Find the optimal uncertainty
bars by using PC for uncertainty
estimation

Check the optimal solution by
means of Montecarlo

TL, PL, CV contribute for
92% to the variance, then 4
parameters considered for the
inverse analysis

Find uncertainty bars in
order to minimize |µ− σ − 1|
Find uncertainty bars in order
to minimize |µ− 2σ − 1|
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UQ analysis and interaction with an experiment (5)

First analysis, µ− σ > 1

Considering just error bar on TL
(most important for ANOVA)

For TL of 0.04%, µ− σ is always
more than 1 (too restrictive)

By reducing uncertainty on Cv
(lack of knowledge), bar errors on
TL could be increased

With 1% on Cv and 0.06% on TL,
solution is robust (more realistic
initial condition)

Probability that Ms < 1 is 19.1%

Second analysis, µ− 2σ > 1

Bar errors reduced for TL, Cv,
and PL

Robustness obtained for TL
0.035%, PL 0.1% and Cv 0.5%

Probability that Ms < 1 is
0.8% instead of 27.8%

For a very robust solution, it
is necessary to reduce both
sources (IC+TD) of unc.

Important indications given
to perform the experience
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Motivation for another intrusive approach3

gPC vs SI

Issues for classical intrusive UQ schemes (gPC):

1 Every problem need a specific effort (both in theoretical formulation and
computational implementation)

2 The number of equation is not preserved with a stochastic representation

3 There is an intrinsic limit in the treatment of discontinuous response (adaptive
techniques are demanded)

MR-SI method properties:

1 The framework is general, the implementation is easy

2 The dimensionality is in the integrals BUT not in the equations

3 Discontinuous responses are treated in a natural way in the framework of FV
schemes

3R. Abgrall et al., An adaptive scheme for solving the stochastic differential equations,
MASCOT11-IMACS/ISGG Workshop, 2011

PM Congedo (INRIA - Bordeaux) Rencontre GAMNI-MAIRCI 1er Février 29 / 47



Semi-intrusive method
1D-1D compressible Euler flow (Deterministic + Stochastic scheme)

Euler system:
∂u

∂t
+
∂f(u)

∂x
= 0, u =


ρ
ρu
etot

 and f(u) =


ρu

ρu2 + p
(etot + p)u


Deterministic scheme (u = u(x, t, ξ(ω))):

un+1
i (ξ) = uni (ξ)− ∆t

∆x

(
F(uni+1(ξ), uni (ξ))− F(uni (ξ), uni−1(ξ))

)
uni is the cell average at the time tn and F a numerical flux (e.g. Roe flux)

Stochastic scheme:

un+1
i,j = uni,j −

∆x

∆t

(
E(F(uni+1(ξ), uni (ξ))|Ξj)− E(F(uni (ξ), uni−1(ξ))|Ξj)

)
uni,j is the conditional expectancy of ui at the time tn
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Semi-intrusive method
Some remarks

Formal analogy between physical and probabilistic space averages:

uni =
1

|Ci|

∫
Ci

u(x, tn, ξ)dx→ uni,j = E(uni |Ξj) =
1

µ(Ξj)

∫
Ξj

uni (ξ)dµ(ξ)

with dµ(ξ) = p(ξ)dξ

where Pi,j is the piecewise polynomial reconstruction of the probabilistic
solution (First order (constant on every cell), Centered (2nd order), ENO, WENO)

Probabilistic discretization:

Tessellation - Ξj = [ξj−1/2, ξj−1/2] with j = 1, . . . , N

Disjoint probability - µ(Ξi ∩ Ξj) = 0

Fulfillment of the parameter space - Ξ =
⋃
j Ξj
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Problems

The SI methods suffers of the curse of dimensionality to compute integrals.

Techniques such as Sparse Grid and/or automatic adaptive refinement algorithm
for the probabilistic space are expected to reduce dramatically the overall cost
→ Multiresolution framework
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Classical Multiresolution framework
Abgrall and Harten, Multiresolution Representation in Unstructured Meshes, SIAM Journal on
Numerical Analysis, 1998

What we need:

A set of nested grid

An interpolation operator

A well resolved solution on the finest
mesh

A threshold ε

⇓

||u0 − û0|| ≤ Cε,
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A MR representation for UQ
A novel route: our first steps

Harten4 showed that the solution of an Initial Value Problems can be expressed as a
numerical schemes on the wavelets, i.e. interpolations errors.

We employ this framework in our SI probabilistic scheme to tackle the curse of
dimensionality

We are moving in these directions:

An adaptive refinement in stochastical space

A refinement/derefinement techniques by an accuracy preserving combination of
interpolation/evaluation

4Multiresolution algorithms for the numerical solution of hyperbolic conservation laws,
Communications on Pure and Applied Mathematics, 1995
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Kraichnan-Orszag model
Actually a stiff problem in UQ



dy1

dt
= y1y3

dy2

dt
= −y2y3

dy3

dt
= −y2

1 + y2
2

y(t = 0) = (1, 0.1ξ, 0)
ξ = 2ω − 1 with U(0, 1)

Numerical solution: RK4 with
∆t = 0.05 (600 time steps)

t

ξ

0 5 10 15 20 25 30
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0.8

1

The classical intrusive PC fails to converge after t = 8
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Kraichnan-Orszag model
(Some) Numerical results (ε = 10−1, mL = 5, ∆t = 0.05)

Reference solution: MC with 20× 106 points for each time step
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Figure: L1 norm of the errors for the mean (a) and variance (b) for the Kraichnan-Orszag
problem (y1).
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Experimental configuration5

Dellenback et al. AIAA J, 1987

Turbulent flow in a pipe with an axisymmetric expansion

Why this case : Displays recirculating flow regions and high turbulence levels

Fluid is flowing from left to right entering the pipe with or without swirl

Measurements by means of several probe locations downstream the expansion
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5P.M. Congedo et al., Numerical prediction of turbulent flows using RANS and LES with
uncertain inflow conditions, under revision in IJNMF, 2012
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Simulation comparison framework

Flow modelling

Incompressible flow configuration depending on Reynolds number Re and swirl
number Sw at the inlet flow, that is the ratio between angular momentum flux
and axial momentum flux

Sw =
1

R

∫ R

0

r2〈uz〉〈uθ〉 dr∫ R

0

r〈uz〉2 dr
(15)

Two experiments performed for Re = 30000 : a no-swirl configuration (Sw = 0)
and a strong swirl configuration (Sw = 0.6)

Navier-Stokes equations expressing mass and momentum conservation
∂ui
∂xi

= 0,

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
,

(16)

For high level turbulent flows, it is not possible to perform direct numerical
simulation (DNS) ï RANS, LES
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Setting up the uncertainties

Which sources ?

Measured distributions reported in literature considered as averaged
distributions over a set of experimental realizations

Ub and Sw stochastic variables described by uniform probability distribution
functions (pdf) over the respective intervals

Choice of a 2.5% variance for both Ub and Sw based on analysis of experimental
set up of Dellenback et al.

Inlet turbulence characteristics subject to uncertainty: extent of variation for Ti
and Lt estimated from previous calculations on similar configurations

Simulations Ub (m/s) Sw Ti Lt
RANS with Sw 0.452± 0.0113 0.6± 0.015 0.006 to 0.06 0.1%R to 10% R

RANS without Sw 0.452± 0.0113 / 0.006 to 0.06 0.1%R to 10% R
LES with Sw 0.452± 0.0113 0.6± 0.015 / /

LES without Sw 0.452± 0.0113 / 0.006 to 0.06 /
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Coupling CFD and UQ

Non-intrusive stochastic methods → Series of deterministic computations →
Post-processing in order to compute solution statistics

Grid convergence study on deterministic case allowing to retain a medium grid
(1.5 million cells) for all stochastic computations

Accuracy of the computed statistics for N uncertainties depending on
polynomial chaos order p with size of stochastic DOE varying as (p+ 1)N

Search for trade-off between the accuracy and the overall computational cost
→ Comparison of maximum variance σmax of time-averaged velocity magnitude
and contribution (in %) of each source of uncertainty computed with p = 2 and
p = 3

σmax σUb (%) σSw (%) σTi (%) σLt (%)

Flow with Sw / PC(2) 0.0146 0.81 0.50 95.9 2.31
Flow with Sw / PC(3) 0.0151 0.82 0.53 96.2 2.15

Flow without Sw / PC(2) 0.000897 9.0 / 39.9 50.7
Flow without Sw / PC(3) 0.000923 8.9 / 39.7 51.1

→ Negligible differences between 2nd and 3rd order
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Results

High-swirl configuration

Computation of the mean time-averaged axial velocity using LES and PC(2)
(obtained from 9 deterministic runs)

Mean flow shows a recirculation zone occurring around the flow centerline
downstream of the expansion zone
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Results

High-swirl configuration, RANS

Mean axial velocity curves systematically far from experimental distributions →
Turbulent-viscosity assumption leads to inaccurate flow patterns for strong
swirling flows

Computed error bars at section L/D = 0.75 in back-flow region close to
centerline r/R = 0 much larger than 2.5% inlet velocity uncertainty → strong
sensitivity of the RANS approach

Computed errors bars reduce rapidly for more downstream sections
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Results

High-swirl configuration, LES

Mean solution globally in good agreement with the measured distribution

Numerical error bars similar to or even smaller than experimental error bars in
all sections under study
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Results

High-swirl configuration, RANS-LES

Coefficient of variation (standard deviation divided by mean) of the axial
time-averaged velocity computed at the flow centerline r/R = 0 for successive
sections

RANS coefficient of variation exceeds 100% at sections L/D = 0.75 and
L/D = 1.5 where swirl effects are significant while it goes down to 6.6% at
L/D = 4.0 further away from inlet

Sensitivity of computed RANS solution to uncertain inlet conditions reduced in
this flow region far from inlet while it is particularly high in first section, closest
to inlet boundary where swirl effects are most significant

LES coefficient of variation does not depart much from prescribed value on inlet
conditions and remains in the same range (between 4.75% and 10.2%) along pipe
centerline.

L/D 0.75 1.5 4.0

RANS 130.4 106.4 6.6
LES 4.75 10.2 8.0
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Conclusions

Uncertain mean flow properties (bulk velocity and swirl number) as well as
uncertain inlet turbulence properties have been considered

RANS and LES modelling have been analyzed through their mean flow solutions
and flow variance

Systematic comparison with experiment, taking into account both computed
error bars and measurement errors

Contributions of uncertainties to global variance have also been examined

RANS modeling of the high-swirl case found to strongly amplify the uncertainty
on the inlet turbulence intensity, particularly so when computing the axial
velocity distributions

LES approach found to consistently provide numerical results within the
measurement error → weak sensitivity to the inlet uncertainties
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