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Who invented Interval Arithmetic?

I 1962: Ramon Moore defines IA in his PhD thesis and then a
rather exhaustive study of IA in a book in 1966

I 1958: Tsunaga, in his MSc thesis in Japanese

I 1956: Warmus

I 1951: Dwyer, in the specific case of closed intervals

I 1931: Rosalind Cecil Young in her PhD thesis in Cambridge
(UK) has used some formulas

I 1927: Bradis, for positive quantities, in Russian

I 1908: Young, for some bounded functions, in Italian

I 3rd century BC: Archimedes, to compute an enclosure of π!

Cf. http://www.cs.utep.edu/interval-comp/, click on Early
papers by Others.
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Historical remarks

Childhood until the seventies.

Popularization in the 1980, German school (U. Kulisch).

IEEE-754 standard for floating-point arithmetic in 1985:
directed roundings are standardized and available (?).

IEEE-1788 standard for interval arithmetic in 2014?
I hope so. . .
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A brief introduction

Interval arithmetic:
instead of numbers, use intervals and compute.

Fundamental theorem of interval arithmetic:
(or “Thou shalt not lie”):
the exact result (number or set) is contained in the computed
interval.

No result is lost, the computed interval is guaranteed to contain
every possible result.
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Definitions: intervals
Objects:

I intervals of real numbers = closed connected sets of R
I interval for π: [3.14159, 3.14160]
I data d measured with an absolute error less than ±ε:

[d − ε, d + ε]

I interval vector: components = intervals; also called box

5

4

0 2

0 2
4

4.5

0 2
−6

−5

[0 ; 2]
[0 ; 2]

[4 ; 5]

[0;2]
[4 ; 4.5]
[−6 ; −5]

I interval matrix: components = intervals.
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Definitions: operations

x � y = Hull{x � y : x ∈ x, y ∈ y}

Arithmetic and algebraic operations: use the monotonicity

[x , x ] +
[
y , y

]
=

[
x + y , x + y

]
[x , x ]−

[
y , y

]
=

[
x − y , x − y

]
[x , x ]×

[
y , y

]
=

[
min(x × y , x × y , x × y , x × y),max(ibid.)

]
[x , x ]2 =

[
min(x2, x2),max(x2, x2)

]
if 0 6∈ [x , x ][

0,max(x2, x2)
]

otherwise
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Definitions: functions

Definition:
an interval extension f of a function f satisfies

∀x, f (x) ⊂ f(x), and ∀x , f ({x}) = f({x}).

Elementary functions: again, use the monotony.

exp x = [exp x , exp x ]
log x = [log x , log x ] if x ≥ 0, [−∞, log x ] if x > 0
sin[π/6, 2π/3] = [1/2, 1]
. . .
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Definitions: function extension

f (x) = x2 − x + 1 = x(x − 1) + 1 = (x − 1/2)2 + 3/4 on [−2, 1].

Using x2 − x + 1, one gets
[−2, 1]2 − [−2, 1] + 1 = [0, 4] + [−1, 2] + 1 = [0, 7].

Using x(x − 1) + 1, one gets
[−2, 1] · ([−2, 1]− 1) + 1 = [−2, 1] · [−3, 0] + 1 = [−3, 6] + 1 = [−2, 7].

Using (x − 1/2)2 + 3/4, one gets
([−2, 1]− 1/2)2 + 3/4 = [−5/2, 1/2]2 + 3/4 = [0, 25/4] + 3/4 =

[3/4, 7] = f ([−2, 1]).

Problem with this definition: infinitely many interval extensions,
syntactic use (instead of semantic).

How to choose the best extension? A good one?
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Cons: overestimation (1/2)

The result encloses the true result, but it is too large:
overestimation phenomenon.
Two main sources: variable dependency and wrapping effect.

(Loss of) Variable dependency:

x− x = {x − y : x ∈ x, y ∈ x} 6= {x − x : x ∈ x} = {0}.
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Cons: overestimation (2/2)

Wrapping effect

f(X)

F(X)

image of f (x) 2 successive rotations of π/4
with f : R2 → R2 of the little central square
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Cons: complexity and efficiency
Complexity: most problems are NP-hard (Gaganov, Rohn, Kreinovich. . . )

I evaluate a function on a box. . . even up to ε
I solve a linear system. . . even up to 1/4n4

I determine if the solution of a linear system is bounded

Efficiency
Implementation using floating-point arithmetic:
use directed roundings, towards ±∞.
Overhead in execution time:
in theory, at most 4, or 8, cf.

[x , x ]×
[
y , y

]
= [ min(RD(x × y),RD(x × y),RD( x × y),RD( x × y)),

max(RU(x × y),RU(x × y),RU( x × y),RU( x × y))

in practice, around 20: changing the rounding modes implies
flushing the pipelines (on most architectures and implementations).

Nathalie Revol - INRIA - Université de Lyon - LIP Interval arithmetic: uncertainties and accuracy’s assessment



Introduction to interval arithmetic
Verified solutions of linear systems

Variants of interval arithmetic
Conclusions

operations, function extensions
cons and pros
interval Newton

Pros: set computing

Computing with whole sets or with sets enclosing uncertainties.

Behaviour safe? On x, are the extrema of the function f
controllable? dangerous? > f 1, < f2?

x

f(x)

f

f

f

f
2

1

always controllable. No if f (x) = [f , f ] ⊂ [f2, f
1].
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Pros: Brouwer-Schauder theorem

A function f which is continuous on the unit ball B and which
satisfies f (B) ⊂ B has a fixed point on B.
Furthermore, if f (B) ⊂ intB then f has a unique fixed point on B.

Kf(K)

The theorem remains valid if B is replaced by a compact K and in
particular an interval.
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Algorithm: solving a nonlinear system: Newton
Why a specific iteration for interval computations?

Usual formula:

xk+1 = xk −
f (xk)

f ′(xk)

Direct interval transposition:

xk+1 = xk −
f (xk)

f ′(xk)

w(xk+1) = w(xk) + w

(
f (xk)

f ′(xk)

)
> w(xk)

divergence!
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Algorithm: interval Newton
principle of an iteration
(Hansen-Greenberg 83, Baker Kearfott 95-97, Mayer 95, van Hentenryck et al. 97)

smallest slope

tangent with the deepest slope

tangent with the

X(k+1)

X(k)

x(k)

xk+1 :=

(
xk −

f({xk})
f′(xk)

)⋂
xk
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Algorithm: interval Newton
principle of an iteration

X(k+1)

X(k)

X(k+1)

x(k)

tangent with the deepest slopetangent with the smallest slope

(xk+1,1, xk+1,2) :=

(
xk −

f({xk})
f′(xk)

)⋂
xk

Nathalie Revol - INRIA - Université de Lyon - LIP Interval arithmetic: uncertainties and accuracy’s assessment



Introduction to interval arithmetic
Verified solutions of linear systems

Variants of interval arithmetic
Conclusions

operations, function extensions
cons and pros
interval Newton

Algorithm: interval Newton
properties

Existence and uniqueness of a root are proven:
if there is no hole and if the new iterate (before

⋂
) is contained in

the interior of the previous one.

Existence of a root is proven:

I using the mean value theorem:
OK if f (inf(x)) and f (sup(x)) have opposite signs.
(Miranda theorem in higher dimensions).

I using Brouwer theorem: if the new iterate (before
⋂

) in
contained in the previous one.
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Preliminary remarks

I Complexity: polynomial in time . . . for an NP-hard problem:
no guarantee on the accuracy of the solution,
failure is possible.

I This algorithm is usually employed to verify the solution of a
linear system with floating-point coefficients:
interval arithmetic is used as a verification tool.

Here verification corresponds to precision’s assessment.

joint work with H. D. Nguyen
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Problem: verified solution of a linear system

Goals: For a linear system Ax = b with A ∈ Fn×n non-singular
and b ∈ Fn, we want to

1. compute an approximation x̃ ∈ Fn of the exact solution x∗,

2. simultaneously bound the error upon x̃ , or enclose it in an
interval

e 3 x∗ − x̃ .

Remark: denote by e the error x∗ − x̃ .
Then e is the solution of the residual system Ae = b − Ax̃ .
Indeed, Ae = A(x∗ − x̃) = Ax∗ − Ax̃ = b − Ax̃ .
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Method: contractant iteration
Classical iterative refinement
Wilkinson (1963), Higham (2000), Demmel et al. (2006) . . .

Algorithm (Classical iterative refinement)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b % MatLab-like syntax
while(not converged)

r̃ = b − A x̃
ẽ = A \ r̃
x̃ = x̃ + ẽ

end
Output: x̃
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b % MatLab-like syntax
while(not converged)

r̃ = b − A x̃
ẽ = A \ r̃
x̃ = x̃ + ẽ

end
Output: x̃
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b % MatLab-like syntax
while(not converged)

r = [b − A x̃ ] % A(x∗ − x̃) ∈ r
ẽ = A \ r̃
x̃ = x̃ + ẽ

end
Output: x̃
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b % MatLab-like syntax
while(not converged)

r = [b − A x̃ ] % A(x∗ − x̃) ∈ r
e = A \ r % x∗ − x̃ ∈ e
x̃ = x̃ + ẽ

end
Output: x̃
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b % MatLab-like syntax
while(not converged)

r = [b − A x̃ ] % A(x∗ − x̃) ∈ r
e = A \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x̃
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b % MatLab-like syntax
while(not converged)

r = [b − A x̃ ] % A(x∗ − x̃) ∈ r
e = A \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x̃ , e
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b % MatLab-like syntax
while(not converged)

r = [b − A x̃ ] % A(x∗ − x̃) ∈ r
e = A \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x̃ , e

Solving interval residual system?

Nathalie Revol - INRIA - Université de Lyon - LIP Interval arithmetic: uncertainties and accuracy’s assessment



Introduction to interval arithmetic
Verified solutions of linear systems

Variants of interval arithmetic
Conclusions

stating the problem
iterative refinement
concluding remarks

Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA]
while(not converged)

r = [b − A x̃ ] % A(x∗ − x̃) ∈ r
e = A \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x̃ , e

K is close to Identity ⇒ there are algorithms to solve this system.
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA]
while(not converged)

r = [Rb −K x̃ ] % RA(x∗ − x̃) ∈ r
e = A \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x̃ , e

K is close to Identity ⇒ there are algorithms to solve this system.
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA]
while(not converged)

r = [Rb −K x̃ ] % RA(x∗ − x̃) ∈ r
e = K \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x̃ , e

K is close to Identity ⇒ there are algorithms to solve this system.
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Method: contractant iteration
Interval iterative refinement
Neumaier (1990), Rump (1999)

Algorithm (certifylss)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA]
while(not converged)

r = [Rb −K x̃ ] % RA(x∗ − x̃) ∈ r
e = K \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x̃ , e

This algorithm can fail, if it fails to solve the interval linear system.
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Experimental Results: dim = 1000 b = [1, . . . , 1]T
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Method: contractant iteration
Relaxed interval iterative refinement

Algorithm (certifylss relaxed)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA]

while(not converged)
r = [Rb −K x̃ ] % RA(x∗ − x̃) ∈ r
e = K \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x = x̃ + e
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Method: contractant iteration
Relaxed interval iterative refinement

Algorithm (certifylss relaxed)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matrix
while(not converged)

r = [Rb −K x̃ ] % RA(x∗ − x̃) ∈ r
e = K \ r % x∗ − x̃ ∈ e
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x = x̃ + e
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Method: contractant iteration
Relaxed interval iterative refinement

Algorithm (certifylss relaxed)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matrix
while(not converged)

r = [Rb −K x̃ ] % RA(x∗ − x̃) ∈ r
e = K̂ \ r % cost: 1 floating-point matrix-vector product
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x = x̃ + e
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Method: contractant iteration
Relaxed interval iterative refinement

Algorithm (certifylss relaxed)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matrix
while(not converged)

r = [Rb −K x̃ ] % RA(x∗ − x̃) ∈ r
e = K̂ \ r % cost: 1 floating-point matrix-vector product
x̃ = x̃ + mid(e), e = e−mid(e)

end
Output: x = x̃ + e
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Relaxed method, results: dim = 1000 b = [1, . . . , 1]T
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Method: contractant iteration
Extra-precise relaxed interval iterative refinement

Algorithm (certifylssx)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matrix
while(not converged)

r = [Rb −K x̃ ]
e = K̂ \ r
x̃ = x̃ + mid(e)
e = e−mid(e)

end
Output: x = x̃ + e
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Method: contractant iteration
Extra-precise relaxed interval iterative refinement

Algorithm (certifylssx)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matrix
while(not converged)

r = [Rb −K x̃ ] % r in twice the working precision
e = K̂ \ r
x̃ = x̃ + mid(e)
e = e−mid(e)

end
Output: x = x̃ + e
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Method: contractant iteration
Extra-precise relaxed interval iterative refinement

Algorithm (certifylssx)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matrix
while(not converged)

r = [Rb −K x̃ ] % r in twice the working precision
e = K̂ \ r
x̃ = x̃ + mid(e) % x̃ in twice the working precision
e = e−mid(e)

end
Output: x = x̃ + e
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Method: contractant iteration
Extra-precise relaxed interval iterative refinement

Algorithm (certifylssx)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matrix
while(not converged)

r = [Rb −K x̃ ] % r in twice the working precision
e = K̂ \ r
x̃ = x̃ + mid(e) % x̃ in twice the working precision
e = e−mid(e)

end
Output: x = x̃ + e

Implementation: careful tuning of the precision of each variable
(no doubling for e: useless and costly).
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Extra-precise relaxed method: Results
dim = 1000
b = [1, . . . , 1]T
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interval Newton
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Morale
Hidden under the carpet in this talk: proofs that
full accuracy is reached (when no failure),
at most width = 2× width of HBRKN (most used method). . .

I keep your goals in mind (accuracy, efficiency)

I reuse optimized blocks (BLAS3)

I build algorithms by assembling building blocks

I interval arithmetic can be a tool for verification purposes

Future work:

I push further the condition number limits

I propose a verified BLAS / Lapack library

I implemented on multicores
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higher precision, affine arithmetic, Taylor models

Higher precision: extended / arbitrary
Extended precision (double-double, triple-double): (Moler,

Priest, Dekker, Knuth, Shewchuk, Bailey. . . )

a number is represented as the sum of 2 (or 3 or . . . ) floating-point
numbers. Do not evaluate the sum using floating-point arithmetic!
Double-double arith. is implemented using IEEE-754 FP arith.

Arbitrary precision: the precision is chosen by the user, the only
limit being the computer’s memory.
Arithmetic is implemented in software, e.g. MPFR (Zimmermann

et al.), MPFI (Revol, Rouillier et al., Yamamoto, Krämer et al.).

Tradeoff between accuracy and efficiency (and memory):
double-double: accuracy ”×2”, ≤ 1 order of magnitude slower
arbitrary precision: accuracy ”∞”, ≥ 1-2 order of magnitude slower
(provided Higham’s rule of thumb applies).
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Affine arithmetic (Comba, Stolfi and Figueiredo (1993, 2004),

Messine and Ninin (2009), Goubault, Martel and Putot (Fluctuat))

Definition: each input or computed quantity x is represented by
x = x0 + α1ε1 + α2ε2 + · · ·+ αnεn
where x0, α1, . . .αn are known real / floating-point numbers,
and ε1 . . . εn are symbolic variables for uncertainties, ∈ [−1,+1].
Example: x ∈ [3, 7] is represented by x = 5 + 2ε.

Operations:
(x +

∑
k αkεk) + (y +

∑
k βkεk) = (x + y) +

∑
k(αk + βk)εk .

(x +
∑

k αkεk)×(y +
∑

k βkεk) = (x×y)+
∑

k(xβk +yαk)εk +γlεl
with εl a new variable.

Roundoff errors: compute δl an upper bound of all roundoff
errors and add it to γl .

Computing precision: Fluctuat uses arbitrary precision, internally.
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Taylor models
Berz, Hoefkens and Makino 1998, Nedialkov, Neher, Tucker, Wittig

Principle: represent a function f (x) for x ∈ [−1, 1] by a
polynomial part p(x) and a reminder part (a big bin) I such that
∀x ∈ [−1, 1], f (x) ∈ p(x) + I .

Operations:
I affine operations: straigthforward;
I non-affine operations: enclose the nonlinear terms and add

this enclosure to the reminder.

Roundoff errors: determine an upper bound b on the roundoff
errors and add [−b, b] to the reminder.

Computing precision: use of double-double arithmetic to increase
the accuracy (ongoing work).
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Conclusions

Interval algorithms

I can solve problems that other techniques are not able to solve

I are a simple version of set computing

I give effective versions of theorems which did not seem to be
effective (Brouwer)

I can determine all zeros or all extrema of a continuous function

I overestimate the result

I are less efficient than floating-point arithmetic (theoretical
factor: 4, practical factor: 20 to 100)
⇒ solve “small” problems.

I can be used to verify floating-point computations.
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Philosophical conclusion

Morale

I don’t be naive when using interval arithmetic
I forget one’s biases:

I do not use without thinking algorithms which are supposed to
be good ones (Newton)

I do not reject without thinking algorithm which are supposed to
be bad ones (Gauss-Seidel)

I prefer contracting iterations whenever possible
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Appendix: References on interval arithmetic

I R. Moore: Interval Analysis, Prentice Hall, Englewood Cliffs,
1966.

I A. Neumaier: Interval methods for systems of equations, CUP,
1990.

I R. Moore, R.B. Kearfott, M.J. Cloud: Introduction to interval
analysis, SIAM, 2009.

I S.M. Rump: Computer-assisted proofs and Self-Validating
Methods. In B. Einarsson ed., Handbook on Accuracy and
Reliability in Scientific Computation, pp. 195-240. SIAM,
2005.

I S.M. Rump: Verification methods: Rigorous results using
floating-point arithmetic, Acta Numerica, vol. 19, pp.
287-449, 2010.
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Appendix: References on interval arithmetic

I J. Rohn: A Handbook of Results on Interval Linear Problems,
http://www.cs.cas.cz/rohn/handbook 2006.

I E. Hansen and W. Walster: Global optimization using interval
analysis, MIT Press, 2004.

I R.B. Kearfott: Rigorous global search: continuous problems,
Kluwer, 1996.

I V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl: Computational
Complexity and Feasibility of Data Processing and Interval
Computations, Dordrecht, 1997.

I L.H. Figueiredo, J. Stolfi: Affine arithmetic http://www.ic.

unicamp.br/~stolfi/EXPORT/projects/affine-arith/.

I Taylor models arith.: M. Berz and K. Makino, N. Nedialkov,
M. Neher.
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Appendix: more operations

x � y = Hull{x � y : x ∈ x, y ∈ y}
Arithmetic and algebraic operations: use the monotonicity

[x , x ] +
[
y , y

]
=

[
x + y , x + y

]
[x , x ]−

[
y , y

]
=

[
x − y , x − y

]
[x , x ]×

[
y , y

]
=

[
min(x × y , x × y , x × y , x × y),max(ibid.)

]
[x , x ]2 =

[
min(x2, x2),max(x2, x2)

]
if 0 6∈ [x , x ][

0,max(x2, x2)
]

otherwise
1/
[
y , y

]
=

[
min(1/y , 1/ y),max(1/y , 1/ y)

]
if 0 6∈

[
y , y

]
[x , x ] /

[
y , y

]
= [x , x ]× (1/

[
y , y

]
) if 0 6∈

[
y , y

]√
[x , x ] =

[√
x ,
√

x
]

if 0 ≤ x ,
[
0,
√

x
]

otherwise
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Definitions: operations

Algebraic properties: associativity, commutativity hold, some are
lost:

I subtraction is not the inverse of addition, in particular
x− x 6= [0]

I division is not the inverse of multiplication

I squaring is tighter than multiplication by oneself

I multiplication is only sub-distributive wrt addition
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Appendix: some more about function extension

Mean value theorem of order 1 (Taylor expansion of order 1):
∀x ,∀y , ∃ξx ,y ∈ (x , y) : f (y) = f (x) + (y − x) · f ′(ξx ,y )
Interval interpretation:
∀y ∈ x, ∀x̃ ∈ x, f (y) ∈ f (x̃) + (y − x̃) · f′(x)
⇒ f (x) ⊂ f (x̃) + (x− x̃) · f′(x)

Mean value theorem of order 2 (Taylor expansion of order 2):

∀x ,∀y , ∃ξx ,y ∈ (x , y) : f (y) = f (x)+(y−x)·f ′(x)+ (y−x)2

2 ·f ′′(ξx ,y )
Interval interpretation:

∀y ∈ x, ∀x̃ ∈ x, f (y) ∈ f (x̃) + (y − x̃) · f ′(x̃) + (y−x̃)2

2 · f′′(x)

⇒ f (x) ⊂ f (x̃) + (x− x̃) · f ′(x̃) + (x−x̃)2

2 · f′′(x)
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Appendix: some more about function extension
No need to go further:

I it is difficult to compute (automatically) the derivatives of
higher order,
especially for multivariate functions;

I there is no (theoretical) gain in quality.

Theorem:

I for the natural extension f of f , it holds
d(f (x), f(x)) ≤ O(w(x))

I for the first order Taylor extension fT1 of f , it holds
d(f (x), fT1(x)) ≤ O(w(x)2)

I getting an order higher than 3 is impossible without the
squaring operation, is difficult even with it. . .
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Algorithm: solving a nonlinear system: Newton
Why a specific iteration for interval computations?

Usual formula:

xk+1 = xk −
f (xk)

f ′(xk)

Direct interval transposition:

xk+1 = xk −
f (xk)

f ′(xk)

w(xk+1) = w(xk) + w

(
f (xk)

f ′(xk)

)
> w(xk)

divergence!
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Algorithm: interval Newton
principle of an iteration
(Hansen-Greenberg 83, Baker Kearfott 95-97, Mayer 95, van Hentenryck et al. 97)

smallest slope

tangent with the deepest slope

tangent with the

X(k+1)

X(k)

x(k)

xk+1 :=

(
xk −

f({xk})
f′(xk)

)⋂
xk
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Algorithm: interval Newton
principle of an iteration

X(k+1)

X(k)

X(k+1)

x(k)

tangent with the deepest slopetangent with the smallest slope

(xk+1,1, xk+1,2) :=

(
xk −

f({xk})
f′(xk)

)⋂
xk
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Algorithm: interval Newton

Input: f, f′, x0 // x0 initial search interval
Initialization: L = {x0}, α = 0.75 //any value in ]0.5, 1[ is suitable
Loop: while L 6= ∅

Suppress (x,L)
x := mid(x)

(x1, x2) :=
(

x − f({x})

f′(x)

)⋂
x // x1 and x2 can be empty

if w(x1) > αw(x) or w(x2) > αw(x) then (x1, x2) := bisect(x)
if x1 6= ∅ and f(x1) 3 0 then

if w(x1)/|mid(x1)| ≤ εx or w(f(x1)) ≤ εY then Insert x1 in Res
else Insert x1 in L

same handling of x2

Output: Res, a list of intervals that may contain the roots.
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Algorithm: interval Newton
properties

Existence and uniqueness of a root are proven:
if there is no hole and if the new iterate (before

⋂
) is contained in

the interior of the previous one.

Existence of a root is proven:

I using the mean value theorem:
OK if f (inf(x)) and f (sup(x)) have opposite signs.
(Miranda theorem in higher dimensions).

I using Brouwer theorem: if the new iterate (before
⋂

) in
contained in the previous one.
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Comments on certifylss

Iterative refinement performed on the interval residual.

I initialization of e: heuristic trying to determine e0, based on
Proposition: let A ∈ Fn×n and R ∈ Fn×n be a floating-point
approximate inverse of A.
If < [RA] > u ≥ v > 0 for some u > 0 then

|A−1r| ≤ ‖Rr‖vu
A−1r ⊂ ‖Rr‖v [−u, u].

Idea: start from u = e = (1, 1, . . . 1)t and modify u if v is not
≥ 0.
Failure of the algo if failure of this step.

I solve Ke = r using Gauss-Seidel iteration: known to converge
quicker than Krawczyk.

Nathalie Revol - INRIA - Université de Lyon - LIP Interval arithmetic: uncertainties and accuracy’s assessment



Introduction to interval arithmetic
Verified solutions of linear systems

Variants of interval arithmetic
Conclusions

Method: contractant iteration
Relaxed interval iterative refinement

Algorithm (certifylss relaxed)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matri x
while(not converged)

r = [Rb −K x̃ ] % RA(x∗ − x̃) ∈ r
4 e = K̂ \ r % cost: 1 floating-point matrix-vector
product

x̃ = x̃ + mid(e), e = e−mid(e)
end
Output: x = x̃ + e
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Relaxed method: details
The product of A centered in zero by B is [−Ā ∗magB, Ā ∗magB],
i.e. 1 FP matrix product.

Let us decompose A as D + L + U. Then

Jacobi: e′ = D−1(b− (L + U)e)
Gauss-Seidel: e′ = D−1(b− Le′ −Ue)

If L and U are inflated so as to be centered in 0:

L′ = [−|L|, |L|] and U′ = [−|U|, |U|]

then Jacobi or Gauss-Seidel costs 1 FP matrix-vector product.
A BLAS2 routine can be used.
Convergence remains linear.
Accuracy of the solution: at most twice as wide as HBRNK.
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Complexity of certifylss

Algorithm (certifylssx)

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b,
R = inv(A),
K = [RA],
K̂ = inflated(K) % K̂ is centered on a diagonal matrix
while (not converged)

r = [b − A x̃ ]
r = [Rr]
e = K̂ \ r
x̃ = x̃ + mid(e) e = e−mid(e)

end
Output: x = x̃ + e
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Complexity of certifylss

Reminder:
6n3 + 2n2 for the initialization
8n2 +O(n) for each iteration

Number of iterations:

I starting with p − log2 κ(A) correct bits

I linear convergence

I ending with p correct bits

⇒ p
p−log2 κ(A) iterations.

Total complexity:
6n3 + 2n2 + 8 p

p−log2 κ(A) n2 +O(n) operations using p bits.
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