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Introduction (français)

Cette thèse consiste en six chapitres étudiant différents aspects de la percolation près de sa
transition de phase en deux dimensions. Cette introduction est divisée en deux parties : nous
rappelons d’abord brièvement les résultats préexistants reliés à notre travail, et nous présentons
ensuite chacun des six chapitres.

1 Contexte

1.1 Percolation par sites

La théorie mathématique de la percolation a été initiée par Broadbent et Hammersley en
1957 [15]. Nous rappelons d’abord rapidement ses principales propriétés, et nous renvoyons le
lecteur aux références classiques [39, 35] pour plus de détails.

La percolation par sites sur un réseau L (Zd par exemple) peut être décrite comme suit. Pour
chaque site x de L, on lance une pièce (biaisée) pour décider s’il est occupé (ouvert, noir) ou
vacant (fermé, blanc) : pour un certain paramètre p entre 0 et 1, x est occupé avec probabilité
p et vacant avec probabilité 1 − p, indépendamment des autres sites.

On s’intéresse ensuite aux propriétés de connexité de l’ensemble des sites occupés : deux sites
occupés x et y sont dits connectés, ce que l’on note x y, s’il existe un chemin de x à y sur le
réseau composé uniquement de sites occupés. Les sites occupés peuvent ainsi être regroupés en
composantes connexes (maximales), que l’on appelle “clusters”.

On dit qu’un site x est connecté à ∞ s’il appartient à un cluster infini, et on définit

θ(p) = Pp(0 ∞).

Notons que l’invariance par translation du modèle (si on considère un réseau transitif) entraîne
que pour n’importe quel site x, θ(p) = Pp(x  ∞). Il est en réalité possible et classique de
montrer (en combinant l’invariance par translation et des idées d’isopérimétrie) que pour un ré-
seau d-dimensionnel, lorsque θ(p) > 0 il existe presque sûrement une unique composante connexe
infinie.

Une caractéristique importante de la percolation est l’existence d’une transition de phase. Si
on introduit le paramètre critique

pc(L) = sup{p t.q. θ(p) = 0},

on peut aisément vérifier que 0 < pc(L) < 1 pour les réseaux usuels tels que Zd ou le réseau
triangulaire T en deux dimensions (voir Figure 1). Ainsi,

– Lorsque p < pc, il n’y a p.s. aucun cluster infini (régime sous-critique).
– Lorsque p > pc, il y a p.s. un unique cluster infini (régime sur-critique).

1



Introduction (français)

Fig. 1 – Percolation par sites sur le réseau triangulaire.

Le cas p = pc est appelé régime critique. Déterminer s’il y a ou non un cluster infini dans
ce cas peut s’avérer être une question très difficile : pour Z3, la réponse n’est en fait pas connue
pour le moment. Mentionnons également que le régime sous-critique présente la propriété de
décroissance exponentielle suivante : la probabilité que 0 soit connecté à un site à distance n
décroît exponentiellement en n (plus précisément, cette probabilité est bornée par C1(p)e−C2(p)n

pour deux constantes C1, C2 > 0 dépendant de p) – un résultat similaire peut être formulé pour
le régime sur-critique.

À partir de maintenant, nous nous restreignons aux réseaux deux-dimensionnels. Nous nous
concentrerons principalement sur le réseau triangulaire T, car c’est actuellement le réseau pour
lequel la description la plus fine est connue, comme nous l’expliquerons dans la section suivante.
La percolation par sites sur ce réseau est souvent représentée comme un coloriage aléatoire des
faces du réseau hexagonal dual, et elle possède une propriété d’auto-dualité (self-matching) qui
amène naturellement à conjecturer que

pc(T) =
1

2
,

ce qui est un résultat célèbre dû à Kesten [38]. Nous savons de plus dans ce cas qu’il n’y a aucun
cluster infini au point critique, autrement dit que θ(1/2) = 0.

La décroissance exponentielle des probabilités de connexion rend les régimes sous- et sur-
critiques relativement « prévisibles » sur des grandes échelles. En régime sous-critique par exemple,
dans une portion du réseau de diamètre N , on n’observe typiquement que des composantes oc-
cupées très petites, de taille au plus log N , perdues dans une « mer » de sites vacants. En un
certain sens, le régime critique est bien plus riche : les probabilités de connexion ne décroissent
plus exponentiellement vite, et dans une région de diamètre N , on observe à la fois des struc-
tures occupées et des structures vacantes de diamètres comparables à N , et des objets fractals
apparaissent lorsque N devient très grand.

Nous examinerons ici différents aspects du comportement de la percolation près du point
critique, i.e. de la transition du régime sous-critique au régime sur-critique en passant par le
régime critique.

2



1. Contexte

φ
a

b

c

d

φ(a)

φ(b)

φ(c)

φ(d)δ δ

Fig. 2 – Invariance conforme de la probabilité de croisement.

1.2 Invariance conforme de la percolation critique et exposants critiques

La compréhension mathématique de la percolation critique en deux dimensions s’est consi-
dérablement accrue lors de la dernière décennie, grâce à la preuve par Smirnov de l’invariance
conforme sur le réseau triangulaire, et à la définition des courbes SLE par Schramm qui décrivent
les limites d’échelle conformément invariantes possibles.

Intéressons-nous plus en détails au résultat de Smirnov, et pour cela prenons n’importe quel
domaine de Jordan D (lisse), et deux points a et b sur ∂D. Pour tout δ > 0, on peut considérer
le réseau de pas δ, et une approximation (Dδ, aδ, bδ) de (D, a, b) sur ce réseau. Les deux points
aδ et bδ divisent ∂Dδ en deux arcs : on décide de colorier l’un d’eux en noir, et l’autre en blanc.
On regarde ensuite l’interface entre le cluster de sites noirs connectés à l’arc colorié en noir et le
cluster de sites blancs connectés à l’arc blanc. Cette interface γδ peut être explorée de manière
dynamique par un « processus d’exploration » de a à b. Le théorème de Smirnov [69, 70, 78, 17]
affirme alors que lorsque le pas δ ց 0, γδ converge en loi vers un SLE(6) « chordal », qui est
une courbe continue aléatoire de a à b (cette convergence en loi a lieu par rapport à la distance
uniforme sur les courbes continues « à reparamétrisation monotone près »).

Une étape clé pour prouver cette convergence consiste à établir la formule de Cardy : dans un
domaine D avec quatre points a, b, c, d sur ∂D (dans cet ordre), cette formule donne la probabilité
d’existence d’un croisement entre les arcs (ab) et (cd) lorsque δ ց 0. Cette formule affirme en
particulier que la probabilité de croisement est conformément invariante : si φ est une bijection
conforme de D vers un autre domaine D′, alors la probabilité d’existence d’un croisement de (ab)
à (cd) dans D est égale à la probabilité d’existence dans D′, de (φ(a)φ(b)) à (φ(c)φ(d)). Cette
invariance conforme est cruciale pour relier la percolation aux processus SLE.

Pour décrire la percolation critique et presque-critique, certains événements exceptionnels
sont très utiles : les événements de bras, faisant référence à l’existence dans des anneaux d’un
certain nombre de croisements (« bras »), la couleur de chacun de ces croisements (noir ou blanc)
étant prescrite. Pour deux entiers strictement positifs n ≤ N , on définit l’événement

Aj,σ(n, N) = {∂Sn  j,σ ∂SN}
qu’il existe j bras monochromatiques disjoints dans l’anneau Sn,N de rayons n et N (centré sur
l’origine), dont les couleurs dans le sens inverse des aiguilles d’une montre sont celles prescrites
par la suite de couleurs σ. Ces événements de bras peuvent être exprimés en termes de processus
d’exploration, si bien que la limite

lim
δց0

P1/2(Aj,σ(δn, δN))

3
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peut être calculée en utilisant le SLE(6). On peut ensuite prouver que pour tout n0 fixé (suffi-
samment grand),

P1/2(Aj,σ(n0, N)) = N−αj+o(1)

lorsque N → ∞, avec
– α1 = 5/48,
– et pour j ≥ 2, αj = (j2 − 1)/12 (si σ n’est pas constante).

Ces exposants αj sont appelés « exposants de bras ». Nous renvoyons le lecteur à [46, 78] pour
une preuve complète de ce résultat.

Ayant à notre disposition ces exposants de bras pour la percolation critique, nous pouvons
ensuite utiliser les relations de « scaling » dues à Kesten [43] pour décrire la percolation près du
point critique. Nous n’entrerons pas dans les détails ici comme c’est le sujet de notre premier
chapitre, mais mentionnons seulement que l’on peut prouver de cette manière un paradigme
de la physique statistique venant de la théorie de la renormalisation, à savoir que les fonctions
caractéristiques usuelles se comportent comme des puissances de |p − pc| quand p → pc. Pour θ,
on a par exemple :

θ(p) = (p − 1/2)5/36+o(1)

lorsque p → 1/2+.
Dans notre travail, nous utiliserons en réalité les processus SLE indirectement. En effet, nous

nous baserons sur les résultats pour les exposants de bras qui ont été obtenus par des calculs sur
les SLE, mais nous n’utiliserons jamais vraiment leur définition via l’équation de Loewner, nous
ne la rappelons donc pas dans cette introduction.

1.3 Modèles de formes aléatoires

Notre étude est motivée par des modèles et des travaux provenant de la physique de la ma-
tière condensée. Dans [63], les physiciens Gouyet, Rosso et Sapoval ont commencé à étudier
les propriétés géométriques des fronts de diffusion. Ils considèrent dans cet article un processus
d’exclusion simple avec source, menant à une densité de particules p(z) qui est une fonction
décroissante de l’ordonnée y. Ils proposent alors l’approximation que les différents sites sont
indépendamment occupés ou vacants, ce qui les amène à considérer un processus de percola-
tion inhomogène de paramètre p(z), un modèle qu’ils appelleront par la suite « percolation en
gradient ». Cette approximation leur permet de réaliser des simulations précises et de montrer
numériquement que les fronts de diffusion sont des objets fractals. Ils mesurent ainsi la dimension
Df = 1.76± 0.02 ≃ 7/4, une valeur qui avait déjà été observée pour les interfaces de percolation
en régime critique. Se basant aussi sur l’idée que les fronts restent là où p(z) est proche de la
valeur critique pc, ils conjecturent donc que les fronts de diffusion ressemblent à des bords de
clusters de percolation.

La percolation en gradient est maintenant devenue un outil classique pour modéliser des
milieux aléatoires (voir par exemple [64, 29, 34]). Mentionnons aussi un modèle de corrosion ou
d’érosion, connu sous le nom de percolation en gradient « de corrosion » ([65, 62, 31, 66]). Dans ce
modèle, qui est apparu d’abord dans des expériences [5], des résistances aléatoires sont associées à
chaque site d’un matériau initialement lisse, que l’on place en contact avec une solution corrosive.
Lorqu’un site « faible » (de petite résistance) est atteint par le liquide, il est dissout, et le pouvoir
corrosif du liquide décroît. On atteint alors en temps fini une interface finale, qui semble être
reliée à la percolation en gradient : en particulier sa dimension mesurée est très proche de 7/4.

La percolation en gradient étant plutôt facile à simuler, elle fournit aussi une manière efficace
d’estimer les paramètres critiques, en calculant la hauteur moyenne de l’interface. Cette idée a été
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2. Aperçu de nos résultats

Fig. 3 – Côtes fractales (Figure B. Sapoval).

utilisée pour la première fois dans [59] pour Z2, où la valeur pc = 0.59280± 10−5 est obtenue, et
utilisée plus tard dans [79, 60, 80, 75] pour divers autres réseaux et pour la percolation continue.

2 Aperçu de nos résultats

Ce travail consiste en six chapitres. Dans le Chapitre 1, nous présentons en détails les tech-
niques et les résultats dûs à Kesten qui permettent de décrire la percolation presque-critique sur le
réseau triangulaire, et nous obtenons aussi quelques nouvelles conséquences. Dans les chapitres
suivants, nous appliquons ensuite ces idées dans diverses situations : nous étudions successi-
vement le modèle d’ « Inhomogeneous Incipient Infinite Cluster » (Chapitre 2), les propriétés
géométriques des interfaces de percolation en régime presque-critique (Chapitre 3), le modèle
de percolation en gradient (Chapitres 4 et 5), et finalement (Chapitre 6) un certain modèle de
diffusion dans l’esprit de l’article original de Gouyet, Rosso et Sapoval [63]. Notons que les quatre
premiers chapitres correspondent aux articles [55], [28], [56] et [54] respectivement.

2.1 Percolation presque-critique en deux dimensions

Dans ce premier chapitre, nous présentons et nous développons les idées et les techniques
permettant de décrire la percolation critique et presque-critique en deux dimensions, nous basant
sur les relations de « scaling » dues à Kesten, et sur la description de la percolation critique
obtenue par Lawler, Schramm, Smirnov et Werner [71, 50].

Un outil important dans nos considérations est la longueur caractéristique dite de « finite-
size scaling » Lǫ, introduite dans [23], que nous définissons maintenant. Pour cela, considérons
l’événement CH qu’il existe un croisement horizontal dans le losange [0, n] × [0, n], de côté n : à
p = 1/2, Pp(CH([0, n] × [0, n])) = 1/2, et cette probabilité tend vers 0 ou 1 quand n tend vers
l’infini, selon que p < 1/2 ou p > 1/2. La longueur caractéristique Lǫ mesure alors l’échelle jusqu’à
laquelle cette probabilité de croisement reste éloignée de 0 et de 1 : pour chaque ǫ ∈ (0, 1/2), on
définit

Lǫ(p) =

{

min{n t.q. Pp(CH([0, n] × [0, n])) ≤ ǫ} si p < 1/2,

min{n t.q. Pp(CH([0, n] × [0, n])) ≥ 1 − ǫ} si p > 1/2.

Comme évoqué précédemment, les événements de bras jouent un rôle central. Ces événements
possèdent une propriété importante de « séparation » : si nous prescrivons aussi l’endroit où les
bras arrivent sur les bords (intérieur et extérieur) de Sn,N , ce qui donne lieu à sous-événement

5



Introduction (français)

Ãj,σ(n, N) de Aj,σ(n, N), alors la probabilité reste du même ordre de grandeur. Plus précisément,
nous avons1

P̂(Ãj,σ(n, N)) ≍ P̂(Aj,σ(n, N))

uniformément en p, P̂ entre Pp et P1−p (i.e. avec des paramètres compris entre p et 1 − p) et
n ≤ N ≤ Lǫ(p). Cette propriété de séparation a été utilisée dans [71] pour obtenir les exposants
de bras pour la percolation critique.

Les exposants de bras pour la percolation critique peuvent ensuite être utilisés pour décrire
la percolation presque-critique. Pour cela, nous aurons besoin de comparer les événements de
bras au point critique et près du point critique. En étendant certains résultats de Kesten, nous
prouvons que pour tout j, tout σ,

P̂(Ãj,σ(n, N)) ≍ P1/2(Aj,σ(n, N))

uniformément en p, P̂ entre Pp et P1−p et n ≤ N ≤ Lǫ(p).
Cela permet d’établir l’existence et les valeurs des exposants critiques associés aux principales

fonctions caractéristiques du modèle. Tout d’abord, nous prouvons que pour tout ǫ ∈ (0, 1/2),

|p − 1/2|
(

Lǫ(p)
)2

P1/2(0 4 ∂SLǫ(p)) ≍ 1

quand p → 1/2, ce qui combiné avec l’exposant à 4 bras fournit

Lǫ(p) = |p − 1/2|−4/3+o(1).

Cette relation implique aussi que
Lǫ(p) ≍ Lǫ′(p)

pour n’importe quels ǫ, ǫ′ ∈ (0, 1/2) fixés.
Nous utilisons ensuite un dernier ingrédient, une propriété de décroissance exponentielle uni-

forme en p : pour n’importe quel k ≥ 1 fixé, pour tout p < 1/2 et tout n,

Pp(CH([0, n] × [0, kn])) ≤ C1e
−C2n/Lǫ(p),

où C1 et C2 sont des constantes ne dépendant que de k et ǫ. On obtient l’exposant critique pour
θ : lorsque p → 1/2+,

θ(p) ≍ Pp(0 ∂SLǫ(p)) = (Lǫ(p))−5/48+o(1) = (p − 1/2)5/36+o(1).

En ce qui concerne les deux autres fonctions habituelles

χ(p) = Ep

[

|C(0)|; |C(0)| < ∞
]

(la taille moyenne d’un cluster fini) et

ξ(p) =

[

1

Ep

[

|C(0)|; |C(0)| < ∞
]

∑

x

‖x‖2
∞Pp

(

0 x, |C(0)| < ∞
)

]1/2

(le rayon moyen d’un cluster fini), il a été prouvé dans [43] que les sites à distance inférieure à
Lǫ(p) produisent une fraction positive de la somme totale : la contribution des sites à distance
≫ Lǫ(p) est négligeable. Ainsi, quand p → 1/2,

χ(p) ≍ (Lǫ(p))2Pp(0 ∂SLǫ(p))
2 = |p − 1/2|−43/18+o(1)

et
ξ(p) ≍ Lǫ(p) = |p − 1/2|−4/3+o(1).

1Nous utilisons le symbole “≍” pour indiquer que deux quantités sont du même ordre de grandeur.
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2.2 Propriétés à grande échelle de l’IIIC en deux dimensions

Dans ce chapitre, nous étudions le modèle d’Inhomogeneous Incipient Infinite Cluster (IIIC),
introduit dans [25]. Ce modèle consiste en un processus de percolation indépendante inhomogène,
avec un paramètre légèrement supérieur à pc, et décroissant vers pc comme une puissance de la
distance à l’origine : nous choisissons comme paramètre d’occupation du site z

p(z) = pc + ‖z‖−λ.

Il a été prouvé dans [25] qu’une transition a lieu pour λc = 1/ν, où ν = 4/3 est l’exposant
critique pour la longueur caractéristique mentionné précédemment :

– Quand λ > λc, il n’y a p.s. aucun cluster infini.
– Quand λ < λc, il y a p.s. un unique cluster infini C∞.

On otient donc dans le deuxième cas un « incipient infinite cluster », qui peut être décrit assez
précisément en utilisant des techniques de percolation presque-critique. Nous montrons d’abord
que dans SN ,

E[|C∞ ∩ SN |] = N2−λβ+o(1)

lorsque N → ∞. Nous prouvons aussi que

Var(|C∞ ∩ SN |) = o(E[|C∞ ∩ SN |]2),

de telle sorte que |C∞ ∩ SN | est proche de son espérance avec forte probabilité.
Nous étudions aussi plus en détail la transition à λ = λc. Cette transition se révèle être

très abrupte : de manière informelle (le résultat précis est moins explicite car des problèmes
techniques apparaissent), si l’on prend

p(z) = pc + C‖z‖−1/ν(log log ‖z‖)1/ν ,

alors la valeur de la constante C détermine la présence ou l’absence d’un cluster infini.

2.3 Asymétrie des interfaces en régime presque-critique

Dans ce chapitre, nous étudions les propriétés géométriques des interfaces apparaissant en
régime presque-critique. Comprendre ce régime est important pour décrire les modèles où la
transition de phase de la percolation apparaît spontanément, comme la percolation en gradient
introduite dans le prochain chapitre. En effet, souvent ce que l’on observe est relié à la percolation
près du point critique plutôt qu’au point critique exactement.

Pour fixer les idées, considérons le cadre suivant : le triangle de côté N , avec le côté inférieur
centré sur l’origine. On colorie ensuite en noir le bord gauche et en blanc le bord droit, comme
montré sur la Figure 4, et on regarde l’interface partant de l’origine entre le cluster noir connecté
au côté gauche, et le cluster blanc connecté au côté droit.

Considérons maintenant deux suites Nk → ∞ et pk ≥ 1/2. Si nous envoyons (en la réduisant)
cette interface dans le triangle T , la suite γk des courbes obtenues possède des limites d’échelle,
d’après des arguments de tension dûs à Aizenman et Burchard [2]. Nous montrons que trois
régimes principaux apparaissent, suivant le comportement de la quantité N2

k P1/2(0 4 ∂SL(pk)) :
– Si celle-ci tend vers 0, alors γ converge (en loi) vers un SLE(6) « chordal », de l’origine vers

le sommet supérieur de T (cas critique).
– Si elle tend vers ∞, alors γ converge vers le bord droit de T (cas sur-critique).
– Si elle reste éloignée de 0 et de ∞, on obtient un régime intermédiaire, appelé régime

« off-critique ».
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(

0,
√

3

2
N

)

(0, 0)

N

γN

[noir] [blanc]

Fig. 4 – On s’intéresse à l’interface entre le cluster noir relié au côté gauche, et le cluster blanc
relié au côté droit.

Concentrons-nous maintenant sur ce régime intermédiaire. Tout d’abord, nous prouvons qu’il
partage de nombreuses propriétés avec le régime critique. Comme les probabilités des événements
de bras restent du même ordre de grandeur, les propriétés macroscopiques telles que la dimension
de Hausdorff (7/4) restent les mêmes. D’un autre côté, nous mettons en évidence une propriété
d’asymétrie qui distingue ce régime du régime critique : la courbe a une légère tendance à tourner
plus vers la droite que vers la gauche. Cette propriété est facile à obtenir au niveau discret, et nous
prouvons qu’elle reste visible à la limite d’échelle, sur n’importe quelle portion de l’interface : un
« arrière-goût » de percolation sur-critique reste donc présent. Pour cela, nous sub-divisons T en
petits triangles de taille η, et nous comptons dans combien d’entre eux l’interface sort du côté
droit plutôt que du côté gauche.

2.4 Exposants critiques pour la percolation en gradient

Nous étudions dans ce chapitre le modèle de percolation en gradient, introduit dans [63]
par les physiciens Gouyet, Rosso et Sapoval pour simuler des fronts de diffusion. Le cadre est
le suivant : dans une bande de largeur 2N et de longueur ℓN , nous réalisons un processus de
percolation indépendante inhomogène, avec un paramètre p(z) au site z qui décroît linéairement
de 1 (pour y = −N) à 0 (pour y = N) suivant l’ordonnée y :

p(z) = 1/2 − y/2N.

En bas de la bande, le paramètre est proche de 1 et on observe un grand cluster de sites
noirs, et de manière similaire on observe en haut un grand cluster de sites blancs. Le phéno-
mène caractéristique de ce modèle est l’apparition d’un unique « front », une interface touchant
simultanément ces deux clusters, comme le montre la Figure 5.

Supposons que la longueur de la bande satisfait N4/7+δ ≤ ℓN ≤ Nγ pour deux constantes
δ, γ > 0. Alors pour un certain ǫ > 0, le front FN est bien défini avec probabilité au moins
1−C1e

−C2Nǫ
. Dans ce cas, une arête e est sur FN si et seulement si elle est reliée par deux bras

aux bords de la bande, un bras noir vers le bas et un bras blanc vers le haut.
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Fig. 5 – L’interface apparaissant dans le modèle de percolation en gradient.

Nous prouvons aussi que ce front reste localisé dans une bande autour de la droite y = 0 où
p = pc, avec des fluctuations d’ordre N4/7. Plus précisément, nous prouvons que pour n’importe

quel η > 0, avec probabilité au moins 1−C ′
1e

−C′
2Nǫ′

, FN reste dans la bande de largeur 2N4/7+η

autour de y = 0, et sort de la bande de largeur 2N4/7−η.
En utilisant la caractérisation de FN comme l’ensemble des arêtes possédant deux bras, on

peut estimer diverses quantités le décrivant via l’exposant à 2 bras. Nous obtenons entre autres
que sa longueur TN vérifie :

E[TN ] = ℓNN3/7+o(1).

De plus, une propriété de décorrélation horizontale peut être démontrée, si bien que

Var(TN ) = o(E[TN ]2).

Ainsi, TN est proche de son espérance avec forte probabilité.

2.5 Limites d’échelle pour le front de la percolation en gradient

Ce court chapitre est une suite du précédent. Nous raffinons les résultats obtenus pour la
percolation en gradient dans une bande en introduisant la quantité

σǫ
N = sup

{

σ t.q. Lǫ

(

p(σ)
)

≥ σ
}

,

qui mesure les fluctuations verticales du front. Cette quantité s’avère être une longueur caracté-
ristique – à la fois horizontale et verticale – pour le modèle. Nous montrons que σǫ

N ≍ σǫ′

N pour
n’importe quels ǫ, ǫ′ ∈ (0, 1/2), et que σǫ

N fournit la seule manière (à constantes multiplicatives
près) de renormaliser le front pour obtenir des limites non triviales. Nous construisons ensuite
des limites d’échelle en utilisant les arguments de tension de Aizenman et Burchard. Ces limites
d’échelle se comportent localement comme des interfaces en régime off-critique.

2.6 Géométrie des fronts de diffusion

Dans ce dernier chapitre, nous étudions certains modèles de fronts de diffusion : ce sont des
modèles de ce type qui amenèrent Sapoval, Rosso et Gouyet [63] à introduire la percolation en
gradient. Notre modèle principal est le suivant : sur un réseau, on dépose un certain nombre fixé
n de particules à l’origine, et on les laisse réaliser des marches aléatoires simples indépendantes
pendant une durée t. Un gradient de concentration apparaît (voir Figure 6), et une approxima-
tion Poissonienne, valide localement, permet de décrire l’interface en utilisant notre étude de la
percolation en gradient.
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Fig. 6 – Image obtenue lorsqu’on laisse n particules diffuser indépendamment.

Pour n très grand, deux régimes principaux apparaissent selon la valeur de t : il existe une
constante universelle λc telle que à t = λn,

– Si λ < λc, il y a un cluster macroscopique autour de l’origine (phase dense). Son rayon
est d’ordre

√
t, avec des fluctuations d’ordre (

√
t)4/7 = t2/7. Nous prouvons aussi que son

rayon croît jusqu’à une certaine valeur λ = λmax < λc, puis décroît jusqu’à λ = λc, valeur
pour laquelle il s’annule.

– Si λ > λc, l’image globale est similaire à la percolation sous-critique : il n’y a que des
clusters très petits (phase diluée).

Nous considérons également un modèle avec une source constante de particules à l’origine,
qui pourrait être utilisé par exemple pour modéliser la croissance d’une tache d’encre : le réseau
est vide au départ, et à chaque instant t, de nouvelles particules arrivent à l’origine avec un taux
µ > 0. Nous montrons que ce modèle est similaire au précédent modèle en phase dense (par
exemple le rayon et les fluctuations sont décrits par les mêmes exposants), pour n’importe quel
µ > 0.
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Introduction

This thesis consists of six chapters that study aspects of two-dimensional percolation near its
phase transition. This introduction is divided into two parts: we first briefly recall the existing
results that are directly related to our work, and we then survey each of our six chapters.

1 Background

1.1 Site percolation

The mathematical theory of percolation was initiated by Broadbent and Hammersley in 1957
[15]. We first briefly recall its main properties, and we refer the reader to the classical references
[39, 35] for more details.

Site percolation on a lattice L (Zd for instance) can be described as follows. For each site
x of L, we toss a (biased) coin to decide whether it is occupied (open, black) or vacant (closed,
white): for some parameter p between 0 and 1, x is occupied with probability p and vacant with
probability 1 − p, independently of the other sites.

We are then interested in the connectivity properties of the set of occupied sites: two occupied
sites x and y are said to be connected, which we denote by x y, if there exists a nearest-neighbor
path from x to y on the lattice that consists only of occupied sites. The occupied sites can thus
be grouped into (maximal) connected components, that are called “clusters”.

A site x is said to be connected to ∞ if it belongs to an infinite cluster, and one defines

θ(p) = Pp(0 ∞).

Note that θ(p) = Pp(x ∞) for any site x because of translation invariance of the model (if one
considers a transitive lattice). In fact, it is possible and classical to show (combining translation-
invariance with isoperimetric ideas) that for d-dimensional lattices, when θ(p) > 0 there almost
surely exists exactly one infinite connected component.

An important feature of percolation is its phase transition. Let us introduce the percolation
threshold

pc(L) = sup{p s.t. θ(p) = 0}.
Then, one can easily check that 0 < pc(L) < 1 for common lattices like Zd or the triangular
lattice T in two dimensions (see Figure 1). Hence,

• When p < pc, there is a.s. no infinite cluster (sub-critical regime).

• When p > pc, there is a.s. a unique infinite cluster (super-critical regime).

The case where p = pc is called critical. Deciding whether there is an infinite cluster or not in
this case can be quite difficult: for Z3, the answer is in fact not known. Let us also mention that
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Figure 1: Site percolation on the triangular lattice.

the sub-critical regime presents the following exponential decay property: the probability that 0
is connected to a site at distance n decays exponentially in n (more precisely, this probability is
bounded by C1(p)e−C2(p)n for two constants C1, C2 > 0 depending on p) – a similar statement
can be made for the super-critical regime.

From now on, we restrict ourselves to two-dimensional lattices. We will focus mainly on the
triangular lattice T, since at present this is the lattice for which the finest description is known,
as we will explain in the next section. Site percolation on this lattice is often represented as
a random coloring of the faces of the dual hexagonal lattice, and it presents a very convenient
self-matching property that naturally leads to the conjecture that

pc(T) =
1

2
,

which is actually a celebrated result of Kesten [38]. We know furthermore in this case that there
is no infinite cluster at criticality, in other words that θ(1/2) = 0.

The exponential decay of connection probabilities makes the sub- and super-critical regimes
quite “predictible” on large scales. In the sub-critical regime for instance, in a portion of the
lattice with diameter N , one typically observes only very small occupied components, of size at
most log N , lost in a “sea” of vacant sites. In some sense, the critical regime is much richer:
connection probabilities do not decay exponentially fast any more, and in a piece of diameter
N , one observes both occupied and vacant structures of diameter comparable to N , and fractal
objects arise as N gets very large.

Here we will investigate aspects of the behavior of percolation near criticality, i.e. of the
transition from sub- to super-critical regime through the critical regime.

1.2 Conformal invariance of critical percolation and critical exponents

The mathematical understanding of critical two-dimensional percolation has tremendously im-
proved over the last decade, thanks to Smirnov’s proof of conformal invariance for percolation
on the triangular lattice, and to the definition of SLE curves by Schramm that describes the
possible conformally invariant scaling limits.
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Figure 2: Conformal invariance of the crossing probability.

Let us describe in more detail Smirnov’s result. Let us take D any (smooth) Jordan domain,
and two marked points a and b on ∂D. For any δ > 0, we can consider the lattice of mesh size δ,
and an approximation (Dδ, aδ, bδ) of (D, a, b) on this lattice. The two points aδ and bδ divide ∂Dδ

into two arcs: we decide to color one of them in black, and the other one in white. We then look
at the interface between the cluster of black sites connected to the arc colored in black and the
cluster of white sites connected to the white arc. This interface γδ can be explored dynamically
by an “exploration process” from a to b. Then Smirnov’s theorem [69, 70, 78, 17] states that as
the mesh size δ ց 0, γδ converges in distribution toward Schramm’s chordal SLE(6) which is a
random continuous curve from a to b (this convergence in law takes place with respect to the
uniform distance on continuous curves “up to monotone reparametrization”).

A key step to prove this convergence is to derive Cardy’s formula: in a domain D with four
marked points a, b, c, d on ∂D (in this order), this formula gives the probability of existence of
a crossing between the arcs (ab) and (cd) as δ ց 0. This formula states in particular that the
probability of crossing is conformally invariant: if φ is a conformal bijection from D to another
domain D′, then the probability of existence of a crossing from (ab) to (cd) in D is equal to the
probability of existence in D′, from (φ(a)φ(b)) to (φ(c)φ(d)). This conformal invariance is the
key to the relation to SLE processes.

To describe critical and near-critical percolation, certain exceptional events are instrumental:
the arm events, referring to the existence in annuli of some number of crossings (“arms”), the
color of each crossing (black or white) being prescribed. For any two positive integers n ≤ N ,
we define the event

Aj,σ(n, N) = {∂Sn  j,σ ∂SN}
that there exist j disjoint monochromatic arms in the annulus Sn,N of radii n and N (centered
on the origin), whose colors in counterclockwise order are those prescribed by the sequence of
colors σ. These arm events can be expressed in terms of exploration process, so that

lim
δց0

P1/2(Aj,σ(δn, δN))

can be computed using SLE(6). We can then prove that for any fixed n0 (large enough),

P1/2(Aj,σ(n0, N)) = N−αj+o(1)

as N → ∞, with

• α1 = 5/48,

13
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• and for j ≥ 2, αj = (j2 − 1)/12 (if σ is non-constant).

These exponents αj are known as “arm exponents”. We refer the reader to [46, 78] for a detailed
account of this derivation.

Having these arm exponents for critical percolation at our disposal, we can then use Kesten’s
scaling relations [43] to describe percolation near criticality. We do not enter into details since
this is the subject of our first chapter, but let us just mention that we can prove in this way a
paradigm of statistical physics coming from renormalization theory, that the common character-
istic functions behave like powers of |p − pc| as p → pc. For θ, one has for instance:

θ(p) = (p − 1/2)5/36+o(1)

as p → 1/2+.
In fact, in our work, we will use SLE processes indirectly i.e. we will build on these results

for arm exponents that were derived via SLE computations. But we will never really use its
definition via Loewner’s equation, so we do not recall it in this introduction.

1.3 Random shape models

Our studies are motivated by models and works from condensed matter physics. In [63], the
physicists Gouyet, Rosso and Sapoval started to study the geometric properties of diffusion fronts.
They considered a simple exclusion process with a source, leading to a density of particles p(z)
that is a decreasing function of the y-coordinate. They then proposed the approximation that
different sites are independently occupied or vacant. This led them to consider an inhomogeneous
percolation process with parameter p(z), a model that they later called “gradient percolation”.
This approximation enabled them to carry on precise simulations and to show numerically that
the diffusion fronts are fractal objects. They measured the dimension Df = 1.76± 0.02 ≃ 7/4, a
value that had already been observed for critical percolation interfaces. They thus conjectured,
based also on the idea that the fronts remain where p(z) is close to the critical value pc, that
diffusion fronts are related to percolation cluster boundaries.

Gradient percolation has now become a classical tool to model inhomogeneous media (see e.g.
[64, 29, 34]). Let us mention a model for chemical etching or erosion, known as “etching gradient
percolation” ([65, 62, 31, 66]). In this model, that first appeared in experiences [5], random
resistances are assigned to each site of a flat material, that we put in contact with a corroding
solution. When a “weak” site (of small resistance) is reached by the liquid, it is dissolved, and the
corroding power of the liquid decreases. We reach some final interface in finite time, that seems
to be closely related to gradient percolation: in particular its dimension has been measured to
be very close to 7/4.

Since gradient percolation is rather easy to simulate, it is also an efficient way to estimate
percolation thresholds, by computing the mean height of the interface. This idea was first used
in [59] for Z2, where the value pc = 0.59280±10−5 was obtained, and later used in [79, 60, 80, 75]
for various other lattices and continuum percolation.

2 Overview of our results

This work consists of six chapters. In Chapter 1, we present in detail Kesten’s results and
techniques that allow to describe near-critical percolation on the triangular lattice, and we also
derive some new consequences. In the next chapters, we then apply these ideas to various
situations: the Inhomogeneous Incipient Infinite Cluster (Chapter 2), the geometric properties

14



2. Overview of our results

Figure 3: Fractal sea coasts (Figure B. Sapoval).

of near-critical percolation interfaces (Chapter 3), the gradient percolation model (Chapters 4
and 5), and finally (Chapter 6) to some diffusion model in the spirit of the original paper of
Gouyet, Rosso and Sapoval [63]. Note that each chapter corresponds to a paper (we will often
refer to our chapters as papers): even if we tried to use consistent notation, we decided to keep
the introductions and preliminary sections of each paper, as it helps seeing what is used and
where. The four first chapters have already been submitted for publication, and correspond to
the papers [55], [28], [56] and [54] respectively.

2.1 Near-critical percolation in two dimensions

In this first chapter, we present and develop ideas and techniques that allow to describe critical
and near-critical percolation in two dimensions, based on Kesten’s scaling relations [43] and the
description of critical percolation obtained by Lawler, Schramm, Smirnov and Werner [71, 50].

An important tool in our considerations is the finite-size scaling characteristic length Lǫ,
introduced in [23], that we now define. For that, consider the event CH that there exists a
horizontal crossing in the rhombus [0, n] × [0, n], of side length n: at p = 1/2, Pp(CH([0, n] ×
[0, n])) = 1/2, and this probability tends to 0 or 1 when n goes to infinity, according to p < 1/2
or p > 1/2. The characteristic length Lǫ then measures the scale up to which this crossing
probability remains bounded away from 0 and 1: for each ǫ ∈ (0, 1/2), we define

Lǫ(p) =

{

min{n s.t. Pp(CH([0, n] × [0, n])) ≤ ǫ} when p < 1/2,

min{n s.t. Pp(CH([0, n] × [0, n])) ≥ 1 − ǫ} when p > 1/2.

As mentioned earlier, the arm events play a central role. These events possess an important
“separation” property: if we also prescribe where the arms land on the (inner and outer) bound-
aries of Sn,N , which is a sub-event Ãj,σ(n, N) of Aj,σ(n, N), then the probability remains of the
same order of magnitude. More precisely, we have2

P̂(Ãj,σ(n, N)) ≍ P̂(Aj,σ(n, N))

uniformly for p, P̂ between Pp and P1−p (i.e. with parameters between p and 1 − p) and n ≤
N ≤ Lǫ(p). This separation property was used in [71] to derive the arm exponents for critical
percolation.

2We use the symbol “≍” to indicate that two quantities are of the same order of magnitude.
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The arm exponents for critical percolation can then be used to describe near-critical per-
colation. For that purpose, we need to compare arm events at criticality and near criticality.
Extending previous results of Kesten, we show that for all j and σ,

P̂(Ãj,σ(n, N)) ≍ P1/2(Aj,σ(n, N))

uniformly for p, P̂ between Pp and P1−p and n ≤ N ≤ Lǫ(p).
This allows to establish the existence and the values of the critical exponents associated to

the main characteristic functions of the model. First of all, we prove that for any ǫ ∈ (0, 1/2),

|p − 1/2|
(

Lǫ(p)
)2

P1/2(0 4 ∂SLǫ(p)) ≍ 1

as p → 1/2, which combined with the 4-arm exponent gives

Lǫ(p) = |p − 1/2|−4/3+o(1).

This relation also implies that

Lǫ(p) ≍ Lǫ′(p)

for any two ǫ, ǫ′ ∈ (0, 1/2).
We then use a last ingredient, a property of exponential decay uniform in p: for any fixed

k ≥ 1, for all p < 1/2 and all n,

Pp(CH([0, n] × [0, kn])) ≤ C1e
−C2n/Lǫ(p),

where C1 and C2 are constants depending only on k and ǫ. We get the critical exponent for θ:
as p → 1/2+,

θ(p) ≍ Pp(0 ∂SLǫ(p)) = (Lǫ(p))−5/48+o(1) = (p − 1/2)5/36+o(1).

As for the two other classical functions

χ(p) = Ep

[

|C(0)|; |C(0)| < ∞
]

(the average size of a finite cluster) and

ξ(p) =

[

1

Ep

[

|C(0)|; |C(0)| < ∞
]

∑

x

‖x‖2
∞Pp

(

0 x, |C(0)| < ∞
)

]1/2

(the mean radius of a finite cluster), it had been shown in [43] that the sites at distance less
than Lǫ(p) produce a positive fraction of the whole sum: the contribution of the sites at distance
≫ Lǫ(p) is negligible. Hence, as p → 1/2,

χ(p) ≍ (Lǫ(p))2Pp(0 ∂SLǫ(p))
2 = |p − 1/2|−43/18+o(1)

and

ξ(p) ≍ Lǫ(p) = |p − 1/2|−4/3+o(1).
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2.2 Large scale properties of the IIIC for 2D percolation

In this chapter, we discuss the Inhomogeneous Incipient Infinite Cluster (IIIC) model, intro-
duced in [25]. This model consists in an independent inhomogeneous percolation process, with
a parameter slightly larger than pc, decaying to pc as a power of the distance to the origin: the
occupation parameter of a site z is taken to be

p(z) = pc + ‖z‖−λ.

In was shown in [25] that a transition occurs for λc = 1/ν, where ν = 4/3 is the previously
mentioned critical exponent for the characteristic length:

• When λ > λc, there is a.s. no infinite cluster.

• When λ < λc, there is a.s. a unique infinite cluster C∞.

We thus get in the second case an incipient infinite cluster, which can be described rather precisely
using near-critical techniques. First, we show that in SN ,

E[|C∞ ∩ SN |] = N2−λβ+o(1)

as N → ∞. We also prove that

Var(|C∞ ∩ SN |) = o(E[|C∞ ∩ SN |]2),

so that |C∞ ∩ SN | is close to its expectation with high probability.
We also study in more detail the transition at λ = λc. This transition reveals to be very

sharp: roughly speaking (actually, the precise statement is less explicit since technical issues
arise), if one takes

p(z) = pc + C‖z‖−1/ν(log log ‖z‖)1/ν ,

then the value of the constant C determines the presence or the absence of an infinite cluster.

2.3 Asymmetry of near-critical percolation interfaces

In this chapter, we study the geometric properties of the interfaces arising in near-critical regime.
Understanding this regime is important to describe the models where the phase transition of
percolation spontaneously appears, like gradient percolation introduced in the next chapter.
Indeed, in many cases what we observe is percolation near criticality rather than percolation at
criticality exactly.

To fix ideas, let us consider the following setting: the triangle of side length N , with bottom
edge centered on the origin. We then color the left boundary in black and the right boundary in
white, as depicted on Figure 4, and we look at the interface starting at the origin between the
black cluster connected to the left side, and the white cluster connected to the right side.

Let us now consider two sequences Nk → ∞ and pk ≥ 1/2. If we scale this interface to the
unit triangle T , the sequence γk of curves so obtained possesses scaling limits, using tightness
arguments due to Aizenman and Burchard [2]. We show that three main regimes arise, according
to the behavior of N2

k P1/2(0 4 ∂SL(pk)):

• If it tends to 0, then γ converges (in distribution) to a chordal SLE(6), from the origin to
the top corner of T (critical case).

• If it tends to ∞, then γ tends to the right boundary of T (super-critical case).
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Figure 4: We look at the interface between the black cluster connected to the left side, and the
white cluster connected to the right side.

• If it remains bounded away from 0 and ∞, we get an intermediate regime, called off-critical
regime.

Let us now focus on this intermediate regime. First of all, we show that it shares many
important properties with the critical regime. Since the probabilities of arm events remain of the
same order of magnitude, macroscopic properties like the Hausdorff dimension (7/4) remain the
same. On the other hand, we point out an asymmetry property that distinguishes this regime
from the critical regime: the curve has a slight tendancy to turn more to the right than to the
left. This property is easy to obtain on the discrete level, and we show that it remains visible
in the scaling limit, on any portion of the interface: a flavor of super-critical percolation thus
remains. For that purpose, we sub-divide T into small triangles of size η, and count in how many
of them the interface exits on the right side rather than on the left side.

2.4 Critical exponents of planar gradient percolation

We study in this chapter the gradient percolation model, introduced in [63] by the physicists
Gouyet, Rosso and Sapoval to simulate diffusion fronts. The setting is the following: in a strip
of width 2N and of length ℓN , we perform an independent inhomogeneous percolation process,
with a parameter p(z) at site z that decays linearly from 1 (for y = −N) to 0 (for y = N) with
the y-coordinate:

p(z) = 1/2 − y/2N.

At the bottom of the strip, the parameter is close to 1 and we observe a large cluster of black
sites, and similarly we observe at the top a large cluster of white sites. The characteristic phe-
nomenon in this model is the appearance of a unique “front”, an interface touching simultaneously
these two clusters, as depicted on Figure 5.

Let us assume that the length of the strip satisfies N4/7+δ ≤ ℓN ≤ Nγ for two constants
δ, γ > 0. Then for some ǫ > 0, the front FN is well-defined with probability at least 1−C1e

−C2Nǫ
.
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2. Overview of our results

Figure 5: The interface appearing in the gradient percolation model.

In this case, an edge e is on FN if and only if it connected by two arms to the boundaries of the
strip, a black arm to the bottom and a white arm to the top.

We also show that this front remains localized in a strip around the line y = 0 where p = pc,
with fluctuations of order N4/7. More precisely, we prove that for any η > 0, with probability

at least 1−C ′
1e

−C′
2Nǫ′

, FN stays in the strip of width 2N4/7+η around y = 0, and exits the strip
of width 2N4/7−η.

Using the characterization of FN as the set of edges possessing two arms, we can estimate
various quantities related to it via the 2-arm exponent. For instance, we get that its length TN

satisfies:
E[TN ] = ℓNN3/7+o(1).

Moreover, a horizontal decorrelation property holds, so that for instance

Var(TN ) = o(E[TN ]2).

Hence, TN is close to its expectation with high probability.

2.5 Scaling limits for the gradient percolation front

This short chapter is a continuation of the previous one. We tighten the results obtained for
gradient percolation in a strip by introducing a quantity

σǫ
N = sup

{

σ s.t. Lǫ

(

p(σ)
)

≥ σ
}

,

measuring the vertical fluctuations of the front. This quantity turns out to be a – both horizontal
and vertical – characteristic length for the model. We show that σǫ

N ≍ σǫ′

N for any two ǫ, ǫ′ ∈
(0, 1/2), and that this gives the only way (up to multiplicative constants) to scale the front in
order to get non-trivial limits. We then construct scaling limits using the tightness arguments
of Aizenman and Burchard. These scaling limits behave locally like off-critical interfaces.

2.6 Geometry of diffusion fronts

In this last chapter, we study some models of diffusion fronts: models of this type led Sapoval,
Rosso and Gouyet [63] to introduce gradient percolation. Our main model is the following:
on a lattice, we deposit some fixed number n of particles at the origin and let them perform
independent simple random walks during time t. A concentration gradient appears (see Figure
6), and a Poissonian approximation turns out to be valid locally, allowing to describe the interface
by using our study of gradient percolation.
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Figure 6: Picture obtained when one lets the n particles perform independent diffusions.

For n very large, two main regimes arise according to t: there exists some absolute constant
λc such that at t = λn,

• If λ < λc, there is a macroscopic cluster around the origin (dense phase). Its radius is of
order

√
t, with fluctuations of order (

√
t)4/7 = t2/7. We also show that its radius increases

up to some value λ = λmax < λc, and then decreases up to λ = λc at which it vanishes.

• If λ > λc, the global picture is similar to sub-critical percolation: there are only very small
clusters (dilute phase).

We also consider a model with a constant source of particles at the origin, which could be
used for instance to model the growth of an ink stain: we start with no particles at all, and
at each time t, new particles arrive at the origin with rate µ > 0. We show that this model is
similar to the previous one in dense phase (for instance the radius and the fluctuations remain
comparable), for any µ > 0.

20



Chapter 1

Near-critical percolation in two
dimensions

Abstract: We give a self-contained and detailed presentation of Kesten’s results that allow
to relate critical and near-critical percolation on the triangular lattice. They constitute an
important step in the derivation of the exponents describing the near-critical behavior of this
model. For future use and reference, we also show how these results can be obtained in more
general situations, and we state some new consequences.
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Chapter 1. Near-critical percolation in two dimensions

1.1 Introduction

Since 2000, substantial progress has been made on the mathematical understanding of percola-
tion on the triangular lattice. In fact, it is fair to say that it is now well-understood. Recall
that performing a percolation with parameter p on a lattice means that each site is chosen in-
dependently to be black with probability p or white with probability 1− p. We then look at the
connectivity properties of the set of black sites (or the set of white ones). It is well-known that
on the regular triangular lattice, when p ≤ 1/2 there is almost surely no infinite black connected
component, whereas when p > 1/2 there is almost surely one infinite black connected component.
Its mean density can then be measured via the probability θ(p) that a given site belongs to this
infinite black component.

Thanks to Smirnov’s proof of conformal invariance of the percolation model at p = 1/2 [69],
allowing to prove that critical percolation interfaces converge toward SLE6, and to the derivation
of the SLE6 critical exponents [47, 48] by Lawler, Schramm and Werner, it is possible to prove
results concerning the behavior of the model when p is exactly equal to 1/2, that had been
conjectured in the physics literature, such as the values of the arm exponents [71, 50]. See e.g.
[78] for a survey and references.

More than ten years before the above-mentioned papers, Kesten had shown in his 1987 paper
Scaling relations for 2D-percolation [43] that the behavior of percolation at criticality (ie when
p = 1/2) and near criticality (ie when p is close to 1/2) are very closely related. In particular,
the exponents that describe the behavior of quantities such as θ(p) when p → 1/2+ and the arm
exponents for percolation at p = 1/2 are related via relations known as scaling (or hyperscaling)
relations. At that time, it was not proved that any of the exponents existed (not to mention their
actual value) and Kesten’s paper explains how the knowledge of the existence and the values of
some arm exponents allows to deduce the existence and the value of the exponents that describe
“near-critical” behavior. Therefore, by combining this with the derivation of the arm exponents,
we can for instance conclude [71] that θ(p) = (p − 1/2)5/36+o(1) as p → 1/2+.

Reading Kesten’s paper in order to extract the statement that is needed to derive this result
can turn out to be not so easy for a non-specialist, and the first goal of the present paper is to
give a complete self-contained proof of Kesten’s results that are used to describe near-critical
percolation. We hope that this will be useful and help a wider community to have a clear and
complete picture of this model.

It is also worth emphasizing that the proofs contain techniques (such as separation lemmas
for arms) that are interesting in themselves and that can be applied to other situations. The
second main purpose of the present paper is to state results in a more general setting than in
[43], for possible future use. In particular, we will see that the “uniform estimates below the
characteristic length” hold for an arbitrary number of arms and non-homogeneous percolation
(see Theorem 11 on separation of arms, and Theorem 27 on arm events near criticality). Some
technical difficulties arise due to these generalizations, but these new statements turn out to be
useful. They are for instance instrumental in our study of gradient percolation in [54]. Other
new statements in the present paper concern arms “with defects” or the fact that the finite-size
scaling characteristic length Lǫ(p) remains of the same order of magnitude when ǫ varies in
(0, 1/2) (Corollary 36) – and not only for ǫ small enough. This last fact is used in [56] to study
the “off-critical” regime for percolation.
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1.2. Percolation background

Figure 1.1: Percolation on the triangular lattice can be viewed as a random coloring of the dual
hexagonal lattice.

1.2 Percolation background

Before turning to near-critical percolation in the next section, we review some general notations
and properties concerning percolation. We also sketch the proof of some of them, for which
small generalizations will be needed. We assume the reader is familiar with the standard fare
associated with percolation, and we refer to the classic references [39, 35] for more details.

1.2.1 Notations

Setting

Unless otherwise stated, we will focus on site percolation in two dimensions, on the triangular
lattice. This lattice will be denoted by T = (VT , ET ), where VT is the set of vertices (or “sites”),
and ET is the set of edges (or “bonds”), connecting adjacent sites. We restrict ourselves to this
lattice because it is at present the only one for which the critical regime has been proved to be
conformal invariant in the scaling limit.

The usual (homogeneous) site percolation process of parameter p can be defined by taking the
different sites to be black (or occupied) with probability p, and white (vacant) with probability
1−p, independently of each other. This gives rise to a product probability measure on the set of
configurations, which is referred to as Pp, the corresponding expectation being Ep. We usually
represent it as a random (black or white) coloring of the faces of the dual hexagonal lattice (see
Figure 1.1).

More generally, we can associate to each family of parameters p̂ = (p̂v)v a product measure P̂
for which each site v is black with probability p̂v and white with probability 1− p̂v, independently
of all other sites.

Coordinate system

We sometimes use complex numbers to position points in the plane, but we mostly use oblique
coordinates, with the origin in 0 and the basis given by 1 and eiπ/3, ie we take the x–axis and its
image under rotation of angle π/3 (see Figure 1.2). For a1 ≤ a2 and b1 ≤ b2, the parallelogram
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Chapter 1. Near-critical percolation in two dimensions

0

Sn

Figure 1.2: We refer to oblique coordinates, and we denote by Sn the “box of size n”.

R of corners aj + bke
iπ/3 (j, k = 1, 2) is thus denoted by [a1, a2] × [b1, b2], its interior being

R̊ :=]a1, a2[×]b1, b2[= [a1 + 1, a2 − 1] × [b1 + 1, b2 − 1] and its boundary ∂R := R \ R̊ the
concatenation of the four boundary segments {ai} × [b1, b2] and [a1, a2] × {bi}.

We denote by ‖z‖∞ the infinity norm of a vertex z as measured with respect to these two
axes, and by d the associated distance. For this norm, the set of points at distance at most
N from a site z forms a rhombus SN (z) centered at this site and whose sides line up with the
basis axes. Its boundary, the set of points at distance exactly N , is denoted by ∂SN (z), and its
interior, the set of points at distance strictly less that N , by S̊N (z). To describe the percolation
process, we often use SN := SN (0) and call it the “box of size N ”. Note that it can also be
written as SN = [−N, N ] × [−N, N ]. It will sometimes reveal useful to have noted that

|SN (z)| ≤ C0N
2 (1.1)

for some universal constant C0. For any two positive integers n ≤ N , we also consider the
annulus Sn,N (z) := SN (z) \ S̊n(z), with the natural notation Sn,N := Sn,N (0).

Connectivity properties

Two sites x and y are said to be connected if there exists a black path, ie a path consisting only
of black sites, from x to y. We denote it by x  y. Similarly, if there exists a white path from
x to y, these two sites are said to be ∗–connected, which we denote by x ∗ y.

For notational convenience, we allow y to be “∞”: we say that x is connected to infinity
(x ∞) if there exists an infinite, self-avoiding and black path starting from x. We denote by

θ(p) := Pp

(

0 ∞
)

(1.2)

the probability for 0 (or any other site by translation invariance) to be connected to ∞.
To study the connectivity properties of a percolation realization, we often are interested in

the connected components of black or white sites: the set of black sites connected to a site x
(empty if x is white) is called the cluster of x, denoted by C(x). We can define similarly C∗(x)
the white cluster of x. Note that x ∞ is equivalent to the fact that |C(x)| = ∞.
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1.2. Percolation background

If A and B are two sets of vertices, the notation A  B is used to denote the event that
some site in A is connected to some site in B. If the connection is required to take place using

exclusively the sites in some other set C, we write A
C
 B.

Crossings

A left-right (or horizontal) crossing of the parallelogram [a1, a2] × [b1, b2] is simply a black path
connecting its left side to its right side. However, this definition implies that the existence of a
crossing in two boxes sharing just a side are not completely independent: it will actually be more
convenient to relax (by convention) the condition on its extremities. In other words, we request
such a crossing path to be composed only of sites in ]a1, a2[×]b1, b2[ which are black, with the
exception of its two extremities on the sides of the parallelogram, which can be either black or
white. The existence of such a horizontal crossing is denoted by CH([a1, a2]× [b1, b2]). We define
likewise top-bottom (or vertical) crossings and denote their existence by CV ([a1, a2] × [b1, b2]),
and also white crossings, the existence of which we denote by C∗

H and C∗
V .

More generally, the same definition applies for crossings of annuli Sn,N (z), from the internal
boundary ∂Sn(z) to the external one ∂SN (z), or even in more general domains D, from one part
of the boundary to another part.

Asymptotic behavior

We use the standard notations to express that two quantities are asymptotically equivalent. For
two positive functions f and g, the notation f ≍ g means that f and g remain of the same order
of magnitude, in other words that there exist two positive and finite constants C1 and C2 such
that C1g ≤ f ≤ C2g (so that the ratio between f and g is bounded away from 0 and +∞),
while f ≈ g means that log f/log g → 1 (“logarithmic equivalence”) – either when p → 1/2 or
when n → ∞, which will be clear from the context. This weaker equivalence is generally the one
obtained for quantities behaving like power laws.

1.2.2 General properties

On the triangular lattice, it is known since [38] that percolation features a phase transition at
p = 1/2, called the critical point : this means that

• When p < 1/2, there is (a.s.) no infinite cluster (sub-critical regime), or equivalently
θ(p) = 0.

• When p > 1/2, there is (a.s.) an infinite cluster (super-critical regime), or equivalently
θ(p) > 0. Furthermore, the infinite cluster turns out to be unique in this case.

In sub- and super-critical regimes, “correlations” decay very fast, this is the so-called expo-
nential decay property:

• For any p < 1/2,
∃C1, C2(p) > 0, Pp(0 ∂Sn) ≤ C1e

−C2(p)n.

• We can deduce from it that for any p > 1/2,

Pp(0 ∂Sn, |C(0)| < ∞)

≤ Pp(∃ white circuit surrounding 0 and a site on ∂Sn)

≤ C ′
1e

−C′
2(p)n
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Chapter 1. Near-critical percolation in two dimensions

for some C ′
1(p), C ′

2(p) > 0.

We would like to stress the fact that the speed at which these correlations vanish is governed
by a constant C2 which depends on p – it becomes slower and slower as p approaches 1/2. To
study what happens near the critical point, we need to control this speed for different values of
p: we will derive in Section 1.7.4 an exponential decay property that is uniform in p.

The intermediate regime at p = 1/2 is called the critical regime. It is known for the triangular
lattice that there is no infinite cluster at criticality: θ(1/2) = 0. Hence to summarize,

θ(p) > 0 iff p > 1/2.

Correlations no longer decay exponentially fast in this critical regime, but (as we will see) just
like power laws. For instance, non trivial random scaling limits – with fractal structures – arise.
This particular regime has some very strong symmetry property (conformal invariance) which
allows to describe it very precisely.

1.2.3 Some technical tools

Monotone events

We use the standard terminology associated with events: an event A is increasing if “it still holds
when we add black sites”, and decreasing if it satisfies the same property, but when we add white
sites.

Recall also the usual coupling of the percolation processes for different values of p: we as-
sociate to the different sites x i.i.d. random variables Ux uniform on [0, 1], and for any p, we
obtain the measure Pp by declaring each site x to be black if Ux ≤ p, and white otherwise. This
coupling shows for instance that

p 7→ Pp(A)

is a non-decreasing function of p when A is an increasing event. More generally, we can represent
in this way any product measure P̂.

Correlation inequalities

The two most common inequalities for percolation concern monotone events: if A and B are
increasing events, we have ([10, 35])

1. the Harris-FKG inequality:
P(A ∩ B) ≥ P(A)P(B).

2. the BK inequality:
P(A ◦ B) ≤ P(A)P(B)

if A and B depend only on sites in a finite set, A◦B meaning as usual that A and B occur
“disjointly”.

In the paper [10] where they proved the BK inequality, Van den Berg and Kesten also
conjectured that this inequality holds in a more general fashion, for any pair of events A and B
(depending on a finite number of sites): if we define A�B the disjoint occurrence of A and B in
this situation, we have

P(A�B) ≤ P(A)P(B). (1.3)
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1.2. Percolation background

This was later proved by Reimer [58], and it is now known as Reimer’s inequality. We will also
use the following inequality:

P1/2(A ◦ B) ≤ P1/2(A ∩ B̃), (1.4)

where B̃ is the event obtained by “flipping” the configurations in B. This inequality is an
intermediate step in Reimer’s proof. On this subject, the reader can consult the nice review [14].

Russo’s formula

Russo’s formula allows to study how probabilities of events vary when the percolation parameter
p varies. Recall that for an increasing event A, the event “v is pivotal for A” is composed of the
configurations ω such that if we make v black, A occurs, and if we make it white, A does not
occur. Note that by definition, this event is independent of the particular state of v. An analog
definition applies for decreasing events.

Theorem 1 (Russo’s formula). Let A be an increasing event, depending only on the sites con-
tained in some finite set S. Then

d

dp
Pp(A) =

∑

v∈S

Pp(v is pivotal for A). (1.5)

We now quickly remind the reader how to prove this formula, since we will later (in Section
1.6) generalize it a little.

Proof. We allow the parameters p̂v (v ∈ S) to vary independently, which amounts to consider
the more general function P : p̂ = (p̂v)v∈S 7→ P̂(A). This is clearly a smooth function (it is
polynomial), and Pp(A) = P(p, . . . , p). Now using the standard coupling, we see that for any
site w, for a small variation ǫ > 0 in w,

P̂+ǫ(A) − P̂(A) = ǫ × P̂(w is pivotal for A), (1.6)

so that
∂

∂p̂w
P̂(A) = P̂(w is pivotal for A).

Russo’s formula now follows readily by expressing d
dpPp(A) in terms of the previous partial

derivatives:

d

dp
Pp(A) =

∑

v∈S

(

∂

∂p̂v
P̂(A)

)

p̂=(p,...,p)

=
∑

v∈S

Pp(v is pivotal for A).

Russo-Seymour-Welsh theory

For symmetry reasons, we have:

∀n, P1/2(CH([0, n] × [0, n])) = 1/2. (1.7)

In other words, the probability of crossing an n×n box is the same on every scale. In particular,
this probability is bounded from below: this is the starting point of the so-called Russo-Seymour-
Welsh theory (see [35, 39]), that provides lower bounds for crossings in parallelograms of fixed
aspect ratio τ × 1 (τ ≥ 1) in the “hard direction”.
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Chapter 1. Near-critical percolation in two dimensions

Figure 1.3: This construction shows that we can take fk(δ) = δk−2(f2(δ))
k−1.

Theorem 2 (Russo-Seymour-Welsh). There exist universal non-decreasing functions fk(.) (k ≥
2), that stay positive on (0, 1) and verify: if for some parameter p the probability of crossing an
n× n box is at least δ1, then the probability of crossing a kn× n parallelogram is at least fk(δ1).
Moreover, these functions can be chosen satisfying the additional property: fk(δ) → 1 as δ → 1,
with fk(1 − ǫ) = 1 − Ckǫ

αk + o(ǫαk) for some Ck, αk > 0.

If for instance p > 1/2, we know that when n gets very large, the probability δ1 of crossing
an n × n rhombus becomes closer and closer to 1, and the additional property tells that the
probability of crossing a kn × n parallelogram tends to 1 as a function of δ1.

Combined with Eq.(1.7), the theorem entails:

Corollary 3. For each k ≥ 1, there exists some δk > 0 such that

∀n, P1/2(CH([0, kn] × [0, n])) ≥ δk. (1.8)

Note that only going from rhombi to parallelograms of aspect ratio slightly larger than 1 is
difficult. For instance, once the result is known for 2n × n parallelograms, the construction of
Figure 1.3 shows that we can take

fk(δ) = δk−2(f2(δ))
k−1. (1.9)

Proof. The proof goes along the same lines as the one given by Grimmett [35] for the square
lattice. We briefly review it to indicate the small adaptations to be made on the triangular
lattice. We hope Figure 1.4 will make things clear. For an account on RSW theory in a general
setting, the reader should consult Chapter 6 of [39].

We work with hexagons, since they exhibit more symmetries. Note that a crossing of an
N ×N rhombus induces a left-right crossing of a hexagon of side length N/2 (see Figure 1.4.1).
We then apply the “square-root trick” – used recurrently during the proof – to the four events
{i j}: one of them occurs with probability at least 1 − (1 − δ)1/4. This implies that

P(l1  r1) = P(l2  r2) ≥ (1 − (1 − δ)1/4)2 =: τ(δ). (1.10)

(if P(l1  r1) = P(l2  r2) ≥ 1 − (1 − δ)1/4 we are OK, otherwise we just combine a crossing
l1  r2 and a crossing l2  r1).

Now take two hexagons H, H ′ as on Figure 1.4.2 (with obvious notation for their sides). With
probability at least 1 − (1 − δ)1/2 there exists a left-right crossing in H whose last intersection
with l′1 ∪ l′2 is on l′2. Assume this is the case, and condition on the lowest left-right crossing in
H: with probability at least 1− (1− τ(δ))1/2 it is connected to t′ in H ′. We then use a crossing
from l′1 to r′1 ∪ r′2, occurring with probability at least 1 − (1 − δ)1/2, to obtain

P(l1 ∪ l2  r′1 ∪ r′2) ≥ (1 − (1 − δ)1/2) × (1 − (1 − τ(δ))1/2) × (1 − (1 − δ)1/2).
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c1
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H H
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1. 2.
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Figure 1.4: Proof of the RSW theorem on the triangular lattice.

The hard part is done: it now suffices to use t successive “longer hexagons”, and t−1 top-bottom
crossings of regular hexagons, for t large enough (see Figure 1.4.3). We construct in such a way
a left right-crossing of a 2N × N parallelogram, with probability at least

f2(δ) := (1 − (1 − δ)1/2)2t(1 − (1 − τ(δ))1/2)2t−1. (1.11)

When δ tends to 1, τ(δ), and thus f2(δ), also tend to 1. Moreover, it is not hard to convince
oneself that f2 admits near δ = 1 an asymptotic development of the form

f2(1 − ǫ) = 1 − Cǫ1/8 + o(ǫ1/8). (1.12)

Eq.(1.9) then provides the desired conclusion for any k ≥ 2.

1.3 Near-critical percolation overview

1.3.1 Characteristic length

We will use throughout the paper a certain “characteristic length” L(p) defined in terms of
crossing probabilities, or “sponge-crossing probabilities”. This length is often convenient to work
with, and it has been used in many papers concerning finite-size scaling, e.g. [23, 24, 12, 13].

Consider the rhombi [0, n] × [0, n]. At p = 1/2, Pp(CH([0, n] × [0, n])) = 1/2. When p < 1/2
(sub-critical regime), this probability tends to 0 when n goes to infinity, and it tends to 1 when
p > 1/2 (super-critical regime). We introduce a quantity that measures the scale up to which
these crossing probabilities remain bounded away from 0 and 1: for each ǫ0 ∈ (0, 1/2), we define

Lǫ0(p) =

{

min{n s.t. Pp(CH([0, n] × [0, n])) ≤ ǫ0} when p < 1/2

min{n s.t. Pp(C∗
H([0, n] × [0, n])) ≤ ǫ0} when p > 1/2

(1.1)

Hence by definition,

Pp(CH([0, Lǫ0(p) − 1] × [0, Lǫ0(p) − 1])) ≥ ǫ0 (1.2)
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Chapter 1. Near-critical percolation in two dimensions

and
Pp(CH([0, Lǫ0(p)] × [0, Lǫ0(p)])) ≤ ǫ0 (1.3)

if p < 1/2, and the same with ∗’s if p > 1/2.
Note that by symmetry, we also have directly Lǫ0(p) = Lǫ0(1 − p). Since P1/2(CH([0, n] ×

[0, n])) is equal to 1/2 on every scale, we will take the convention L(1/2) = +∞, so that in the
following, the expression “for any n ≤ L(p)” must be interpreted as “for any n” when p = 1/2.
This convention is also consistent with the following property.

Proposition 4. For any fixed ǫ0 ∈ (0, 1/2), Lǫ0(p) → +∞ when p → 1/2.

Proof. Was it not the case, we could find an integer N and a sequence pk → 1/2, say pk < 1/2,
such that for each k, Lǫ0(pk) = N , which would imply

Ppk
(CH([0, N ] × [0, N ])) ≤ ǫ0.

This contradicts the fact that

Ppk
(CH([0, N ] × [0, N ])) → 1/2,

the function p 7→ Pp(CH([0, N ] × [0, N ])) being continuous (it is polynomial in p).

1.3.2 Russo-Seymour-Welsh type estimates

When studying near-critical percolation, we will have to consider product measures P̂ more
general than simply the measures Pp (p ∈ [0, 1]), with associated parameters p̂v which are allowed
to depend on the site v:

Definition 5. A measure P̂ on configurations is said to be “between Pp and P1−p” if it is a
product measure, and if its parameters p̂v are all between p and 1 − p.

The Russo-Seymour-Welsh theory implies that for each k ≥ 1, there exists some δk = δk(ǫ0) >
0 (depending only on ǫ0) such that for all p, P̂ between Pp and P1−p,

∀n ≤ Lǫ0(p), P̂(CH([0, kn] × [0, n])) ≥ δk, (1.4)

and for symmetry reasons this bound is also valid for horizontal white crossings.
These estimates for crossing probabilities will be the basic building blocks on which most

further considerations are built. They imply that when n is not larger than L(p), things can still
be compared to critical percolation: roughly speaking, L(p) is the scale up to which percolation
can be considered as “almost critical”.

In the other direction, we will see in Section 1.7.4 that L(p) is also the scale at which
percolation starts to look sub- or super-critical. Assume for instance that p > 1/2, we know that

Pp(CH([0, Lǫ0(p)] × [0, Lǫ0(p)])) ≥ 1 − ǫ0.

Then using RSW (Theorem 2), we get that

Pp(CH([0, 2Lǫ0(p)] × [0, Lǫ0(p)])) ≥ 1 − ǫ1,

where 1− ǫ1 = f2(1− ǫ0) can be made arbitrarily close to 1 by taking ǫ0 sufficiently small. This
will be useful in the proof of Lemma 38 (but actually only for it).
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1.4. Arm separation

1.3.3 Outline of the paper

In the following, we fix some value of ǫ0 in (0, 1/2). For notational convenience, we forget about
the dependence on ǫ0. We will see later (Corollary 36) that the particular choice of ǫ0 is actually
not relevant, in the sense that for any two ǫ0, ǫ′0, the corresponding lengths are of the same order
of magnitude.

In Section 1.4 we define the so-called arm events. On a scale L(p), the RSW property, which
we know remains true, allows to derive separation results for these arms. Section 1.5 is devoted
to critical percolation, in particular how arm exponents – describing the asymptotic behavior of
arm events – can be computed. In Section 1.6 we study how arm events are affected when we
make vary the parameter p: if we stay on a scale L(p), the picture does not change too much. It
can be used to describe the characteristic functions, which we do in Section 1.7. Finally, Section
1.8 concludes the paper with some remarks and possible applications.

With the exception of this last section, the organization follows the implication between the
different results: each section depends on the previous ones. A limited number of results can
however be obtained directly, we will indicate it clearly when this is the case.

1.4 Arm separation

We will see that when studying critical and near-critical percolation, certain exceptional events
play a central role: the arm events, referring to the existence of some number of crossings (“arms”)
of the annuli Sn,N (n < N), the color of each crossing (black or white) being prescribed. These
events are useful because they can be combined together, and they will prove to be instrumental
for studying more complex events. Their asymptotic behavior can be described precisely using
SLE6 (see next section), allowing to derive further estimates, especially on the characteristic
functions.

1.4.1 Arm events

Let us consider an integer j ≥ 1. A color sequence σ is a sequence (σ1, . . . , σj) of “black”
and “white” of length j. We use the letters “W ” and “B” to encode the colors: the sequence
(black, white, black) is thus denoted by “BWB”. Only the cyclic order of the arms is relevant,
and we identify two sequences if they are the same up to a cyclic permutation: for instance, the
two sequences “BWBW ” and “WBWB” are the same, but they are different from “BBWW ”.
The resulting set is denoted by S̃j . For any color sequence σ, we also introduce σ̃ = (σ̃1, . . . , σ̃j)
the inverted sequence, where each color is replaced by its opposite.

For any two positive integers n ≤ N , we define the event

Aj,σ(n, N) := {∂Sn  j,σ ∂SN} (1.1)

that there exist j disjoint monochromatic arms in the annulus Sn,N , whose colors are those
prescribed by σ (when taken in counterclockwise order). We denote such an ordered set of
crossings by C = {ci}1≤i≤j , and we say it to be “σ-colored”. Recall that by convention, we
have relaxed the color prescription for the extremities of the ci’s. Hence for j = 1 and σ = B,
Aj,σ(0, N) just denotes the existence of a black path 0 ∂SN .

Note that a combinatorial objection due to discreteness can arise: if j is too large compared
to n, the event Aj,σ(n, N) can be void, just because the arms do not have enough space on ∂Sn to
arrive all together. For instance Aj,σ(0, N) = ∅ if j ≥ 7. In fact, we just have to check that n is
large enough so that the number of sites touching the exterior of |∂Sn| (ie |∂Sn+1| with the acute
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∂SN

∂Sn

Figure 1.5: The event A6,σ(n, N), with σ = BBBWBW .

corners removed) is at least j: if this is true, we can then draw straight lines heading toward the
exterior. For each positive integer j, we thus introduce n0(j) the least such nonnegative integer,
and we have

∀N ≥ n0(j), Aj,σ(n0(j), N) 6= ∅.

Note that n0(j) = 0 for j = 1, . . . , 6, and that n0(j) ≤ j. For asymptotics, the exact choice of n
is not relevant since anyway, for any fixed n1, n2 ≥ n0(j),

P̂(Aj,σ(n1, N)) ≍ P̂(Aj,σ(n2, N)).

Remark 6. Note that Reimer’s inequality implies that for any two integers j, j′, and two color
sequences σ, σ′ of these lengths, we have:

P̂(Aj+j′,σσ′(n, N)) ≤ P̂(Aj,σ(n, N))P̂(Aj′,σ′(n, N)) (1.2)

for any P̂, n ≤ N (denoting by σσ′ the concatenation of σ and σ′).

1.4.2 Well-separateness

We now impose some restrictions on the events Aj,σ(n, N). Our main goal is to prove that we
can separate macroscopically (the extremities of) any sequence of arms: with this additional
condition, the probability of Aj,σ(n, N) does not decrease from more than a (universal) constant
factor. This result is not really surprising, but we will need it recurrently for technical purposes.

Let us now give a precise meaning to the property of being “separated” for sets of crossings.
In the following, we will actually consider crossings in different domain shapes. We first state
the definition for a parallelogram of fixed (1 × τ) aspect ratio, and explain how to adapt it in
other cases.

We first require that the extremities of these crossings are distant from each other. We
also need to add a condition ensuring that the crossings can easily be extended: we impose the
existence of “free spaces” at their extremities, which will allow then to construct longer extensions.
This leads to the following definition, similar to Kesten’s “fences” [43].
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Figure 1.6: Well-separateness for a set of crossings C = {ci}.

Definition 7. Consider some M × τM parallelogram R = [a1, a1 + M ] × [b1, b1 + τM ], and
C = {ci}1≤i≤j a (σ-colored) set of j disjoint left-right crossings. Introduce zi the extremity
of ci on the right side of the parallelogram, and for some η ∈ (0, 1], the parallelogram ri =
zi + [0,

√
ηM ] × [−ηM, ηM ], attached to R on its right side.

We say that C is well-separated at scale η (on the right side) if the two following conditions
are satisfied:

1. The extremity zi of each crossing is not too close from the other ones:

∀i 6= j, dist(zi, zj) ≥ 2
√

ηM, (1.3)

nor from the top and bottom right corners Z+, Z− of R:

∀i, dist(zi, Z±) ≥ 2
√

ηM. (1.4)

2. Each ri is crossed vertically by some crossing c̃i of the same color as ci, and

ci  c̃i in S̊√
ηM (zi). (1.5)

For the second condition, we of course require the path connecting ci and c̃i to be of the same
color as these two crossings. The crossing c̃i is thus some small extension of ci on the right side
of R. The free spaces ri will allow us to use locally an FKG-type inequality to further extend
the ci’s on the right.

Definition 8. We say that a set C = {ci}1≤i≤j of j disjoint left-right crossings of R can be
made well-separated on the right side if there exists another set C′ = {c′i}1≤i≤j of j disjoint
crossings that is well-separated on the right side, such that c′i has the same color as ci, and the
same extremity on the left side.

The same definitions apply for well-separateness on the left side, and also for top-bottom
crossings. Consider now a set of crossings of an annulus Sn,N . We can divide this set into four
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subsets, according to the side of ∂SN on which they arrive. Take for instance the set of crossings
arriving on the right side: we say it to be well-separated if, as before, the extremities of these
crossings on ∂SN are distant from each other and from the top-right and bottom-right corners,
and if there exist free spaces ri that satisfy condition 2 of Definition 7. Then, we say that a set
of crossings of Sn,N is well-separated on the external boundary if each of the four previous sets
is itself well-separated. Note that requiring the extremities to be not too close from the corners
ensures that they are not too close from the extremities of the crossings arriving on the other
sides either. We take the same definition for the internal boundary ∂Sn: in this case, taking the
extremities away from the corners also ensures that the free spaces are included in Sn and do
not intersect each other.

We are in position to define our first sub-event of Aj,σ(n, N): for any η, η′ ∈ (0, 1),

Ã
η/η′

j,σ (n, N) := {∂Sn  
η/η′

j,σ ∂SN} (1.6)

denotes the event Aj,σ(n, N) with the additional condition that the set of j arms is well-separated
at scale η on ∂Sn, and at scale η′ on ∂SN .

We can even prescribe the “landing areas” of the different arms, ie the position of their
extremities. We introduce for that some last definition:

Definition 9. Consider ∂SN for some integer N : a landing sequence {Ii}1≤i≤j on ∂SN is a
sequence of disjoint sub-intervals I1, . . . , Ij on ∂SN in counterclockwise order. It is said to be
η-separated if3,

1. dist(Ii, Ii+1) ≥ 2
√

ηN for each i,

2. and dist(Ii, Z) ≥ 2
√

ηN for each i and each corner Z of ∂SN .

It is called a landing sequence of size η if the additional property

3. length(Ii) ≥ ηN for each i

is also satisfied.

We identify two landing sequences on ∂SN and ∂SN ′ if they are identical up to a dilation.
This leads to the following sub-event of Ã

η/η′

j,σ (n, N): for two landing sequences I = {Ii}1≤i≤j

and I ′ = {I ′i}1≤i′≤j ,
˜̃A
η,I/η′,I′

j,σ (n, N) := {∂Sn  
η,I/η′,I′

j,σ ∂SN} (1.7)

denotes the event Ã
η/η′

j,σ (n, N), with the additional requirement on the set of crossings {ci}1≤i≤j

that for each i, the extremities zi and z′i of ci on (respectively) ∂Sn and ∂SN satisfy zi ∈ Ii and
z′i ∈ I ′i.

We will also have use for another intermediate event between A and ˜̃A: Ā
I/I′

j,σ (n, N), for which
we only impose the landing areas I/I ′ of the j arms. We do not ask a priori the sub-intervals
to be η-separated either, just to be disjoint. Note however that if they are η/η′-separated, then
the extremities of the different crossings will be η/η′-separated too.

3As usual, we consider cyclic indices, so that here for instance Ij+1 = I1.
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1.4. Arm separation

To summarize:

Aj,σ(n, N) = {j arms ∂Sn  ∂SN , color σ}

separated at scale η/η′ + small extensions
hhhhhhhh

sshhhhhhhh
landing areas I/I′

VVVVVVVV

++VVVVVVVV

Ã
η/η′

j,σ (n, N)

landing areas I/I′
VVVVVVVV

**VVVVVV

Ā
I/I′

j,σ (n, N)

small extensions (if I/I′ are η/η′-separated)
hhhhhhhh

tthhhhhh

˜̃A
η,I/η′,I′

j,σ (n, N)

Remark 10. If we take for instance alternating colors (σ̄ = BWBW ), and as landing areas

Ī1, . . . , Ī4 the (resp.) right, top, left and bottom sides of ∂SN , the 4-arm event Ā
./Ī
4,σ̄(0, N) (the

“.” meaning that we do not put any condition on the internal boundary) is then the event that 0
is pivotal for the existence of a left-right crossing of SN .

1.4.3 Statement of the results

Main result

Our main separation result is the following:

Theorem 11. Fix an integer j ≥ 1, some color sequence σ ∈ S̃j and η0, η
′
0 ∈ (0, 1). Then we

have

P̂
( ˜̃A

η,I/η′,I′

j,σ (n, N)
)

≍ P̂
(

Aj,σ(n, N)
)

(1.8)

uniformly in all landing sequences I/I ′ of size η/η′, with η ≥ η0 and η′ ≥ η′0, p, P̂ between Pp

and P1−p, n ≤ N ≤ L(p).

First relations

Before turning to the proof of this theorem, we list some direct consequences of the RSW esti-
mates that will be needed.

Proposition 12. Fix j ≥ 1, σ ∈ S̃j and η0, η
′
0 ∈ (0, 1).

1. “Extendability”: We have

P̂
( ˜̃A

η,I/η̃′,Ĩ′

j,σ (n, 2N)
)

, P̂
( ˜̃A

η̃,Ĩ/η′,I′

j,σ (n/2, N)
)

≍ P̂
( ˜̃A

η,I/η′,I′

j,σ (n, N)
)

uniformly in p, P̂ between Pp and P1−p, n ≤ N ≤ L(p), and all landing sequences I/I ′ (resp.
Ĩ/Ĩ ′) of size η/η′ (resp. η̃/η̃′) larger than η0/η′0. In other words: “once well-separated, the
arms can easily be extended”.

2. “Quasi-multiplicativity”: We have for some C = C(η0, η
′
0) > 0

P̂(Aj,σ(n1, n3)) ≥ C P̂( ˜̃A
./η,Iη

j,σ (n1, n2/4))P̂( ˜̃A
η′,Iη′/.

j,σ (n2, n3))

uniformly in p, P̂ between Pp and P1−p, n0(j) ≤ n1 < n2 < n3 ≤ L(p) with n2 ≥ 4n1, and
all landing sequences I/I ′ of size η/η′ larger than η0/η′0.
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3. For any η, η′ > 0, there exists a constant C = C(η, η′) > 0 with the following property: for
any p, P̂ between Pp and P1−p, n ≤ N ≤ L(p), there exist two landing sequences I and I ′

of size η and η′ (that may depend on all the parameters mentioned) such that

P̂
( ˜̃A

η,I/η′,I′

j,σ (n, N)
)

≥ C P̂
(

Ãη,η′

j,σ (n, N)
)

.

Proof. The proof relies on gluing arguments based on RSW constructions. However, the events
considered are not monotone when σ is non-constant (there is at least one black arm and one
white arm). We will thus need a slight generalization of the FKG inequality for events “locally
monotone”.

Lemma 13. Consider A+, Ã+ two increasing events, and A−, Ã− two decreasing events. As-
sume that there exist three disjoint finite sets of vertices A, A+ and A− such that A+, A−, Ã+

and Ã− depend only on the sites in, respectively, A ∪A+, A ∪A−, A+ and A−. Then we have

P̂(Ã+ ∩ Ã−|A+ ∩ A−) ≥ P̂(Ã+)P̂(Ã−) (1.9)

for any product measure P̂.

Proof. Conditionally on the configuration ωA in A, the events A+ ∩ Ã+ and A− ∩ Ã− are
independent, so that

P̂(A+ ∩ Ã+ ∩ A− ∩ Ã−|ωA) = P̂(A+ ∩ Ã+|ωA)P̂(A− ∩ Ã−|ωA).

The FKG inequality implies that

P̂(A+ ∩ Ã+|ωA) ≥ P̂(A+|ωA)P̂(Ã+|ωA)

= P̂(A+|ωA)P̂(Ã+)

and similarly with A− and Ã−. Hence,

P̂(A+ ∩ Ã+ ∩ A− ∩ Ã−|ωA) ≥ P̂(A+|ωA)P̂(Ã+)P̂(A−|ωA)P̂(Ã−)

= P̂(A+ ∩ A−|ωA)P̂(Ã+)P̂(Ã−).

The conclusion follows by summing over all configurations ωA.

Once this lemma at our disposal, items 1. and 2. are straightforward. For item 3., we
consider a covering of ∂Sn (resp. ∂SN ) with at most 8η−1 (resp. 8η′−1) intervals (I) of length η
(resp. (I ′) of length η′). Then for some I, I ′,

P̂
( ˜̃A

η,I/η′,I′

j,σ (n, N)
)

≥ (8η−1)−1(8η′−1)−1P̂
(

Ãη,η′

j,σ (n, N)
)

.

We also have the following a-priori bounds for the arm events:

Proposition 14. Fix some j ≥ 1, σ ∈ S̃j and η0, η
′
0 ∈ (0, 1). Then there exist some exponents

0 < αj , α
′ < ∞, as well as constants 0 < Cj , C

′ < ∞, such that

Cj

(

n

N

)αj

≤ P̂
( ˜̃A

η,I/η′,I′

j,σ (n, N)
)

≤ C ′
(

n

N

)α′

(1.10)

uniformly in p, P̂ between Pp and P1−p, n ≤ N ≤ L(p), and all landing sequences I/I ′ of size
η/η′ larger than η0/η′0.
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1.4. Arm separation

The lower bound comes from iterating item 1. The upper bound can be obtained by using
concentric annuli: in each of them, RSW implies that there is a probability bounded away from
zero to observe a black circuit, preventing the existence of a white arm (consider a white circuit
instead if σ = BB . . . B).

1.4.4 Proof of the main result

Assume that Aj,σ(n, N) is satisfied: our goal is to link this event to the event ˜̃A
η0,Iη0/η′

0,Iη′0
j,σ (n, N),

for some fixed scales η0, η
′
0.

Proof. First note that it suffices to prove the result for n, N which are powers of two: then we
would have, if k, K are such that 2k−1 < n ≤ 2k and 2K ≤ n < 2K+1,

P̂
(

Aj,σ(n, N)
)

≤ P̂
(

Aj,σ(2k, 2K)
)

≤ C1P̂
( ˜̃A

η,I/η′,I′

j,σ (2k, 2K)
)

≤ C2P̂
( ˜̃A

η,I/η′,I′

j,σ (n, N)
)

.

We have to deal with the extremities of the j arms on the internal boundary ∂Sn, and on
the external boundary ∂SN .

1. External extremities

Let us begin with the external boundary. In the course of proof, we will have use for the
intermediate event Ã

./η′

j,σ (n, N) that there exists a set of j arms that is well-separated on the

external side ∂SN only, and also the event ˜̃A
./η′,I′

j,σ (n, N) associated to some landing sequence I ′

on ∂SN . Each of the j arms induces in S2K−1,2K a crossing of one of the four U-shaped regions

U1,ext
2K−1 , . . . , U

4,ext
2K−1 depicted in Figure 1.7. The “ext” indicates that a crossing of such a region

connects the two marked parts of the boundary. For the internal extremities, we will use the
same regions, but we distinguish different parts of the boundary. The key observation is the
following:
In a U-shaped region, any set of disjoint crossings can be made well-separated with
high probability.

More precisely, if we take such an N × 4N domain, the probability that any set of disjoint
crossings can be made η-well-separated (on the external boundary) can be made arbitrarily close
to 1 by choosing η sufficiently small, uniformly in N . We prove the following lemma, which
implies that on every scale, with very high probability the j arms can be made well-separated.

Lemma 15. For any δ > 0, there exists a size η(δ) > 0 such that for any p, any P̂ between Pp

and P1−p and any N ≤ L(p): in the domain U1,ext
N ,

P̂(Any set of disjoint crossings can be made η-well-separated) ≥ 1 − δ. (1.11)

Proof. First we note that there cannot be too many disjoint crossings in U1,ext
N . Indeed, the

probability of crossing this domain is less than some 1 − δ′ (by RSW): combined with the BK
inequality, this implies that the probability of observing at least h crossings is less than

(1 − δ′)h. (1.12)
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∂SN

∂S2N

U
1,ext
N

U
2,ext
N

U
3,ext
N

U
4,ext
N

Figure 1.7: The four U-shaped regions that we use for the external extremities.

We thus take T such that this quantity is less than δ/4.
Consider for the moment any η ∈ (0, 1) (we will see during the proof how to choose it). We

note that we can put disjoint annuli around Z− and Z+ to prevent crossings from arriving there.
Consider Z− for instance, and look at the disjoint annuli centered on Z− of the form S2l−1,2l(Z−),
with

√
ηN ≤ 2l−1 < 2l ≤ η3/8N (see Figure 1.8). We can take at least −C4 log η such disjoint

annuli for some universal constant C4 > 0, and with probability at least 1 − (1 − δ′′)−C4 log η

there exists a black circuit in one of the annuli. Consider then the annuli S2l−1,2l(Z−), with

η3/8N ≤ 2l−1 < 2l ≤ η1/4N : with probability at least 1 − (1 − δ′′)−C′
4 log η we observe a white

circuit in one of them. If two circuits as described exist, we say that Z− is “protected”. The same
reasoning applies for Z+.

Consider now the following construction: take c1 the lowest (ie closest to the bottom side)
monochromatic crossing (which can be either black or white), then c2 the lowest monochromatic
crossing disjoint from c1, and so on. The process stops after t steps, and we denote by C =
{cu}1≤u≤t the set of crossings so-obtained. Of course, C can be void: we set t = 0 in this case.
We have

P(t ≥ T ) ≤ (1 − δ′)T ≤ δ/4 (1.13)

by definition of T . We denote by zu the extremity of cu on the right side, and by σu ∈ {B, W}
its color.

In order to get some independence and be able to apply the previous construction around
the extremities of the crossings, we condition on the successive crossings. Consider some u ∈
{1, . . . , T} and some ordered sequence of crossings c̃1, c̃2, . . . , c̃u, together with colors σ̃1, σ̃2, . . . , σ̃u.
The event Eu := {t ≥ u and cv = c̃v, σv = σ̃v for any v ∈ {1, . . . , u}} is independent from the
status of the sites above c̃u. Hence, if we condition on Eu, percolation there remains unbiased
and we can use the RSW theorem.

We now do the same construction as before. Look at the disjoint annuli centered on zu of
the form S2l−1,2l(zu), with

√
ηN ≤ 2l−1 < 2l ≤ η3/8N on one hand, and with η3/8N ≤ 2l−1 <
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Z+

Z
−

U
1,ext
N

zucu
√

ηN

2ηN

Figure 1.8: We apply RSW in concentric annuli around Z− and Z+, and then around the
extremity zu of each crossing cu.

2l ≤ η1/4N on the other hand. Assume for instance that σ̃u = B. With probability at least
1 − (1 − δ′′)−C′′

4 log η we observe a white circuit in one of the annuli in the first set, preventing
other disjoint black crossings to arrive near zu, and also a black one in the second set, preventing
white crossings to arrive. Moreover, by considering a black circuit in the annuli S2l−1,2l(zu) with
η3/4N ≤ 2l−1 < 2l ≤ √

ηN , we can construct a small extension of cu. If the three circuits
described exist, cu is said to be “protected from above”. Summing over all possibilities for c̃i, σ̃i

(1 ≤ i ≤ u), we get that for some C ′′′
4 ,

P(t ≥ u and cu is not protected from above) ≤ (1 − δ′′)−C′′′
4 log η. (1.14)

Now for our set of crossings C,

P(C is not η-well-separated)

≤ P(t ≥ T ) +

T−1
∑

u=1

P(t ≥ u and cu is not protected from above)

+ P(Z− is not protected) + P(Z+ is not protected).

First, each term in the sum, as well as the last two terms, are less than (1 − δ′′)−C′′′
4 log η. We

also have P(t ≥ T ) ≤ δ/4, so that the right-hand side is at most

(T + 1)(1 − δ′′)−C′′′
4 log η +

δ

4
. (1.15)

It is less than δ if we choose η sufficiently small (T is fixed).
We now assume that C is η-well-separated, and prove that any other set C′ = {c′u}1≤u≤t′ of t′

(≤ t) disjoint crossings (we take it ordered) can also be made η-well-separated. For that purpose,
we replace recursively the tip of each c′v by the tip of one of the cu’s. If we take c′1 for instance,
it has to cross at least one of the cv (by maximality of C). Let us call cv1 the lowest one: still
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Chapter 1. Near-critical percolation in two dimensions

by maximality, c′1 cannot go below it. Take the piece of c′1 between its extremity z′1 and its last
intersection a1 with cv1 , and replace it with the corresponding piece of cv1 : this gives c′′1. This
new crossing has the same extremity as cv1 on the right-side, and it is not hard to check that
it is connected to the small extension c̃v1 of cv1 on the external side. Indeed, this extension is
connected by a path that touches cv1 in, say, b1: either b1 is between a1 and z1, in which case c′′1
is automatically connected to c̃v1 , otherwise c′1 has to cross the connecting path before a1 and
c′′1 is also connected to c̃v1 .

Consider then c2, and cv2 the lowest crossing it intersects: necessarily v2 > v1 (since c1 stays
above cv1), and the same reasoning applies. The claim follows by continuing this procedure until
c′t′ .

The arms are well-separated with positive probability.
The idea is then to “go down” in successive concentric annuli, and to apply the lemma in

each of them. We work with two different scales of separation:

• a fixed (macroscopic) scale η′0 that we will use to extend arms, associated to a constant
extension cost.

• another scale η′ which is very small (η′ ≪ η′0), so that the j arms can be made well-
separated at scale η′ with very high probability.

The proof goes as follows. Take some δ > 0 very small (we will see later how small), and some
η′ > 0 associated to it by the lemma. We start from the scale ∂S2K and look at the crossings
induced by the j arms. The previous lemma implies that with very high probability, these j
arms can be modified in S2K−1,2K so that they are η′-well-separated. Otherwise, we go down to
the next annulus: there still exist j arms, and what happens in S2K−1,2K is independent of what
happens in S2K−1 . On each scale, we have a very low probability to fail, and once the arms are
separated on scale η′, we go backwards by using the scale η′0, for which the cost of extension is
constant.

More precisely, after one step we get

Aj,σ(2k, 2K) ⊆ Ã
./η′

j,σ (2k, 2K) ∪
(

{One of the four U i,ext
2K−1 fails} ∩ Aj,σ(2k, 2K−1)

)

.

Hence, by independence of the two latter events,

P̂(Aj,σ(2k, 2K)) ≤ P̂(Ã
./η′

j,σ (2k, 2K)) + (4δ)P̂(Aj,σ(2k, 2K−1)).

We then iterate this argument: after K − k steps,

P̂(Aj,σ(2k, 2K))

≤ P̂(Ã
./η′

j,σ (2k, 2K)) + (4δ)P̂(Ã
./η′

j,σ (2k, 2K−1)) + (4δ)2P̂(Ã
./η′

j,σ (2k, 2K−2)) + . . .

+ (4δ)K−k−1P̂(Ã
./η′

j,σ (2k, 2k+1)) + (4δ)K−k.

We then use the size η′0 to go backwards: if the crossings are η′-separated at some scale m, there
exists some landing sequence Iη′ of size η′ where the probability of landing is comparable to the
probability of just being η′-well-separated, and then we can reach Iη′

0
of size η′0 on the next scale.

More precisely, there exist universal constants C1(η
′), C2(η

′) depending only on η′ such that for
all 1 ≤ i′ ≤ i, we can choose some Iη′ (which can depend on i′) such that

P̂(Ã
./η′

j,σ (2k, 2K−i′)) ≤ C1(η
′)P̂( ˜̃A

./η′,Iη′

j,σ (2k, 2K−i′))
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1.4. Arm separation

and then go to Iη′
0

on the next scale with cost C2(η
′):

P̂( ˜̃A
./η′,Iη′

j,σ (2k, 2K−i′)) ≤ C2(η
′)P̂( ˜̃A

./η′
0,Iη′0

j,σ (2k, 2K−i′+1)).

Now for the size η′0, going from ∂Sm to ∂S2m has a cost C ′
0 depending only on η′0 on each scale

m, we have thus

P̂(Ã
./η′

j,σ (2k, 2K−i′)) ≤ C1(η
′)C2(η

′)Ci′−1
0 P̂( ˜̃A

./η′
0,Iη′0

j,σ (2k, 2K)).

There remains a problem with the first term P̂(Ã
./η′

j,σ (2k, 2K)). . . So assume that we have started

from 2K−1 instead, so that the annulus S2K−1,2K remains free:

P̂(Aj,σ(2k, 2K))

≤ P̂(Aj,σ(2k, 2K−1))

≤ P̂(Ã
./η′

j,σ (2k, 2K−1)) + (4δ)P̂(Ã
./η′

j,σ (2k, 2K−2)) + (4δ)2P̂(Ã
./η′

j,σ (2k, 2K−3)) + . . .

+ (4δ)K−k−2P̂(Ã
./η′

j,σ (2k, 2k+1)) + (4δ)K−k−1

≤ C1(η
′)C2(η

′)
[

1 + (4δC0) + . . . + (4δC0)
K−k−1

]

P̂( ˜̃A
./η′

0,Iη′0
j,σ (2k, 2K)).

Now C0 is fixed as was noticed before, so we may have taken δ such that 4δC0 < 1/2, so that

C1(η
′)C2(η

′)
[

1 + (4δC0) + . . . + (4δC0)
K−k−1

]

≤ C3(η
′)

for some C3(η
′). We have thus reached the desired conclusion for external extremities:

P̂(Aj,σ(2k, 2K)) ≤ C3(η
′)P̂( ˜̃A

./η′
0,Iη′0

j,σ (2k, 2K)).

2. Internal extremities

The reasoning is the same for internal extremities, except that we work in the other direction,
from ∂S2k toward the interior. If we consider the domains U i,int

N having the same shapes as the
U i,ext

N domains, but with different parts of the boundary distinguished (see Figure 1.9), then the
lemma remains true. Hence,

P̂( ˜̃A
./η′

0,Iη′0
j,σ (2k, 2K)) ≤ P̂( ˜̃A

./η′
0,Iη′0

j,σ (2k+1, 2K))

≤ P̂( ˜̃A
η,./η′

0,Iη′0
j,σ (2k+1, 2K)) + (4δ)P̂( ˜̃A

η,./η′
0,Iη′0

j,σ (2k+2, 2K)) + . . .

+ (4δ)K−k−2P̂( ˜̃A
η,./η′

0,Iη′0
j,σ (2K−1, 2K)) + (4δ)K−k−1

≤ C1(η)C2(η)

[

1 + (4δC0) + . . . + (4δC0)
K−k−1

]

P̂( ˜̃A
η0,Iη0/η′

0,Iη′0
j,σ (2k, 2K))

and the conclusion follows.

1.4.5 Some consequences

We now state some important consequences of the previous theorem.
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Figure 1.9: For the internal extremities, we consider the same domains but we mark different
parts of the boundary.

Extendability

Proposition 16. Take j ≥ 1 and a color sequence σ ∈ S̃j. Then

P̂(Aj,σ(n, 2N)), P̂(Aj,σ(n/2, N)) ≍ P̂(Aj,σ(n, N)) (1.16)

uniformly in p, P̂ between Pp and P1−p and n0(j) ≤ n ≤ N ≤ L(p).

Proof. This proposition comes directly from combining the arm separation theorem with the

extendability property of the ˜̃A events (item 1. of Proposition 12).

Quasi-multiplicativity

Proposition 17. Take j ≥ 1 and a color sequence σ ∈ S̃j. Then

P̂(Aj,σ(n1, n2))P̂(Aj,σ(n2, n3)) ≍ P̂(Aj,σ(n1, n3)) (1.17)

uniformly in p, P̂ between Pp and P1−p and n0(j) ≤ n1 < n2 < n3 ≤ L(p).

Proof. On one hand, we have

P̂(Aj,σ(n1, n3)) ≤ P̂(Aj,σ(n1, n2) ∩ Aj,σ(n2, n3)) = P̂(Aj,σ(n1, n2))P̂(Aj,σ(n2, n3))

by independence of the events Aj,σ(n1, n2) and Aj,σ(n2, n3).
On the other hand, we may assume that n2 ≥ 8n1. Then for some η0, Iη0 , the previous

results (separation and extendability) allow to use the quasi-multiplicativity for ˜̃A events (item
2. of Proposition 12):

P̂(Aj,σ(n1, n2))P̂(Aj,σ(n2, n3)) ≍ P̂(Aj,σ(n1, n2/4))P̂(Aj,σ(n2, n3))

≍ P̂( ˜̃A
./η0,Iη0
j,σ (n1, n2/4))P̂( ˜̃A

η0,Iη0/.
j,σ (n2, n3))

≍ P̂(Aj,σ(n1, n3)).
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1.4. Arm separation

Arms with defects

In some situations, the notion of arms that are completely monochromatic is too restrictive, and
the following question arises quite naturally: do the probabilities change if we allow the arms to
present some (fixed) number of “defects”, ie sites of the opposite color?

We define A
(d)
j,σ(n, N) the event that there exist j disjoint arms a1, . . . , aj from ∂Sn to ∂SN

with the property: for any i ∈ {1, . . . , j}, ai contains at most d sites of color σ̃i. The quasi-
multiplicativity property entails the following result, which will be needed for the proof of The-
orem 27:

Proposition 18. Let j ≥ 1 and σ ∈ S̃j. Fix also some number d of defects. Then we have

P̂
(

A
(d)
j,σ(n, N)

)

≍ (1 + log(N/n))dP̂
(

Aj,σ(n, N)
)

(1.18)

uniformly in p, P̂ between Pp and P1−p and n0(j) ≤ n ≤ N ≤ L(p).

Actually, we will only need the upper bound on P̂
(

A
(d)
j,σ(n, N)

)

. For instance, we will see in the
next section that the arm events decay like power laws at the critical point. This proposition thus
implies, in particular, that the “arm with defects” events are described by the same exponents:
allowing defects just adds a logarithmic correction.

Proof. We introduce a logarithmic division of the annulus Sn,N : we take k and K such that
2k−1 < n ≤ 2k and 2K ≤ N < 2K+1. Roughly speaking, we “take away” the annuli where the
defects take place, and “glue” the pieces of arms in the remaining annuli by using the quasi-
multiplicativity property.

Let us begin with the upper bound: we proceed by induction on d. The property clearly
holds for d = 0. Take some d ≥ 1: by considering the first annuli S2i,2i+1 where a defect occurs,
we get

P̂(A
(d)
j,σ(n, N)) ≤

K−1
∑

i=k

P̂(Aj,σ(2k, 2i))P̂(A
(d−1)
j,σ (2i+1, 2K)). (1.19)

We have P̂(A
(d−1)
j,σ (2i+1, 2K)) ≤ Cd−1(1+ log(N/n))d−1P̂(Aj,σ(2i+1, 2K)) thanks to the induction

hypothesis, and by quasi-multiplicativity,

P̂(A
(d)
j,σ(n, N)) ≤ (1 + log(N/n))d−1Cd−1

K−1
∑

i=k

P̂(Aj,σ(2k, 2i))P̂(Aj,σ(2i+1, 2K))

≤ Cd−1(1 + log(N/n))d−1
K−1
∑

i=k

C ′P̂(Aj,σ(2k, 2K))

≤ Cd(1 + log(N/n))d−1(K − k)P̂(Aj,σ(2k, 2K)),

which gives the desired upper bound.

For the lower bound, note that for any k ≤ i0 < i1 < . . . < id < id+1 = K, A
(d)
j,σ(n, N) ⊇

A
(d)
j,σ(2k−1, 2K+1) ⊇ Aj,σ(2k−1, 2K+1) ∩ {Each of the j arms has exactly one defect in each of the
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annuli S2ir ,2ir+1}, so that for K − k ≥ d + 1,

P̂(A
(d)
j,σ(n, N)) ≥

∑

k=i0<i1<i2<...<id<id+1=K

Cd

d
∏

r=0

P̂(Aj,σ(2ir+1, 2ir+1))

≥ C ′
d

(

K − k − 1

d

)

P̂(Aj,σ(2k−1, 2K+1))

≥ C ′′
d (K − k)dP̂(Aj,σ(2k−1, 2K+1)),

and our lower bound follows.

Remark: more general annuli

We will sometimes need to consider more general arm events, in annuli of the form R \ r, for
non-necessarily concentric parallelograms r ⊆ R̊. Items 1. and 2. of Proposition 12 can easily
be extended. Separateness and well-separateness can be defined in the same way for these
arm events, and for any τ > 1, we can get results uniform in the usual parameters and in
parallelograms r, R such that Sn ⊆ r ⊆ Sτn and SN/τ ⊆ R ⊆ SN for some n, N ≤ L(p):

P̂(∂r  j,σ ∂R) ≍ P̂(∂Sn  j,σ ∂SN ), (1.20)

and similarly with separateness conditions on the external boundary or on the internal one.

1.4.6 Arms in the half-plane

So far, we have been interested in arm events in the whole plane: we can define in the same
way the event Bj,σ(n, N) that there exist j arms that stay in the upper half-plane H, of colors
prescribed by σ ∈ S̃j and connecting ∂S′

n to ∂S′
N , with the notation ∂S′

n = (∂Sn) ∩ H. These
events appear naturally when we look at arms near a boundary.

For the sake of completeness, let us just mention that all the results stated here remain true
for arms in the half-plane. In fact, there is a natural way to order the different arms, which
makes this case easier. We will not use these events in the following, and we leave the details to
the reader.

1.5 Description of critical percolation

When studying the phase transition of percolation, the critical regime plays a very special role.
It possesses a strong property of conformal invariance in the scaling limit. This particularity,
first observed by physicists ([57, 7, 8]), has been proved by Smirnov in [69], and later extended
by Camia and Newman in [16]. It allows to link the critical regime to the SLE processes (with
parameter 6 here) introduced by Schramm in [67], and thus to use computations made for these
processes ([47, 48]).

In the next sections, we will see why our description of critical percolation yields in turn a
good description of near-critical percolation (which does not feature a priori any sort of conformal
invariance), in particular how the characteristic functions behave through the phase transition.

44



1.5. Description of critical percolation

1.5.1 Arm exponents for critical percolation

Color switching

We focus here on the probabilities of arm events at the critical point. For arms in the half-plane,
a nice combinatorial argument (noticed in [3, 71]) shows that once fixed the number j of arms,
prescribing the color sequence σ does not change the probability. This is the so-called “color
exchange trick”:

Proposition 19. Let j ≥ 1 be any fixed integer. If σ, σ′ are two color sequences, then for any
n′

0(j) ≤ n ≤ N ,

P1/2(Bj,σ(n, N)) = P1/2(Bj,σ′(n, N)). (1.1)

Proof. The proof relies on the fact that there is a canonical way to order the arms. If we condition
on the i left-most arms, percolation in the remaining domain is unbiased, so that we can “flip”
the sites there: for any color sequence σ, if we denote by

σ̃(i) = (σ1, . . . , σi, σ̃i+1, . . . , σ̃j)

the sequence with the same i first colors, and the remaining ones flipped, then

P1/2(Bj,σ(n, N)) = P1/2(Bj,σ̃(i)(n, N)).

It is not hard to convince oneself that for any two sequences σ, σ′, we can go from σ to σ′ in a
finite number of such operations.

This result is not as direct in the whole plane case, since there is no canonical ordering any
more. However, the argument can be adapted to prove that the probabilities change only by a
constant factor, as long as there is an interface, ie as long as σ contains at least one white arm
and one black arm.

Proposition 20. Let j ≥ 1 be any fixed integer. If σ, σ′ ∈ S̃j are two non-constant color
sequences ( ie both colors are present), then

P1/2(Aj,σ(n, N)) ≍ P1/2(Aj,σ′(n, N)) (1.2)

uniformly in n0(j) ≤ n ≤ N .

Proof. Assume that σ1 = B and σ2 = W , and fix some landing sequence I. If we replace the
event Aj,σ(n, N) by the strengthened event Ā

I/.
j,σ(n, N), we are allowed to condition on the black

arm arriving on I1 and on the white arm arriving on I2 that are closest to each other: if we choose
for instance I such that the point (N, 0) is between I1 and I2, these two arms can be determined
via an exploration process starting at (N, 0). We can then “flip” the remaining region. More
generally, we can condition on any set of consecutive arms including these two arms, and the
result follows for the same reasons as in the half-plane case.

We would like to stress the fact that for the reasoning, we crucially need two arms of opposite
colors. In fact, the preceding result is expected to be false if σ is constant and σ′ non-constant
(the two probabilities not being of the same order of magnitude), which is quite surprising at
first sight.
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Chapter 1. Near-critical percolation in two dimensions

Derivation of the exponents

The link with SLE6 makes it possible to prove the existence of the (multichromatic) “arm
exponents”, and derive their values ([50, 71]), that had been predicted in the physics literature
(see e.g. [3] and the references therein).

Theorem 21. Fix some j ≥ 1. Then for any non-constant color sequence σ ∈ S̃j,

P1/2

(

Aj,σ(n0(j), N)
)

≈ N−αj (1.3)

when N → ∞, with

• α1 = 5/48,

• and for j ≥ 2, αj = (j2 − 1)/12.

Let us sketch very briefly how it is proved. Consider the discrete (radial) exploration process
in a unit disc: using the property of conformal invariance in the scaling limit, we can prove
that this process converges toward a radial SLE6, for which we can compute disconnection
probabilities. It implies that

P1/2(Aj,σ(ηn, n)) → gj(η),

for some function gj(η) ∼ ηαj as η → 0. Then, the quasi-multiplicativity property in concentric
annuli of fixed modulus provides the desired result.

As mentioned, this theorem is believed to be false for constant σ, ie when the arms are all
of the same color. In this case, the probability should be smaller, or equivalently the exponent
(assuming its existence) larger. Hence for each j = 2, 3, . . ., there are two different arm expo-
nents, the multichromatic j-arm exponent αj given by the previous formula (most often simply
called the j-arm exponent) and the monochromatic j-arm exponent α′

j , for which no closed for-
mula is currently known, nor even predicted. The only result proved so far concerns the case
j = 2: as shown in [50], the monochromatic 2-arm exponent can be expressed as the leading
eigenvalue of some (complicated) differential operator. Numerically, it has been found (see [3])
to be approximately α′

2 ≃ 0.35 . . .
Note also that the derivation using SLE6 only provides a logarithmic equivalence. However,

there are reasons to believe that a stronger equivalence holds, a “≍”: for instance we know that
this is the case for the “universal exponents” computed in the next sub-section.

We will often relate events to combinations of arm events, that in turn can be linked (see
next section) to arm events at the critical point p = 1/2. It will thus be convenient to introduce
the following notation, with σj = BWBW . . .: for any n0(j) ≤ n < N ,

πj(n, N) := P1/2(Aj,σj (n, N)) (1.4)

(≍ P1/2(Aj,σ(n, N)) for any non-constant σ), and in particular

πj(N) := P1/2(Aj,σj (n0(j), N)) (≈ N−αj ). (1.5)

Note that with this notation, the a-priori bound and the quasi-multiplicativity property take
the aesthetic forms

C(n/N)αj ≤ πj(n, N) ≤ C ′(n/N)α′
, (1.6)

and πj(n1, n2)πj(n2, n3) ≍ πj(n1, n3). (1.7)

Let us mention that we can derive in the same way exponents for arms in the upper half-plane,
the “half-plane exponents”:
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1.5. Description of critical percolation

Theorem 22. Fix some j ≥ 1. Then for any sequence of colors σ,

P1/2

(

Bj,σ(n′
0(j), N)

)

≈ N−βj (1.8)

when N → ∞, with

βj = j(j + 1)/6.

Remark 23. As mentioned earlier, the triangular lattice is at present the only lattice for which
conformal invariance in the scaling limit has been proved, and as a consequence the only lattice
for which the existence and the values of the arm exponents have been established – with the
noteworthy exception of the three “universal” exponents that we are going to derive.

Note: fractality of various sets

These arm exponents can be used to measure the size (Hausdorff dimension) of various sets
describing percolation clusters. In physics literature for instance (see e.g. [3]), a set S is said to
be fractal of dimension DS if the density of points in S within a box of size n decays as n−xS ,
with xS = 2 − DS (in 2D). The co-dimension xS is related to arm exponents in many cases:

• The 1-arm exponent is related to the existence of long connections, from the center of a
box to its boundary. It will thus measure the size of “big” clusters, like the incipient infinite
cluster (IIC) as defined by Kesten ([40]), which scales as n(2−5/48) = n91/48.

• The monochromatic 2-arm exponent describes the size of the “backbone” of a cluster. The
fact that this backbone is much thinner than the cluster itself was used by Kesten [42]
to prove that the random walk on the IIC is sub-diffusive (while it has been proved to
converge toward a Brownian Motion on a super-critical infinite cluster).

• The multichromatic 2-arm exponent is related to the boundaries (hulls) of big clusters,
which are thus of fractal dimension 2 − α2 = 7/4.

• The 3-arm exponent concerns the external (accessible) perimeter of a cluster, which is the
accessible part of the boundary: one excludes “fjords” which are connected to the exterior
only by 1-site wide passages. The dimension of this frontier is 2 − α3 = 4/3. These
two latter exponents can be observed on random interfaces, numerically and in “real-life”
experiments as well (see [63, 29] for instance).

• As mentioned earlier, the 4-arm exponent with alternating colors counts the pivotal (singly-
connecting) sites (often called “red” sites in physics literature). This set can be viewed as
the contact points between two distinct (large) clusters, its dimension is 2−α4 = 3/4. We
will relate this exponent to the correlation length exponent ν in Section 1.7.

1.5.2 Universal exponents

We will now examine as a complement some particular exponents, for which heuristic predictions
and elementary derivations exist, namely β2 = 1, β3 = 2 and α5 = 2. They are all integers, and
they were established before the complete derivation using the SLE6 (and actually they provide
crucial a-priori estimates to prove the convergence toward SLE6). Moreover, the equivalence
that we get is stronger: we can replace the “≈” by a “≍”.

Theorem 24. When N → ∞,

47
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∂SN

I1

I2
I3

I4

I5

v

Figure 1.10: The landing sequence I1, . . . , I5.

1. For any σ ∈ S2,
P1/2

(

B2,σ(0, N)
)

≍ N−1.

2. For any σ ∈ S3,
P1/2

(

B3,σ(0, N)
)

≍ N−2.

3. For any non-constant σ ∈ S̃5,

P1/2

(

A5,σ(0, N)
)

≍ N−2.

Proof. We give a complete proof only for item 3., since we will not need the two first ones – we
will however sketch at the end how to derive them.

Heuristically, we can prove that the 5-arm sites can be seen as particular points on the
boundary of two big black clusters, and that consequently their number is of order 1 in SN/2.
Then it suffices to use that the different sites in SN/2 produce contributions of the same order.
This argument can be made rigorous by proving that the number of “macroscopic” clusters has
an exponential tail: we refer to the first exercise sheet in [78] for more details. We propose here
a more direct – but less elementary – proof using the separation lemmas.

By color switching, it is sufficient to prove the claim for σ = BWBBW . In light of our
previous results, it is clear that

P1/2

(

v  5,σ ∂SN ) ≍ P1/2

(

0 5,σ ∂SN )

uniformly in N , v ∈ SN/2. It is thus enough to prove that the number of such 5-arm sites in
SN/2 is of order 1.

Let us consider the upper bound first. Take the particular landing sequence I1, . . . , I5 depicted
on the figure, and consider the event

Av := {v  I
5,σ ∂SN} ∩ {v is black}.
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1.5. Description of critical percolation

Note that P1/2(Av) = 1
2P(v  I

5,σ ∂SN ) since the existence of the arms is independent of the
status of v, so that P1/2(Av) ≍ P1/2

(

0  5,σ ∂SN ). We claim that Av can occur for at most
one site v. Indeed, assume that Av and Aw occur, and denote by r1, . . . , r5 and r′1, . . . , r

′
5 the

corresponding arms. Since r1 ∪ r4 ∪ {v} separates I3 from I5, necessarily w ∈ r1 ∪ r4 ∪ {v}.
Similarly, w ∈ r2 ∪ r4 ∪ {v}: since r1 ∩ r2 = ∅, we get that w ∈ r4 ∪ {v}. But only one arm
can “go through” r3 ∪ r5: the arm r′1 ∪ {w} from w to I1 has to contain v, and so does r′2 ∪ {w}.
Since r′1 ∩ r′2 = ∅, we get finally v = w.

Consequently,

1 ≥ P1/2

(

∪v∈SN/2
Av

)

=
∑

v∈SN/2

P1/2(Av) ≍ N2P1/2

(

0 5,σ ∂SN ), (1.9)

which provides the upper bound.
Let us turn to the lower bound. We perform a construction showing that a 5-arm site

appears with positive probability, by using multiple applications of RSW. With probability at
least δ2

16 > 0, there is a black horizontal crossing in the strip [−N, N ] × [0, N/8], together with
a white one in [−N, N ] × [−N/8, 0]. Assume this is the case, and condition on the lowest black
left-right crossing c. We note that any site on this crossing has already 3 arms, 2 black arms and
a white one. On the other hand, the percolation in the region above it remains unbiased.

Now, still using RSW, with positive probability c is connected to the top side by a black
path included in [−N/8, 0] × [−N, N ], and another white path included in [0, N/8] × [−N, N ].
Assume these paths exist, and denote by v1 and v2 the respective sites on c where they arrive.
Follow c from left to right, and consider the last vertex v before v2 that is connected to the top
side: it is not hard to see that there is a white arm from v to the top side, and that v ∈ SN/2,
since v is between v1 and v2. Hence,

P1/2

(

∪v∈SN/2
{v  5,σ ∂SN}

)

≥ C (1.10)

for some universal constant C > 0. Since we also have

P1/2

(

∪v∈SN/2
{v  5,σ ∂SN}

)

≤
∑

v∈SN/2

P1/2

(

v  5,σ ∂SN )

≤ C ′N2P1/2

(

0 5,σ ∂SN ),

the desired lower bound follows.

We now explain briefly how to obtain the two half-plane exponents (items 1. and 2.). We
again use the arm separation theorem, but note that [78] contains elementary proofs for them
too. For the 2-arm exponent in the half-plane, we take σ = BW and remark that if we fix two
landing areas I1 and I2 on ∂S′

N , at most one site on the segment [−N/2, N/2]×{0} is connected
by two arms to I1 and I2. On the other hand, a 2-arm site can be constructed by considering
a black path from [−N/2, 0] × {0} to I1 and a white path from [0, N/2] × {0} to I2. Then the
right-most site on [−N/2, N/2] × {0} connected by a black arm to I1 is a 2-arm site. Several
applications of RSW allow to conclude.

For the 3-arm exponent, we take three landing areas I1, I2 and I3, and σ = BWB. It is not
hard to construct a 3-arm site by taking a black crossing from I1 to I3 and considering the closest
to I2. We can then force it to be in SN/2 ∩ H by a RSW construction. For the upper bound, we
first notice that if we require the arms to stay strictly positive, the probability remains of the
same order of magnitude. We then use that at most one site in SN/2 ∩ H is connected to the
landing areas by three positive arms.
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Chapter 1. Near-critical percolation in two dimensions

The proofs given here only require RSW-type considerations (including separation of arms).
As a consequence, they also apply to near-critical percolation. It is clear for Pp, on scales
N ≤ L(p), but a priori only for the color sequences we have used in the proofs (resp. σ =
BW , BWB and BWBBW – and of course those we can deduce from them by the symmetry
p ↔ 1 − p): it is indeed not obvious that Pp

(

0  5,σ ∂SN

)

≍ Pp

(

0  5,σ′ ∂SN

)

for two distinct
non-constant σ and σ′. This is essentially Theorem 27, its proof occupies a large part of the next
section.

For a general measure P̂ between Pp and P1−p, we similarly have to be careful: we do not
know whether P̂(v  5,σ ∂SN ) remains of the same order of magnitude when v varies. This also
comes from Theorem 27, but in the course of its proof we will need an a-priori estimate on the
probability of 5 arms, so temporarily we will be content with a weaker statement that does not
use its conclusion:

Lemma 25. For σ = BWBBW (= σ5), we have uniformly in p, P̂ between Pp and P1−p and
N ≤ L(p):

∑

v∈SN/2

P̂
(

v  5,σ ∂SN

)

≍ 1. (1.11)

Remark 26. We would like to mention that these estimates for critical and near-critical per-
colation remain valid on other lattices too, like the square lattice (see the discussion in the last
section) – at least for the color sequences that we have used in the proofs, no analog of the color
exchange trick being available (to our knowledge).

1.6 Arm events near criticality

1.6.1 Statement of the theorem

We would like now to study how the events Aj,σ(n, N) are affected by a variation of the parameter
p. We have defined L(p) in terms of crossing events to be the scale on which percolation can
be considered as (approximately) critical, we would thus expect the probabilities of these events
not to vary too much if n, N remain below L(p). This is what happens:

Theorem 27. Let j ≥ 1, σ ∈ S̃j be as usual. Then we have

P̂
(

Aj,σ(n, N)
)

≍ P̂′(Aj,σ(n, N)
)

(1.1)

uniformly in p, P̂ and P̂′ between Pp and P1−p, and n0(j) ≤ n ≤ N ≤ L(p).

Note that if we take in particular P̂′ = P1/2, we get that below the scale L(p), the arm events
remain roughly the same as at criticality:

P̂
(

Aj,σ(n, N)
)

≍ P1/2

(

Aj,σ(n, N)
)

.

This will be important to derive the critical exponents for the characteristic functions from the
arm exponents at criticality.

Remark 28. Note that the property of exponential decay with respect to L(p) (Lemma 38),
proved in Section 1.7.4, shows that we cannot hope for a similar result on a much larger range,
so that L(p) is the appropriate scale here: consider for instance Pp with p > 1/2, the probability
to observe a white arm tends to 0 exponentially fast (and thus much faster than at the critical
point), while the probability to observe a certain number of disjoint black arms tends to a positive
constant.
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1.6. Arm events near criticality

1.6.2 Proof of the theorem

We want to compare the value of P̂(Aj,σ(n, N)) for different measures P̂. A natural way of doing
this is to go from one to the other by using Russo’s formula (Theorem 1). But since for j ≥ 2
and non-constant σ, the event Aj,σ(n, N) is not monotone, we need a slight generalization of
this formula, for events that can be expressed as the intersection of two monotone events, one
increasing and one decreasing. We also allow the parameters pv to be differentiable functions of
t ∈ [0, 1].

Lemma 29. Let A+ and A− be two monotone events, respectively increasing and decreasing,
depending only on the sites contained in some finite set of vertices S. Let (p̂v)v∈S be a family
of differentiable functions p̂v : t ∈ [0, 1] 7→ p̂v(t) ∈ [0, 1], and denote by (P̂t)0≤t≤1 the associated
product measures. Then

d

dt
P̂t(A

+ ∩ A−)

=
∑

v∈S

d

dt
p̂v(t)

[

P̂t(v is pivotal for A+ but not for A−, and A− occurs)

− P̂t(v is pivotal for A− but not for A+, and A+ occurs)
]

.

Proof. We adapt the proof of standard Russo’s formula. We use the same function P of the
parameters (p̂v)v∈S , and we note that for a small variation ǫ > 0 in w,

P̂+ǫ(A+ ∩ A−) − P̂(A+ ∩ A−)

= ǫ × P̂(w is pivotal for A+ but not for A−, and A− occurs)

− ǫ × P̂(w is pivotal for A− but not for A+, and A+ occurs).

Now, it suffices to compute the derivative of the function t 7→ P̂t(A
+ ∩ A−) by writing it as the

composition of t 7→ (p̂v(t)) and (p̂v)v∈S 7→ P̂(A).

Proof of the theorem. We now turn to the proof itself. It is divided into three main steps.

1. First simplifications

Note first that by quasi-multiplicativity, we can restrict ourselves to n = n0(j). It also suffices
to prove the result for some fixed P̂′, with P̂ varying: we thus assume that p < 1/2, and take
P̂′ = Pp. Denoting by p̂v the parameters of P̂, we have by hypothesis p̂v ≥ p for each site v. For
technical reasons, we suppose that the sizes of annuli are powers of two: take k0, K such that
2k0−1 < n0 ≤ 2k0 and 2K ≤ N < 2K+1, then

Pp(Aj,σ(n0, N)) ≍ Pp(Aj,σ(2k0 , 2K))

and the same is true for P̂.
To estimate the change in probability when p is replaced by p̂v, we will use the observation

that the pivotal sites give rise to 4 alternating arms locally (see Figure 1.11). However, this does
not work so nicely for the sites v which are close to ∂S2k0 or ∂S2K , so for the sake of simplicity
we treat apart these sites. We perform the change p p̂v in S2k0 ,2K \S2k0+3,2K−3 . Note that the

intermediate measure P̃ so obtained is between Pp and P1−p, and that P̃(Aj,σ(2k0+3, 2K−3)) =
Pp(Aj,σ(2k0+3, 2K−3)). We have

P̃(Aj,σ(2k0 , 2K)) ≍ P̃(Aj,σ(2k0+3, 2K−3)) (1.2)
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v

∂S2l

∂S2l+3

∂S2K

∂S2l(v)

Figure 1.11: If v is pivotal, 4 alternating arms arise locally.

and also
Pp(Aj,σ(2k0 , 2K)) ≍ Pp(Aj,σ(2k0+3, 2K−3)), (1.3)

which shows that it would be enough to prove the result with P̃ instead of Pp.

2. Make appear the logarithmic derivative of the probability by applying Russo’s
formula

The event Aj,σ(2k0 , 2K) cannot be directly written as an intersection like in Russo’s formula,
since the order of the different arms is prescribed. To fix this difficulty, we impose the landing
areas of the different arms on ∂S2K , ie we fix some landing sequence I ′ = I ′1, . . . , I

′
j and we

consider the event Ā
./I′

j,σ (2k0 , 2K). Since we know that

P̃
(

Aj,σ(2k0 , 2K)
)

≍ P̃
(

Ā
./I′

j,σ (2k0 , 2K)
)

, (1.4)

and also with P̂ instead of P̃, it is enough to prove the result for this particular landing sequence.
We study successively three cases. We begin with the case of one arm, which is slightly more

direct than the two next ones – however, only small adaptations are needed. We then consider
the special case where j is even and σ alternating: due to the fact that any arm is surrounded by
two arms of opposite color, the local four arms are always of the right length. We finally prove
the result for any j and any σ: a technical complication arises in this case, for which the notion
of “arms with defects” is needed.

Case 1: j = 1

We consider first the case of one arm, and assume for instance σ = B. We introduce the
family of measures (P̃t)t∈[0,1] with parameters

p̃v(t) = tp̂v + (1 − t)p (1.5)

in S2k0+3,2K−3 , corresponding to a linear interpolation between p and p̂v. For future use, note

that P̃t is between Pp and P1−p for any t ∈ [0, 1]. We have d
dt p̃v(t) = p̂v−p if v ∈ S2k0+3,2K−3 (and
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1.6. Arm events near criticality

0 otherwise. . . ), generalized Russo’s formula (with just an increasing event – take for instance
A− = Ω) thus gives:

d

dt
P̃t

(

Ā
./I′

1,σ (2k0 , 2K)
)

=
∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t(v is pivotal for Ā
./I′

1,σ (2k0 , 2K)).

The key remark is that the summand can be expressed in terms of arm events: for proba-
bilities, being pivotal is approximately the same as having a black arm, and four arms locally
around v. Indeed,

[

v is pivotal for Ā
./I′

1,σ (2k0 , 2K)
]

iff

(1) There exists an arm r1 from ∂S2k0 to I ′1, with v ∈ r1; r1 is black, with a possible exception

in v (Ā./I′

1,σ (2k0 , 2K) occurs when v is black).

(2) There exists a path c1 passing through v and separating ∂S2k0 from I ′1 (c1 may be either a
circuit around ∂S2k0 or a path with extremities on ∂S2K ); c1 is white, except possibly in v
(there is no black arm from ∂S2k0 to I ′1 when v is white).

Put now a rhombus R(v) around v: if it does not contain 0, then v is connected to ∂R(v) by 4
arms of alternating colors. Indeed, r1 provides two black arms, and c1 two white arms.

Look at the pieces of the black arm outside of R(v): if R(v) is not too large, we can expect
them to be sufficiently large to enable us to reconstitute the whole arm. We would like that the
two white arms are a good approximation of the whole circuit too. We thus take R(v) of size
comparable to the distance d(0, v): if 2l+1 < ‖v‖∞ ≤ 2l+2, we take R(v) = S2l(v). It is not hard
to check that R(v) ⊆ S2l,2l+3 for this particular choice of R(v) (see Figure 1.11), so that for any
t ∈ [0, 1],

P̃t(v is pivotal for Ā
./I′

1,σ (2k0 , 2K))

≤ P̃t

(

{∂S2k0  ∂S2l} ∩ {∂S2l+3  ∂S2K} ∩ {v  4,σ4 ∂S2l(v)}
)

= P̃t

(

∂S2k0  ∂S2l

)

P̃t

(

∂S2l+3  ∂S2K

)

P̃t

(

v  4,σ4 ∂S2l(v)
)

by independence of the three events, since they are defined in terms of sites in disjoint sets (recall
that σ4 = BWBW ). We can then make appear the original event by joining together the two
first terms, using quasi-multiplicativity and extendability4:

P̃t

(

∂S2k0  ∂S2l

)

P̃t

(

∂S2l+3  ∂S2K

)

≤ C2P̃t

(

Ā
./I′

1,σ (2k0 , 2K)
)

(1.6)

for some C2 universal. Hence5,

P̃t(v is pivotal for Ā
./I′

1,σ (2k0 , 2K)) ≤ C2P̃t

(

Ā
./I′

1,σ (2k0 , 2K)
)

P̃t

(

v  4,σ4 ∂S2l(v)
)

. (1.7)

We thus get

d

dt
P̃t

(

Ā
./I′

1,σ (2k0 , 2K)
)

≤ C2

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

(

Ā
./I′

1,σ (2k0 , 2K)
)

P̃t

(

v  4,σ4 ∂S2l(v)
)

.

4Note that in the case of one arm, the extendability property, as well as the quasi-multiplicativity, are direct
consequences of RSW and do not require the separation lemmas.

5As we will see in the next sub-section (Proposition 31), the converse bound also holds: the estimate obtained
gives the exact order of magnitude for the summand.
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Now dividing by P̃t

(

Ā
./I′

1,σ (2k0 , 2K)
)

, we make appear its logarithmic derivative in the left-hand
side,

d

dt
log
[

P̃t

(

Ā
./I′

1,σ (2k0 , 2K)
)]

≤ C2

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

(

v  4,σ4 ∂S2l(v)
)

, (1.8)

it thus suffices to show that for some C3 universal,

∫ 1

0

∑

v∈S
2k0+3,2K−3

(p̂v − p) P̃t

(

v  4,σ4 ∂S2l(v)
)

dt ≤ C3. (1.9)

We will prove it in the next step, but before that, we turn to the two other cases: even if the
computations need to be modified, it is still possible to reduce the proof to this inequality.

Case 2: j even and σ alternating

In this case,

Ā
./I′

j,σ (2k0 , 2K) = A+ ∩ A− (1.10)

with A+ = A+(2k0 , 2K) = {There exist j/2 disjoint black arms r1 : ∂S2k0  I ′1, r3 : ∂S2k0  

I ′3 . . .} and A− = A−(2k0 , 2K) = {There exist j/2 disjoint white arms r2 : ∂S2k0  
∗ I ′2, r4 :

∂S2k0  
∗ I ′4 . . .}.

We then perform the change p p̂v in S2k0+3,2K−3 linearly as before (Eq.(1.5)), which gives

rise to the family of measures (P̃t)t∈[0,1], and generalized Russo’s formula reads

d

dt
P̃t

(

Ā
./I′

j,σ (2k0 , 2K)
)

=
∑

v∈S
2k0+3,2K−3

(p̂v − p)
[

P̃t(v is pivotal for A+ but not for A−, and A− occurs)

− P̃t(v is pivotal for A− but not for A+, and A+ occurs)
]

.

We note that
[

v is pivotal for A+(2k0 , 2K) but not A−(2k0 , 2K), and A−(2k0 , 2K) occurs
]

iff
for some i′ ∈ {1, 3 . . . , j − 1},

(1) There exist j disjoint monochromatic arms r1, . . . , rj from ∂S2k0 to I ′1, . . . , I
′
j , with v ∈ ri′ ;

r2, r4, . . . are white, and r1, r3, . . . are black, with a possible exception for ri′ in v (the event

Ā
./I′

j,σ (2k0 , 2K) is satisfied when v is black).

(2) There exists a path ci′ separating ∂S2k0 from I ′i′ ; this path is white, except possibly in v
(∂S2k0 and I ′i′ are separated when v is white).

If we take the same rhombus R(v) ⊆ S2l,2l+3 around v, then v is still connected to ∂R(v) by 4
arms of alternating colors. Indeed, ri′ provides two black arms, and ci′ (which can contain parts
of ri′−1 or ri′+1 – see Figure 1.11) provides the two white arms.

Hence for any t ∈ [0, 1],

P̃t(v is pivotal for A+ but not A−, and A− occurs)

≤ P̃t

(

Aj,σ(2k0 , 2l) ∩ Ā
./I′

j,σ (2l+3, 2K) ∩ {v  4,σ4 ∂S2l(v)}
)

= P̃t

(

Aj,σ(2k0 , 2l)
)

P̃t

(

Ā
./I′

j,σ (2l+3, 2K)
)

P̃t

(

v  4,σ4 ∂S2l(v)
)
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1.6. Arm events near criticality

∂S
2l(v)

v

∂S
2l′+1(v)

∂S
2l′ (v)

Figure 1.12: More complex events may arise when σ is not alternating.

by independence of the three events. We join together the two first terms using extendability
and quasi-multiplicativity:

P̃t

(

Aj,σ(2k0 , 2l)
)

P̃t

(

Ā
./I′

j,σ (2l+3, 2K)
)

≤ C1P̃t

(

Ā
./I′

j,σ (2k0 , 2K)
)

(1.11)

for some C2 universal. We thus obtain

P̃t(v is pivotal for A+ but not A−, and A− occurs)

≤ C1P̃t

(

Ā
./I′

j,σ (2k0 , 2K)
)

P̃t

(

v  4,σ4 ∂S2l(v)
)

.

If we then do the same manipulation on the second term of the sum, we get
∣

∣

∣

∣

d

dt
P̃t

(

Ā
./I′

j,σ (2k0 , 2K)
)

∣

∣

∣

∣

≤ 2C1

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

(

Ā
./I′

j,σ (2k0 , 2K)
)

P̃t

(

v  4,σ4 ∂S2l(v)
)

,

and if we divide by P̃t

(

Ā
./I′

j,σ (2k0 , 2K)
)

,

∣

∣

∣

∣

d

dt
log
[

P̃t

(

Ā
./I′

j,σ (2k0 , 2K)
)]

∣

∣

∣

∣

≤ 2C1

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

(

v  4,σ4 ∂S2l(v)
)

. (1.12)

As promised, we have thus reduced this case to Eq.(1.9).

Case 3: Any j, σ

In the general case, a minor complication may arise, coming from consecutive arms of the
same color: indeed, the property of being pivotal for a site v does not always give rise to four
arms in R(v), but to some more complex event E(v) (see Figure 1.12). If v is on ri, and this
arm is black for instance, there are still two black arms coming from ri, but the two white arms
do not necessarily reach ∂R(v), since they can encounter neighboring black arms.
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Chapter 1. Near-critical percolation in two dimensions

We first introduce an event for which the property of being pivotal is easier to formulate. We
group consecutive arms of the same color in “packs”: if (riq , riq+1, . . . , riq+lq−1) is such a sequence
of arms, say black, we take an interval Ĩq covering all the Ii for iq ≤ i ≤ iq + lq − 1 and replace
the condition “ri  Ii for all iq ≤ i ≤ iq + lq − 1” by “ri  Ĩq for all iq ≤ i ≤ iq + lq − 1”. We

construct in this way an event Ã = Ã+ ∩ Ã−: since it is intermediate between Ā
./I′

j,σ (2k0 , 2K) and

Aj,σ(2k0 , 2K), we have

P̃t(Ã) ≍ P̃t(Ā
./I′

j,σ (2k0 , 2K)).

This new definition allows to use Menger’s theorem (see [30], Theorem 3.3.1):
[

v is pivotal
for Ã+ but not Ã−, and Ã− occurs

]

iff for some arm ri′ in a black pack (riq , riq+1, . . . , riq+lq−1),

(1) There exist j disjoint monochromatic arms r1, . . . , rj from ∂S2k0 to the Ĩq (an appropriate
number of arms for each of these intervals), with v ∈ ri′ ; all of these arms are of the prescribed
color, with a possible exception for ri′ in v (Ã occurs when v is black).

(2) There exists a path ci′ separating ∂S2k0 from Ĩq; this path is white, except in (at most) lq −1
sites, and also possibly in v (∂S2k0 and Ĩq are separated when v is white).

Now we take the same rhombus R(v) ⊆ S2l,2l+3 around v: if there are four arms v  4,σ4

∂S2l−1(v), we are OK. Otherwise, if l′, 1 ≤ l′ ≤ l − 2, is such that the defect on ci′ closest to
v is in S2l′+1(v) \ S2l′ (v), then there are 4 alternating arms v  4,σ4 ∂S2l′ (v), and also 6 arms

∂S2l′+1(v)  
(j)
6,σ′

6
∂S2l(v) having at most j defects, with the notation σ′

6 = BBWBBW . We

denote by E(v) the corresponding event: E(v) := {There exists l′ ∈ {1, . . . , l − 2} such that

v  4,σ4 ∂S2l′ (v) and ∂S2l′+1(v) 
(j)
6,σ′

6
∂S2l(v)} ∪ {v  4,σ4 ∂S2l−1(v)}.

For the 6 arms with defects, Proposition 18 applies and the probability remains roughly the
same, with just an extra logarithmic correction:

P̃t

(

∂S2l′+1(v) 
(j)
6,σ′

6
∂S2l(v)

)

≤ C1(l − l′)jP̃t

(

∂S2l′+1(v) 6,σ′
6

∂S2l(v)
)

≤ C1(l − l′)jP̃t

(

∂S2l′+1(v) 4,σ4 ∂S2l(v)
)

P̃t

(

∂S2l′+1(v) 2,BB ∂S2l(v)
)

≤ C2(l − l′)jP̃t

(

∂S2l′+1(v) 4,σ4 ∂S2l(v)
)

2−α′(l−l′)

using Reimer’s inequality (its consequence Eq.(1.2)) and the a-priori bound for one arm (Eq.(1.10)).
It implies that

P̃t

(

E(v)
)

≤ C5P̃t

(

v  4,σ4 ∂S2l(v)
)

(1.13)

for some universal constant C5: indeed, by quasi-multiplicativity,

l−2
∑

l′=1

P̃t

(

v  4,σ4 ∂S2l′ (v)
)

P̃t

(

∂S2l′+1(v) 
(j)
6,σ′

6
∂S2l(v)

)

≤ C2

l−2
∑

l′=1

P̃t

(

v  4,σ4 ∂S2l′ (v)
)

P̃t

(

∂S2l′+1(v) 4,σ4 ∂S2l(v)
)

(l − l′)j2−α′(l−l′)

≤ C3P̃t

(

v  4,σ4 ∂S2l(v)
)

l−2
∑

l′=1

(l − l′)j2−α′(l−l′)

≤ C4P̃t

(

v  4,σ4 ∂S2l(v)
)

,
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1.6. Arm events near criticality

since
∑l−2

l′=1(l − l′)j2−α′(l−l′) ≤∑∞
r=1 rj2−α′r < ∞.

The reasoning is then identical:

P̃t(v is pivotal for Ã+ but not Ã−, and Ã− occurs)

≤ P̃t

(

Aj,σ(2k0 , 2l)
)

P̃t

(

Aj,σ(2l+3, 2K)
)

P̃t

(

E(v)
)

≤ C6P̃t

(

Aj,σ(2k0 , 2K)
)

P̃t

(

v  4,σ4 ∂S2l(v)
)

,

and using P̃t

(

Aj,σ(2k0 , 2K)
)

≤ C7P̃t(Ã), we get

∣

∣

∣

∣

d

dt
log
[

P̃t

(

Ã
)]

∣

∣

∣

∣

≤ C8

∑

v∈S
2k0+3,2K−3

(p̂v − p)P̃t

(

v  4,σ4 ∂S2l(v)
)

. (1.14)

Once again, Eq.(1.9) would be sufficient.

3. Final summation

We now prove Eq.(1.9), ie that for some universal constant C1,

∫ 1

0

∑

v∈S
2k0+3,2K−3

(p̂v − p) P̃t

(

v  4,σ4 ∂S2l(v)
)

dt ≤ C1. (1.15)

Recall that Russo’s formula allows to count 4-arm sites: for any N and any measure P̄ between
Pp and P1−p,

∫ 1

0

∑

v∈SN

(p̄v − p) P̄t

(

v  
./Ī
4,σ4

∂SN

)

dt = P̄(CH(SN )) − Pp(CH(SN )) ≤ 1 (1.16)

(we remind that Ī consists of the different sides of ∂SN ). This is essentially the only relation we
have at our disposal, the end of the proof consists in using it in a clever way.

Roughly speaking, when applied to N = L(p), this relation gives that (p−1/2)N2π4(N) ≤ 1,
since all the sites give a contribution of order

P̄t

(

0 4,σ4 ∂SN/2

)

≍ π4(N). (1.17)

This corresponds more or less to the sites in the “external annulus” in Eq.(1.15). Now each time
we get from an annulus to the next inside it, the probability to have 4 arms is multiplied by
2α4 ≈ 25/4, while the number of sites is divided by 4, so that things decay exponentially fast,
and the sum of Eq.(1.15) is bounded by something like

K−k0−4
∑

j=3

(25/4−2)K−j ≤
∞
∑

q=0

(2−3/4)q < ∞.

We have to be more cautious, in particular Eq.(1.17) does not trivially hold, since we do not
know at this point that the probability of having 4 arms remains of the same order on a scale
L(p), and the estimate for 4 arms only gives a logarithmic equivalence. The a-priori estimate
coming from the 5-arm exponent will allow us to circumvent these difficulties. We also need to
take care of the boundary effects.
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∂S2l+2

∂S2l+1
v

0

Figure 1.13: We replace R(v) = S2l(v) by one of the R′i
2l+1 (i = 1, . . . , 12).

Assume that v ∈ S2l+1,2l+2 as before. We subdivide this annulus into 12 sub-boxes of size 2l+1

(see figure) Ri
2l+1 (i = 1, . . . , 12). We then associate to each of these boxes a slightly enlarged

box R′i
2l+1 , of size 2l+2. At least one of these boxes contains v: we denote it by R′(v). Since

{v  4,σ4 ∂S2l+1(v)} ⊆ {v  4,σ4 ∂R′(v)} ⊆ {v  4,σ4 ∂S2l(v)},

we have
P̃t

(

v  4,σ4 ∂S2l(v)
)

≍ P̃t

(

v  4,σ4 ∂R′(v)
)

.

We thus have to find an upper bound for

K−4
∑

j=k0+3

12
∑

i=1

∫ 1

0

∑

v∈R′i
2j

(p̂v − p) P̃t

(

v  4,σ4 ∂R′i
2j

)

dt. (1.18)

For that purpose, we will prove that for i = 1, . . . , 12,

S
i,(4)
j :=

∑

v∈R′i
2j

(p̂v − p) P̃t

(

v  4,σ4 ∂R′i
2j

)

indeed decays fast when, starting from j = K − 4, we make j decrease. For that, we duplicate
the parameters in the box R′i

2j periodically inside S2K−3 : this gives rise to a new measure P̄
inside S2K (to completely define it, simply take p̄v = p outside of S2K−3). This measure contains
22(K−j−3) copies (R′′) of the original box, and we know that

∫ 1

0

∑

v∈S
2K−3

(p̄v − p) P̄t

(

v  4,σ4 ∂S2K

)

dt ≤ 1. (1.19)

We have
∑

v∈S
2K−3

(p̄v − p)P̄t(v  4,σ4 ∂S2K )

≍
∑

v∈S
2K−3

(p̄v − p)P̄t

(

v  4,σ4 ∂R′(v)
)

P̄t

(

∂R′(v) 4,σ4 ∂S2K

)

≍
(

∑

R′′

P̄t

(

∂R′′  4,σ4 ∂S2K

)

)

S
i,(4)
j .
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1.6. Arm events near criticality

Hence, using Reimer’s inequality and the a-priori bound for one arm,
∑

v∈S
2K−3

(p̄v − p)P̄t(v  4,σ4 ∂S2K )

≥ C1

(

∑

R′′

P̄t

(

∂R′′  5,σ5 ∂S2K

)

P̄t

(

∂R′′  ∂S2K

)−1
)

S
i,(4)
j

≥ C22
α′(K−j)S

i,(4)
j

(

∑

R′′

P̄t

(

∂R′′  5,σ5 ∂S2K

)

)

.

The same manipulation for 5 arms gives, with S̃
i,(5)
j =

∑

v∈R′i
2j

P̃t

(

v  5,σ5 ∂R′i
2j

)

,

∑

v∈S
2K−3

P̄t(v  5,σ5 ∂S2K ) ≍
(

∑

R′′

P̄t

(

∂R′′  5,σ5 ∂S2K

)

)

S̃
i,(5)
j . (1.20)

We know from Lemma 25 that
∑

v∈S
2K−3

P̄t(v  5,σ5 ∂S2K ) and S̃
i,(5)
j ≍ 1, and thus

∑

R′′

P̄t

(

∂R′′  5,σ5 ∂S2K

)

≍ 1. (1.21)

This entails that

S
i,(4)
j ≤ C32

−α′(K−j)
∑

v∈S
2K−3

(p̄v − p)P̄t(v  4,σ4 ∂S2K ),

and finally, by integrating and using Eq.(1.19),
∫ 1

0

∑

v∈R′i
2j

(p̂v − p) P̃t

(

v  4,σ4 ∂R′i
2j

)

dt ≤ C32
−α′(K−j).

The sum of Eq.(1.18) is thus less than

K−4
∑

j=k0+3

12C32
−α′(K−j) ≤ C4

∞
∑

r=0

2−α′r < ∞,

which completes the proof.

Remark 30. We will use this theorem in the next section to relate the so-called “characteristic
functions” to the arm exponents at criticality. We will have use in fact only for the two cases
j = 1 and j = 4, σ = σ4: the general case (3rd case in the previous proof) will thus not be needed
there. It is however of interest for other applications, for instance to say that for an interface in
near-critical percolation, the dimension of the accessible perimeter is the same as at criticality:
this requires the case j = 3, σ = σ3.

1.6.3 Some complements

Theorem for more general annuli

We will sometimes need a version of Theorem 27 with non concentric rhombi:

P̂(∂r  ∂R) ≍ P̂(∂Sn  ∂SN ). (1.22)
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Chapter 1. Near-critical percolation in two dimensions

for SN/τ ⊆ R ⊆ SN and r ⊆ SN/2τ . It results from the remark on more general annuli (Eq.(1.20))

combined with Theorem 27 applied to P̂ and translations of it. In particular, for any fixed η > 0,

P̂(∂Sn(v) ∂SN ) ≍ P̂(∂Sn  ∂SN ) (1.23)

uniformly in v ∈ S(1−η)N .

A complementary bound

Following the same lines as in the previous proof, we can get a bound in the other direction:

Proposition 31. There exists some universal constant C̃ > 1 such that for all p > 1/2,

Pp

(

0 ∂SL(p)

)

≥ C̃ P1/2

(

0 ∂SL(p)

)

. (1.24)

In other words, the one-arm probability varies of a non-negligible amount, like the crossing
probability: there is a macroscopic difference with the critical regime.

Proof. Take K such that 2K ≤ L(p) < 2K+1 and (P̂t) the linear interpolation between P1/2 and
Pp. By gluing arguments, for A = {0 ∂SL(p)}, for any v ∈ S2K−4,2K−3 ,

P̃t(v is pivotal for A)

≥ C1P̃t

(

0 ∂S2K−5

)

P̃t

(

∂S2K−2  ∂SL(p)

)

P̃t

(

v  4,σ4 ∂S2K−5(v)
)

≥ C2P̃t

(

0 ∂S2K

)

P̃t

(

v  4,σ4 ∂S2K−5(v)
)

,

so that

d

dt
log
[

P̃t(A)
]

≥
∑

v∈S
2K−4,2K−3

(p − 1/2)P̂t

(

v  4,σ4 ∂S2K−5(v)
)

≥ C3(p − 1/2)L(p)2P̂t

(

0 4,σ4 ∂SL(p)

)

,

since each of the sites v ∈ S2K−4,2K−3 produces a contribution of order P̂t

(

0  4,σ4 ∂SL(p)

)

.
Proposition 33, proved later6, allows to conclude.

1.7 Consequences for the characteristic functions

1.7.1 Different characteristic lengths

Roughly speaking, a characteristic length is a quantity intended to measure a “typical” scale of
the system. There may be several natural definitions of such a length, but we usually expect the
different possible definitions to produce lengths that are of the same order of magnitude. For
two-dimensional percolation, the three most common definitions are the following:

Finite-size scaling

The lengths Lǫ that we have used throughout the paper, introduced in [23], are known as “finite-
size scaling characteristic lengths”:

Lǫ(p) =

{

min{n s.t. Pp(CH([0, n] × [0, n])) ≤ ǫ} when p < 1/2,

min{n s.t. Pp(C∗
H([0, n] × [0, n])) ≤ ǫ} when p > 1/2.

(1.1)

6This does not raise any problem since we have included this complementary bound only for the sake of
completeness, and we will not use it later.
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Mean radius of a finite cluster

The (quadratic) mean radius measures the “typical” size of a finite cluster. It can be defined by
the formula

ξ(p) =

[

1

Ep

[

|C(0)|; |C(0)| < ∞
]

∑

x

‖x‖2
∞Pp

(

0 x, |C(0)| < ∞
)

]1/2

. (1.2)

Connection probabilities

A third possible definition would be via the rate of decay of correlations. Take first p < 1/2 for
example. For two sites x and y, we consider the connection probability between them

τx,y := Pp

(

x y
)

, (1.3)

and then

τn := sup
x∈∂Sn

τ0,x, (1.4)

the maximum connection probability between sites at distance n (using translation invariance).
For any n, m ≥ 0, we have

τn+m ≥ τnτm,

in other words (− log τn)n≥0 is sub-additive, which implies the existence of a constant ξ̃(p) such
that

− log τn

n
−→ 1

ξ̃(p)
= inf

m

(

− log τm

m

)

(1.5)

when n → ∞. Note the following a-priori bound:

Pp

(

0 x
)

≤ e−‖x‖∞/ξ̃(p). (1.6)

For p > 1/2, we simply use the symmetry p ↔ 1 − p: we consider

τ∗
n := sup

x∈∂Sn

Pp

(

0 ∗ x
)

(1.7)

and then ξ̃(p) in the same way. We have in this case

Pp

(

0 ∗ x
)

≤ e−‖x‖∞/ξ̃(p). (1.8)

Note that the symmetry p ↔ 1 − p gives immediately

ξ̃(p) = ξ̃(1 − p).

Relation between the different lengths

As expected, these characteristic lengths turn out to be all of the same order of magnitude: we
will prove in Section 1.7.3 that Lǫ ≍ Lǫ′ for any two ǫ, ǫ′ ∈ (0, 1/2), in Section 1.7.4 that L ≍ ξ̃,
and in Section 1.7.5 that L ≍ ξ.
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1.7.2 Main critical exponents

We focus here on three functions commonly used to describe the macroscopic behavior of perco-
lation. We have already encountered some of them:

(i) ξ(p) =

[

1

Ep

[

|C(0)|;|C(0)|<∞
]

∑

x ‖x‖2
∞Pp

(

0 x, |C(0)| < ∞
)

]1/2

the mean radius of a finite

cluster.

(ii) θ(p) := Pp(0 ∞). This function can be viewed as the density of the infinite cluster C∞,
in the following sense:

1

|SN |
∣

∣SN ∩ C∞
∣

∣

a.s.−→ θ(p) (1.9)

when N → ∞.

(iii) χ(p) = Ep

[

|C(0)|; |C(0)| < ∞
]

the average size of a finite cluster.

Theorem 32 (Critical exponents). The following power-law estimates hold:

(i) When p → 1/2,
ξ(p) ≍ L(p) ≈ |p − 1/2|−4/3. (1.10)

(ii) When p → 1/2+,
θ(p) ≈ (p − 1/2)5/36. (1.11)

(iii) When p → 1/2,
χ(p) ≈ |p − 1/2|−43/18. (1.12)

The corresponding exponents are usually denoted by (respectively) ν, β and γ. This theorem
is proved in the next sub-sections by combining the arm exponents for critical percolation with
the estimates established for near-critical percolation.

1.7.3 Critical exponent for L

We derive here the exponent for Lǫ(p) by counting the sites which are pivotal for the existence
of a crossing in a box of size Lǫ(p). These pivotal sites are exactly those for which the 4-arm

event Ā
./Ī
4,σ4

with alternating colors (σ4 = BWBW ) and sides (Ī = right, top, left and bottom
sides):

Proposition 33 ([43, 71]). For any fixed ǫ ∈ (0, 1/2), the following equivalence holds:

|p − 1/2|
(

Lǫ(p)
)2

π4(Lǫ(p)) ≍ 1. (1.13)

Recall now the value α4 = 5/4 of the 4-arm exponent, stated in Theorem 21. If we plug it
into Eq.(1.13), we get the value of the characteristic length exponent: when p → 1/2,

1 ≈ |p − 1/2|
(

Lǫ(p)
)2(

Lǫ(p)
)−5/4

= |p − 1/2|
(

Lǫ(p)
)3/4

,

so that indeed
Lǫ(p) ≈ |p − 1/2|−4/3.
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ηL ηL

L
1/2

1/2 p

Figure 1.14: We restrict to the sites at distance at least ηL from the boundary of [0, L]2: these
sites produce contributions of the same order, since the 4 arms stay comparable in size.

m

n

Figure 1.15: We extend a crossing of [0, n] × [0, m] into a crossing of [0, (1 + η)n] × [0, m] by
applying RSW in concentric annuli.

Proof. For symmetry reasons, we can assume that p > 1/2. The proof goes as follows. We first
apply Russo’s formula to estimate the variation in probability of the event CH([0, L(p)]×[0, L(p)])

between 1/2 and p, which makes appear the events Ā
./Ī
4,σ4

. By construction of L(p), the variation
of the crossing event is of order 1, and the sites that are “not too close to the boundary” (such
that none of the 4 arms can become too small – see Figure 1.14) each produce a contribution of
the same order by Theorem 27: proving that they all together produce a non-negligible variation
in the crossing probabilities will thus imply the result. For that, we need the following lemma:

Lemma 34. For any δ > 0, there exists η0 > 0 such that for all p, P̂ between Pp and P1−p, we
have: for any parallelogram [0, n]× [0, m] with sides n, m ≤ L(p) and aspect ratio less than 2 ( ie
such that 1/2 ≤ n/m ≤ 2), for any η ≤ η0,

∣

∣P̂(CH([0, n] × [0, m])) − P̂(CH([0, (1 + η)n] × [0, m]))
∣

∣ ≤ δ. (1.14)

Proof of lemma. First, we clearly have

P̂(CH([0, n] × [0, m])) ≥ P̂(CH([0, (1 + η)n] × [0, m])).

For the converse bound, we use the same idea as for Lemma 15, we apply RSW in concentric
annuli (see Figure 1.15). By considering (parts of) annuli centered on the top right corner of
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Chapter 1. Near-critical percolation in two dimensions

[0, n] × [0, m], with radii between η3/4n and
√

ηn, we see that the probability for a crossing to
arrive at a distance less than η3/4n from this corner is at most δ/100 for η0 small enough. Assume
this is not the case, condition on the lowest crossing and apply RSW in annuli between scales
ηn and η3/4n: if η0 is sufficiently small, with probability at least 1− δ/100, this crossing can be
extended into a crossing of [0, (1 + η)n] × [0, m].

Let us return to the proof of the proposition. Take η0 associated to δ = ǫ/100 by the lemma,
and assume that instead of performing the change 1/2 p in the whole box [0, L(p)]2, we make
it only for the sites in the sub-box [ηL(p), (1 − η)L(p)]2, for η = η0/4. It amounts to consider
the measure P̂(η) with parameters

p̂(η)
v =

∣

∣

∣

∣

∣

p if v ∈ [ηL(p), (1 − η)L(p)]2,

1/2 otherwise.
(1.15)

We are going to prove that P̂(η)(CH([0, L(p)]2)) and Pp(CH([0, L(p)]2)) are very close by showing
that they are both very close to Pp(CH([ηL(p), (1− η)L(p)]2)) = P̂(η)(CH([ηL(p), (1− η)L(p)]2)).
Indeed, for any P̃ ∈ {P̂(η), Pp}, we have by the lemma

P̃(CH([0, L(p)]2)) ≤ P̃(CH([ηL(p), (1 − η)L(p)] × [0, L(p)]))

= 1 − P̃(C∗
V ([ηL(p), (1 − η)L(p)] × [0, L(p)]))

≤ 1 −
(

P̃(C∗
V ([ηL(p), (1 − η)L(p)]2)) − 2δ

)

= P̃(CH([ηL(p), (1 − η)L(p)]2)) + 2δ

and in the other way,

P̃(CH([0, L(p)]2)) ≥ P̃(CH([ηL(p), (1 − η)L(p)] × [0, L(p)])) − 2δ

= 1 − P̃(C∗
V ([ηL(p), (1 − η)L(p)] × [0, L(p)])) − 2δ

≥ 1 − P̃(C∗
V ([ηL(p), (1 − η)L(p)]2)) − 2δ

= P̃(CH([ηL(p), (1 − η)L(p)]2)) − 2δ.

The claim follows readily, in particular

P̂(η)(CH([0, L(p)]2)) ≥ Pp(CH([0, L(p)]2)) − 4δ, (1.16)

which is at least (1/2 + ǫ) − 4δ ≥ 1/2 + ǫ/2 by the very definition of L(p). It shows as desired
that the sites in [ηL(p), (1 − η)L(p)]2 produce all together a non-negligible contribution.

Now, Russo’s formula applied to the interpolating measures (P̂(η)
t )t∈[0,1] (with parameters

p̂
(η)
v (t) = t × p̂

(η)
v + (1 − t) × 1/2) and the event CH([0, L(p)]2) gives

∫ 1

0

∑

v∈[ηL(p),(1−η)L(p)]2

(

p − 1/2
)

P̂(η)
t

(

v  Ī
4,σ4

∂[0, L(p)]2
)

dt

= P̂(η)(CH([0, L(p)]2)) − P1/2(CH([0, L(p)]2)),

and this quantity is at least ǫ/2, and thus of order 1.
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Finally, it is not hard to see that once η fixed, we have (uniformly in p, P̂ between Pp and
P1−p, and v ∈ [ηL(p), (1 − η)L(p)]2)

P̂
(

v  Ī
4,σ4

∂[0, L(p)]2
)

≍ P̂
(

v  4,σ4 ∂SηL(p)(v)
)

≍ P1/2(0 4,σ4 ∂SηL(p))

≍ P1/2(0 4,σ4 ∂SL(p)),

which yields the desired conclusion.

Remark 35. Note that the intermediate lemma was required for the lower bound only, the upper
bound can be obtained directly from Russo’s formula. To get the lower bound, we could also have
proved that for n ≤ L(p),

∑

x∈Sn

P̂
(

x 4,σ4 ∂Sn

)

≍ n2π4(n). (1.17)

Basically, it comes from the fact that when we get closer to ∂SN , one of the arms may be shorter,
but the remaining arms also have less space - and the 3-arm exponent in the half-plane appears.

All the results we have seen so far hold for any fixed value of ǫ in (0, 1/2), in particular the
last Proposition. Combining it with the estimate for 4 arms, we get an important corollary, that
the behavior of Lǫ does not depend on the value of ǫ.

Corollary 36. For any ǫ, ǫ′ ∈ (0, 1/2),

Lǫ(p) ≍ Lǫ′(p). (1.18)

Proof. To fix ideas, assume that ǫ ≤ ǫ′, so that Lǫ(p) ≥ Lǫ′(p), and we need to prove that
Lǫ(p) ≤ CLǫ′(p) for some constant C. We know that

|p − 1/2|
(

Lǫ(p)
)2

π4(Lǫ(p)) ≍ 1 ≍ |p − 1/2|
(

Lǫ′(p)
)2

π4(Lǫ′(p)),

hence for some constant C1,
(

Lǫ(p)
)2

π4(Lǫ(p))
(

Lǫ′(p)
)2

π4(Lǫ′(p))
≤ C1.

This yields
(

Lǫ(p)

Lǫ′(p)

)2

≤ C1
π4(Lǫ′(p))

π4(Lǫ(p))
≤ C2

(

π4(Lǫ′(p), Lǫ(p))
)−1

by quasi-multiplicativity. Now we use the a-priori bound for 4 arms given by the 5-arm exponent:

π4(Lǫ′(p), Lǫ(p)) ≥
(

Lǫ′(p)

Lǫ(p)

)−α′

π5(Lǫ′(p), Lǫ(p)) ≥ C3

(

Lǫ′(p)

Lǫ(p)

)2−α′

.

Together with the previous equation, it implies the result:

Lǫ(p) ≤ (C4)
1/α′

Lǫ′(p).

Remark 37. In the other direction, a RSW construction shows that we can increase Lǫ by any
constant factor by choosing ǫ small enough.
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Chapter 1. Near-critical percolation in two dimensions

1.7.4 Uniform exponential decay, critical exponent for θ

Up to now, our reasonings (separation of arms, arm events in near-critical percolation, critical
exponent for L) were based on RSW considerations on scales n ≤ L(p), so that critical and near-
critical percolation could be handled simultaneously. In the other direction, the definition of L(p)
also implies that when n > L(p), the picture starts to look like super/sub-critical percolation,
supporting the choice of L(p) as the characteristic scale of the model.

More precisely, we prove a property of exponential decay uniform in p. This property will
then be used to link L with the other characteristic functions, and we will derive the following
expressions of θ, χ and ξ as functions of L:

(i) θ(p) ≍ π1(L(p)),

(ii) χ(p) ≍ L(p)2π2
1(L(p)),

(iii) ξ(p) ≍ L(p).

The critical exponents for these three functions will follow readily, since we already know the
exponent for L.

Uniform exponential decay

The following lemma shows that correlations decay exponentially fast with respect to L(p). It
allows to control the speed for p varying:

Lemma 38. For any ǫ ∈ (0, 1/2), there exist constants Ci = Ci(ǫ) > 0 such that for all p < 1/2,
all n,

Pp(CH([0, n] × [0, n])) ≤ C1e
−C2n/Lǫ(p). (1.19)

Proof. We use a block argument: for each integer n,

Pp(CH([0, 2n] × [0, 4n])) ≤ C ′[Pp(CH([0, n] × [0, 2n]))]2, (1.20)

with C ′ = 102 some universal constant.
It suffices for that (see Figure 1.16) to divide the parallelogram [0, 2n]×[0, 4n] into 4 horizontal

sub-parallelograms [0, 2n]× [in, (i+1)n] (i = 0, . . . , 3) and 6 vertical ones [in, (i+1)n]× [jn, (j +
2)n] (i = 0, 1, j = 0, 1, 2). Indeed, consider a horizontal crossing of the big parallelogram: by
considering its pieces in the two regions 0 < x < n and n < x < 2n, we can extract from it
two sub-paths crossing one of the sub-parallelograms “in the easy way”. They are disjoint by
construction, so the claim follows by using the BK inequality.

We then obtain by iterating:

C ′Pp(CH([0, 2kL(p)] × [0, 2k+1L(p)])) ≤ (C ′ǫ1)2
k

(1.21)

as soon as ǫ1 ≥ Pp(CH([0, L(p)] × [0, 2L(p)])).
Recall that by definition, Pp(CH([0, L(p)] × [0, L(p)])) ≤ ǫ0 if ǫ ≤ ǫ0. The RSW theory thus

entails (Theorem 2) that for all fixed ǫ1 > 0, we can take ǫ0 sufficiently small to get automatically
(and independently of p) that

Pp(CH([0, L(p)] × [0, 2L(p)])) ≤ ǫ1. (1.22)
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Figure 1.16: Two of the small sub-parallelograms are crossed in the “easy” way.

We now choose ǫ1 = 1/(e2C ′). For each integer n ≥ L(p), we can define k = k(n) such that
2k ≤ n/L(p) < 2k+1, and then,

Pp(CH([0, n] × [0, n])) ≤ Pp(CH([0, 2kL(p)] × [0, 2k+1L(p)]))

≤ e−2k+1

≤ e × e−n/L(p),

which is also valid for n < L(p), thanks to the extra factor e.
Hence, we have proved the property for any ǫ below some fixed value ǫ0 (given by RSW).

The result for any ǫ ∈ (0, 1/2) follows readily by using the equivalence of lengths for different
values of ǫ (Corollary 36).

We would like to stress the fact that we have not used any of the previous results until the
last step, this exponential decay property could thus have been derived much earlier – but only
for values of ǫ small enough. It would for instance provide a more direct way to prove that

Lǫ(p) ≍ Lǫ′(p),

but still only for ǫ, ǫ′ less than some fixed value.

Remark 39. It will sometimes reveal more useful to know this property for crossings of longer
parallelograms “in the easy way”: we also have for any k ≥ 1,

Pp(CH([0, n] × [0, kn])) ≤ C
(k)
1 e−C

(k)
2 n/L(p) (1.23)

for some constants C
(k)
i (depending on k and ǫ). This can be proved by combining the previous

lemma with the fact that in Theorem 2, we can take fk satisfying fk(1− ǫ) = 1−Ckǫ
αk + o(ǫαk)

for some Ck, αk > 0.

Consequence for θ

When p > 1/2, we now show that at distance L(p) from the origin, we are already “not too far
from infinity”: once we have reached this distance, there is a positive probability (bounded away
from 0 uniformly in p) to reach infinity.

67



Chapter 1. Near-critical percolation in two dimensions

∂SL(p)

0

Figure 1.17: We consider overlapping parallelograms, with size doubling at each step.

Corollary 40. We have

θ(p) = Pp

(

0 ∞
)

≍ Pp

(

0 ∂SL(p)

)

(1.24)

uniformly in p > 1/2.

Proof. It suffices to consider overlapping parallelograms like in Figure 1.17, each parallelogram
twice larger than the previous one, so that the kth of them has a probability at least 1−C1e

−C22k

to present a crossing in the “hard” direction (thanks to the previous remark). Since
∏

k(1 −
C1e

−C22k
) > 0, we are done.

Now, combining Eq.(1.24) with Theorem 27 gives (for p > 1/2)

θ(p) ≍ Pp

(

0 ∂SL(p)

)

≍ P1/2

(

0 ∂SL(p)

)

= π1(L(p)). (1.25)

Using the 1-arm exponent α1 = 5/48 stated in Theorem 21, we get

θ(p) ≈
(

L(p)
)−5/48

(1.26)

as p → 1/2+. Together with the critical exponent for L derived previously, this provides the
critical exponent for θ:

θ(p) ≈
(

(p − 1/2)−4/3
)−5/48 ≈ (p − 1/2)5/36. (1.27)

Equivalence of L and ξ̃

To fix ideas, we assume in this sub-section that p < 1/2. Performing a RSW-type construction
like in Figure 1.3 yields

Pp(CH([0, kL(p)] × [0, L(p)])) ≥ δk−1
2 δk−2

1 = C1e
−C2kL(p)/L(p), (1.28)

so that L(p) measures exactly the speed of decaying. Once knowing this, it is easy to compare
L and ξ̃.

Corollary 41. For any fixed ǫ ∈ (0, 1/2),

ξ̃(p) ≍ Lǫ(p). (1.29)

68



1.7. Consequences for the characteristic functions

Proof. We exploit the previous remark: on one hand L measures the speed of decaying for
crossings of rhombi, and on the other hand ξ̃ was defined to give the optimal bound for point-
to-point connections.

More precisely, for any x ∈ ∂Sn we have

τ0,x = Pp(0 x) ≤ Pp(CH([0, n] × [0, 2n]))

≤ C
(2)
1 e−C

(2)
2 n/L(p)

so that τkL(p) ≤ C
(2)
1 e−C

(2)
2 k and

−
log τkL(p)

kL(p)
≥ − 1

kL(p)

(

log C
(2)
1 − C

(2)
2 k

)

−−−→
k→∞

C
(2)
2

L(p)
.

Hence,
1

ξ̃(p)
≥ C

(2)
2

L(p)

and finally ξ̃(p) ≤ CL(p).
Conversely, we know that Pp(CH([0, kL(p)]×[0, kL(p)])) ≥ C̃1e

−C̃2k for some C̃i > 0 (Eq.(1.28)).
Consequently,

τkL(p) ≥
1

(kL(p))2
Pp(CH([0, kL(p)] × [0, kL(p)])) ≥ 1

(kL(p))2
C̃1e

−C̃2k,

which implies

−
log τkL(p)

kL(p)
≤ − 1

kL(p)

(

log C̃1 − 2 log(kL(p)) − C̃2k
)

−−−→
k→∞

C̃2

L(p)
,

whence the conclusion: ξ̃(p) ≥ C ′L(p).

1.7.5 Further estimates, critical exponents for χ and ξ

Estimates from critical percolation

We start by stating some estimates that we will need. These estimates were originally derived
for critical percolation (see e.g. [40, 41]), but for exactly the same reasons they also hold for
near-critical percolation on scales n ≤ L(p):

Lemma 42. Uniformly in p, P̂ between Pp and P1−p and n ≤ L(p), we have

1. Ê
[

|x ∈ Sn : x ∂Sn|
]

≍ n2π1(n).

2. For any t ≥ 0,

∑

x∈Sn

‖x‖t
∞P̂
(

0 x
)

≍
∑

x∈Sn

‖x‖t
∞P̂
(

0
Sn
 x

)

≍ nt+2π2
1(n).

Note that item 2. implies in particular for t = 0 that

Ê
[

|x ∈ Sn : x 0|
]

≍ Ê
[

|x ∈ Sn : x
Sn
 0|

]

≍ n2π2
1(n).
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Proof. We will have use for the fact that we can take α = 1/2 for j = 1 in Eq.(1.6) (actually any
α < 1 would be enough for our purpose): for any integers n < N ,

π1(n, N) ≥ C(n/N)1/2. (1.30)

This can be proved like (3.15) of [10]: just use blocks of size n instead of individual sites to
obtain that N

n π2
1(n, N) is bounded below by a constant.

Proof of item 1. We will use that

Ê
[

|x ∈ Sn : x ∂Sn|
]

=
∑

x∈Sn

P̂(x ∂Sn). (1.31)

For the lower bound, it suffices to note that for any x ∈ Sn,

P̂(x ∂Sn) ≥ P̂(x ∂S2n(x)) = P̂x(0 ∂S2n) (1.32)

(where P̂x is the measure P̂ translated by x), and that

P̂x(0 ∂S2n) ≥ C1P̂
x(0 ∂Sn) ≥ C2π1(n) (1.33)

by extendability and Theorem 27 for one arm.
For the upper bound, we sum over concentric rhombi around 0:

∑

x∈Sn

P̂(x ∂Sn) ≤
∑

x∈Sn

P̂(x ∂Sd(x,∂Sn)(x))

≤
n
∑

j=1

C1nP̂(0 ∂Sj)

using that there are at most C1n sites at distance j from ∂Sn. By Theorem 27, this last sum is
at most

C2n
n
∑

j=1

π1(j) ≤ C2nπ1(n)
n
∑

j=1

π1(j)

π1(n)

≤ C3nπ1(n)
n
∑

j=1

π1(j, n)−1

by quasi-multiplicativity. Now Eq.(1.30) says that π1(j, n) ≥ (j/n)1/2, so that

n
∑

j=1

π1(j, n)−1 ≤
n
∑

j=1

(j/n)−1/2 = n1/2
n
∑

j=1

j−1/2 ≤ C4n,

which gives the desired upper bound.

Proof of item 2.
Since

∑

x∈Sn

‖x‖t
∞P̂
(

0
Sn
 x

)

≤
∑

x∈Sn

‖x‖t
∞P̂
(

0 x
)

,

it suffices to prove the desired lower bound for the left-hand side, and the upper bound for the
right-hand side.
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x

0

∂Sn

∂S2n(x)

Figure 1.18: With this construction, any site x in Sn/3,2n/3 connected to a site at distance 2n is
also connected to 0 in Sn.

Consider the lower bound first. We note (see Figure 1.18) that if 0 is connected to ∂Sn and
if there exists a black circuit in S2n/3,n (which occurs with probability at least δ4

6 by RSW), then
any x ∈ Sn/3,2n/3 connected to ∂S2n(x) will be connected to 0 in Sn. Using the FKG inequality,
we thus get for such an x:

P̂(0
Sn
 x) ≥ δ4

6P̂(0 ∂Sn)P̂(x ∂S2n(x))

which is at least (still using extendability and Theorem 27) C1π
2
1(n). Consequently,

∑

x∈Sn

‖x‖t
∞P̂
(

0
Sn
 x

)

≥
∑

x∈Sn/3,2n/3

‖x‖t
∞C1π

2
1(n)

≥ C2n
2(n/3)tπ2

1(n).

Let us turn to the upper bound. We take a logarithmic division of Sn: define k = k(n) so
that 2k < n ≤ 2k+1, we have

∑

x∈Sn

‖x‖t
∞P̂
(

0 x
)

≤ C1 +
k+1
∑

j=3

∑

x∈S
2j−1,2j

‖x‖t
∞P̂
(

0 x
)

. (1.34)

Now for x ∈ S2j−1,2j , take the two boxes S2j−2(0) and S2j−2(x): since they are disjoint,

P̂
(

0 x
)

≤ P̂
(

0 S2j−2(0)
)

P̂
(

x S2j−2(x)
)

, (1.35)

which is at most C2π
2
1(2

j−1) using the same arguments as before. Our sum is thus less than
(since |S2j−1,2j | ≤ C32

2j)

k+1
∑

j=3

C32
2j × (2j)t × (C2π

2
1(2

j+1)) ≤ C42
(2+t)kπ2

1(2
k) ×

[

k+1
∑

j=3

2(2+t)(j−k) π
2
1(2

j−1)

π2
1(2

k)

]

. (1.36)

Now 2(2+t)kπ2
1(2

k) ≤ C5n
2+tπ2

1(n), and this yields the desired result, using as previously π1(2j)
π1(2k)

≤
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C6π1(2
j , 2k)−1 ≤ C62

−(j−k)/2:

k+1
∑

j=3

2(2+t)(j−k) π
2
1(2

j−1)

π2
1(2

k)
≤ C6

k+1
∑

j=3

2(2+t)(j−k)2−(j−k)

≤ C7

k−3
∑

l=0

2−(1+t)l,

and this sum is bounded by
∑∞

l=0 2−(1+t)l < ∞.

Main estimate

The following lemma will allow us to link directly χ and ξ with L. Roughly speaking, it relies
on the fact that the sites at distance much larger than L(p) from the origin have a negligible
contribution, due to the exponential decay property, so that the sites in SL(p) produce a positive
fraction of the total sum:

Lemma 43. For any t ≥ 0, we have

∑

x

‖x‖t
∞Pp

(

0 x, |C(0)| < ∞
)

≍ L(p)t+2π2
1(L(p)) (1.37)

uniformly in p.

Proof. Lower bound. The lower bound is a direct consequence of item 2. above: indeed,

∑

x

‖x‖t
∞Pp

(

0 x, |C(0)| < ∞
)

≥ Pp(∃ white circuit in SL,2L)
∑

x∈SL

‖x‖t
∞Pp

(

0
SL
 x

)

≥ δ4
4

∑

x∈SL

‖x‖t
∞Pp

(

0
SL
 x

)

by RSW, and item 2. gives

∑

x∈SL

‖x‖t
∞Pp

(

0
SL
 x

)

≥ CLt+2π2
1(L).

Upper bound. To get the upper bound, we cover the plane by translating SL: we consider the
family of rhombi SL(2n1L, 2n2L), for any two integers n1 and n2. By isolating the contribution
of SL, we get:

∑

x

‖x‖t
∞Pp

(

0 x, |C(0)| < ∞
)

≤
∑

x∈SL

‖x‖t
∞Pp

(

0 x, |C(0)| < ∞
)

+
∑

(n1,n2) 6=(0,0)

∑

x∈SL(2n1L,2n2L)

‖x‖t
∞Pp

(

0 x, |C(0)| < ∞
)

.
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∂SL

Figure 1.19: For the upper bound, we cover the plane with rhombi of size 2L and sum their
different contributions.

Using item 2. above, we see that the rhombus SL gives a contribution
∑

x∈SL

‖x‖t
∞Pp

(

0 x, |C(0)| < ∞
)

≤ CLt+2π2
1(L),

which is of the right order of magnitude.
We now prove that each small rhombus outside of SL at distance kL gives a contribution of

order π1(L) × Lt × Ep

[

|x ∈ SL : x  ∂SL|
]

≍ Lt+2π2
1(L) (using item 1.), multiplied by some

quantity which decays exponentially fast in k and will thus produce a series of finite sum. More
precisely, if we regroup the rhombi into concentric annuli around SL, we get that the previous
summation is at most

∞
∑

k=1

∑

(n1,n2)
‖(n1,n2)‖∞=k

∑

x∈SL(2n1L,2n2L)

‖x‖t
∞Pp

(

0 x, |C(0)| < ∞
)

≤
∞
∑

k=1

∑

(n1,n2)
‖(n1,n2)‖∞=k

∑

x∈SL(2n1L,2n2L)

[(2k + 1)L]tPp

(

0 x, |C(0)| < ∞
)

≤
∞
∑

k=1

∑

(n1,n2)
‖(n1,n2)‖∞=k

C ′ktLt Ep

[

|C(0) ∩ SL(2n1L, 2n2L)|; |C(0)| < ∞
]

.

Now we have to distinguish between the sub-critical and the super-critical cases: we are going
to prove that in both cases,

Ep

[

|C(0) ∩ SL(2n1L, 2n2L)|; |C(0)| < ∞
]

≤ C1L
2π2

1(L)e−C2k

for some constants C1, C2 > 0. When p < 1/2, we will use that

Pp(∂SL  ∂SkL) ≤ C3e
−C4k, (1.38)
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Chapter 1. Near-critical percolation in two dimensions

which is a direct consequence of the exponential decay property Eq.(1.23) for “longer” parallel-
ograms. When p > 1/2, we have an analog result, which can be deduced from the sub-critical
case just like in the discrete case (just replace sites by translations of SL):

Pp(∂SL  ∂SkL, |C(0)| < ∞)

≤ Pp(∃ white circuit surrounding a site on ∂SL and a site on ∂SkL)

≤ C5e
−C6k.

Assume first that p < 1/2. By independence, we have (‖(n1, n2)‖∞ = k)

Ep

[

|C(0) ∩ SL(2n1L, 2n2L)|; |C(0)| < ∞
]

≤ Pp(0 ∂SL)Ep

[

|x ∈ SL(2n1L, 2n2L) : x ∂SL(2n1L, 2n2L)|
]

× Pp(∂SL  ∂S(2k−1)L)

≤ π1(L) × (CL2π1(L)) × C ′
3e

−C′
4k.

If p > 1/2, we write similarly (here we use FKG to separate the existence of a white circuit
(decreasing) from the other terms (increasing), and then independence of the remaining terms)

Ep

[

|C(0) ∩ SL(2n1L, 2n2L)|; |C(0)| < ∞
]

≤ Pp(0 ∂SL)Ep

[

|x ∈ SL(2n1L, 2n2L) : x ∂SL(2n1L, 2n2L)|
]

× Pp(∃ white circuit surrounding a site on ∂SL and a site on ∂S(2k−1)L)

≤ π1(L) × (CL2π1(L)) × C ′
5e

−C′
6k.

Since there are at most C ′′k rhombi at distance k for some constant C ′′, the previous sum-
mation is in both cases less than

∞
∑

k=1

C ′′k × C ′ktLt × C1L
2π2

1(L)e−C2k ≤ C ′′′
( ∞
∑

k=1

kt+1e−C2k

)

Lt+2π2
1(L),

which yields the desired upper bound, as
∑∞

k=1 kt+1e−C2k < ∞.

Critical exponents for χ and ξ

The previous lemma reads for t = 0:

Proposition 44. We have

χ(p) = Ep

[

|C(0)|; |C(0)| < ∞
]

≍ L(p)2π2
1(L(p)). (1.39)

In other words, “χ(p) ≍ χnear(p)”. It provides the critical exponent for χ:

χ(p) ≈ L(p)2
[

L(p)−5/48
]2 ≈

[

|p − 1/2|−4/3
]86/48 ≈ |p − 1/2|−43/18. (1.40)

Recall that ξ was defined via the formula

ξ(p) =

[

1

Ep

[

|C(0)|; |C(0)| < ∞
]

∑

x

‖x‖2
∞Pp

(

0 x, |C(0)| < ∞
)

]1/2

.

74



1.8. Concluding remarks

Using the last proposition and the lemma for t = 2, we get

ξ(p) ≍
[

L(p)4π2
1(L(p))

L(p)2π2
1(L(p))

]1/2

= L(p). (1.41)

We thus obtain the following proposition, announced in Section 1.7.1:

Proposition 45. We have
ξ(p) ≍ L(p). (1.42)

This implies in particular that

ξ(p) ≈ |p − 1/2|−4/3. (1.43)

1.8 Concluding remarks

1.8.1 Other lattices

Most of the results presented here (the separation of arms, the theorem concerning arm events
on a scale L(p), the “universal” arm exponents, the relations between the different characteristic
functions, etc.) come from RSW considerations or the exponential decay property, and remain
true on other regular lattices like the square lattice. The triangular lattice has a property of
self-duality which makes life easier, in general we have to consider the original lattice together
with the matching lattice (obtained by “filling” each face with a complete graph): instead of
black or white connections, we thus talk about primal and dual connections. We can also handle
bond percolation in this way. We refer the reader to the original paper of Kesten [43] for more
details, where results are proved in this more general setting. The only obstruction to get the
critical exponents is actually the derivation of the arm exponents at the critical point p = pc

(besides only two exponents are needed, for 1 arm and 4 alternating arms).
Consider site percolation on Z2 for instance. We know that 0 < αj , α

′
j , βj < ∞ for any j ≥ 1.

Hence the a-priori estimate
Ppc(0 4,σ4 ∂SN ) ≥ N−2+α

for some α > 0, coming from the 5-arm exponent, remains true: α4 < 2 (and in the same way
α6 > 2). Combined with Proposition 33, this leads to the weaker but nonetheless interesting
statement

L(p) ≤ |p − pc|−A (1.1)

for some A > 0. Hence ν < ∞, and then γ < ∞ (if these exponents exist). Using α1 < ∞, we
also get β < ∞.

If we use a RSW construction in a box, we can make appear 3-arm sites on the lowest crossing
and deduce that α1 ≤ 1/3. Here are rigorous bounds for the critical exponents in two dimensions:

triangular lattice general rigorous bounds

β = 5/36 0 < β < 1

γ = 43/18 8/5 ≤ γ < ∞
ν = 4/3 1 < ν < ∞

For more details, the reader can consult [43] and the references therein.
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Chapter 1. Near-critical percolation in two dimensions

1.8.2 Some related issues

For the sake of completeness, let us just mention finally that the way the correlation length L was
defined also allows to use directly the compactness results of [2]. Indeed, the a-priori estimates on
arm events coming from RSW considerations are exactly the hypothesis (H1) of this paper. This
hypothesis entails that the curve cannot cross too many times any annulus, and thus cannot be
too “intricate”: this is Theorem 1, asserting the existence of Hölder parametrizations with high
probability.

This regularity property then implies tightness, using (a version of) Arzela-Ascoli’s theorem
for continuous functions on a compact subset of the plane. We can thus show in this way the
existence of scaling limits for near-critical percolation interfaces.

As a conclusion, let us also mention that the techniques presented here are important to study
various models related to the critical regime, for instance Incipient Infinite Clusters [25, 36, 37],
Dynamical Percolation [68], Gradient Percolation [54]. . .
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Chapter 2

Large scale properties of the IIIC for
2D percolation

Abstract: We reinvestigate the 2D problem of the inhomogeneous incipient infinite cluster
where, in an independent percolation model, the density decays to pc with an inverse power, λ,
of the distance to the origin. Assuming the existence of critical exponents (as is known in the case
of the triangular site lattice) if the power is less than 1/ν, with ν the correlation length exponent,
we demonstrate an infinite cluster with scale dimension given by DH = 2 − βλ. Further, we
investigate the critical case λc = 1/ν and show that iterated logarithmic corrections will tip the
balance between the possibility and impossibility of an infinite cluster.

This chapter is joint work with Lincoln Chayes.
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Chapter 2. Large scale properties of the IIIC for 2D percolation

2.1 Introduction

A while ago, one of us – in collaboration with others – introduced a notion of inhomogeneous
percolation [25] that was demonstrated to have some interesting properties. The model is defined
by allowing the density parameter to vary, e.g. with the distance to the origin, in such a way
that the system will just barely house an infinite cluster. Explicitly, one looks at

p(r) ∼= pc +
1

rλ
(2.1)

where r denotes distance to the origin (and it should be assumed r is large enough so that
the right–hand side makes sense). For d = 2, under the assumption of the existence of critical
exponents, it was found that if λ < λc = 1/ν the origin belongs to an infinite cluster with positive
probability, while this probability vanishes if λ > λc. In the preceding, ν is the correlation length
exponent – precise definitions later – and, in fact, an equivalent but more awkward statement
can be made without reference to exponents. For λ < λc, we will refer to the infinite object as
the inhomogeneous incipient infinite cluster (IIIC).

In the ensuing time, there have been two landmarks in 2D percolation, namely the works of
Kesten in the late 1980’s ([40], [41], [43]) wherein critical scaling relations were established modulo
the existence of certain critical exponents, and the more recent works by (various combinations
of) Lawler, Schramm, Smirnov and Werner ([69], [50], [71]) where the existence of these exponents
– and their values – was established for the case of the triangular site lattice using the connection,
in the scaling limit, to the Schramm-Loewner Evolution (SLE) with parameter 6. Thus, most of
the original results can be sharpened at least in certain cases. However, such matters are largely
automatic.

The main result of this note concerns the large scale structure of the percolating cluster.
In particular, it turns out that these objects have a well–defined Hausdorff dimension (more
precisely scale–dimension) that is given by

DH = 2 − βλ (2.2)

for 0 < λ < λc, where β is the percolation density, or order parameter exponent. It is noted
that as λ ↓ λc this dimension matches that of the standard IIC as discussed in e.g. [73], [74]
and proved, modulo the existence of exponents, in [40]. Further, we discuss the borderline case,
informally p(r) − pc = r−1/νK(r) where K(r) is a “correction”. It turns out that at the border,
the balance is very delicate and

K(r) ∼ [log log r]1/ν (2.3)

will determine the presence or absence of infinite structures. All results save the latter can be
stated without apology for the triangular site model; a statement along the lines of Eq.(2.3)
requires strong existence of power laws which, at this time, has not been established, and we will
be content with a statement that circumvents this necessity.

2.2 Setup and statement of theorems

2.2.1 Setting

We consider any of the standard 2D percolation models – explicitly any model for which the
results of [40] – [43] can be established. In particular, what is needed is reflection symmetry about
one of the coordinate axes and overall rotational invariance by any angle in (0, π). However, it is
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2.2. Setup and statement of theorems

sufficient that the reader keeps in mind only the bond or site problems on the square or triangular
lattice (unfortunately, the latter requires the use of parallelograms rather than rectangles and,
since the triangular site model is where the strongest results are known, we are forced to carry
this terminology).

For the purposes of this note, it is assumed that the reader is familiar with the standard
fare associated with these sorts of percolation problems; additional background material can be
found in the reference [35].

Let us now fix some working notation/definitions: we take the vertical axis to be the axis of
reflection symmetry and r(z) = ‖z‖∞ (abv. ‖z‖ since, in any case, all norms are equivalent) will
denote the infinity norm of a site z as measured with respect to the x–axis and the axis related
to this by the angle of rotation symmetry. The set of points at distance at most N from a site z
is a rhombus centered at this site and whose sides line up with the above mentioned axes. It will
be denoted by SN (z), its boundary being the set ∂SN (z) of points at distance exactly N from
z. We will refer to SN (0) simply as SN . We will often use the fact that

|SN (z)| ≤ C0N
2 (2.1)

for some constant C0 that may depend on the lattice.
Bonds or sites (as appropriate) will be occupied with probability p and vacant with probability

1 − p, independently of each other. We denote by P∞(p) the probability that the site at the
origin is connected to infinity, and by pc ∈ (0, 1) the percolation threshold: P∞(p) > 0 iff p > pc.
If A and B are sets (which, for convenience, will include the case “infinity”), then we use the
notation A  B to denote the event that some site in A is connected to some site in B. If the
connection is required to take place using exclusively the sites of some other set C, we write
A C
 B. Finally, all quantities adorned by an ∗ will pertain to the dual model.
We will make use of the following one–arm probability

π(N) := Ppc({0 ∂SN}) (2.2)

and, in addition,

π(n|N) := Ppc({∂Sn  ∂SN}). (2.3)

The so-called Russo-Seymour-Welsh theory (see e.g. [35]) implies that

π(n|2N), π(⌊n/2⌋|N) ≥ D1π(n|N) (2.4)

and

D2

[

n

N

]µ

≤ π(n|N) ≤ D3

[

n

N

]µ′

(2.5)

for some constants 0 < D1, D2, D3, µ, µ′ < ∞. We will later have use for µ < 2 so we may as
well take µ = 1

2 (this may be derived by a variant of the “example” (3.15) in [10] where one now
uses blocks of size n instead of individual sites to obtain that N

n π2(n|N) is bounded below by a
constant). Finally, we also have

D4π(n0|n2) ≤ π(n0|n1) × π(n1|n2) ≤ D5π(n0|n2) (2.6)

whenever n0 < n1 < n2, for some 0 < D4, D5 < ∞.
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Chapter 2. Large scale properties of the IIIC for 2D percolation

2.2.2 Correlation lengths

We will assume throughout that p > pc, as this is the only case we are interested in. The primary
correlation length used in this note, describing connection probabilities, will be defined via the
dual model: let z∗ denote a site on the dual lattice and let τ∗

0∗,z∗(p) denote the probability of a
dual connection between the dual origin and z∗, i.e. the event {0∗ ∗

 z∗}. Finally, let τ∗
n(p) denote

the maximum of such connection probabilities with ‖z∗‖ (= ‖z∗‖∞) within a lattice spacing of
n. Then, the correlation length ξ(p) is defined by

lim
n→∞

[τ∗
n(p)]

1
n = e

− 1
ξ(p) (2.7)

with ξ = 0 if p = 1. As is well known, the function ξ is continuous, monotone and divergent at
p = pc; the power of p− pc with which this function purportedly diverges “defines” the exponent
ν. Further, for future reference, the functions τ∗

0∗,z∗ obey the a priori bounds

τ∗
0∗,z∗(p) ≤ e

− ‖z∗‖
ξ(p) . (2.8)

Another frequently used correlation length is the (quadratic) mean radius ξ̃(p) of a finite
cluster, defined by

ξ̃(p) =

[

1

Ep

[

|C(0)|; |C(0)| < ∞
]

∑

z

‖z‖2Pp

(

{0 z} and |C(0)| < ∞
)

]1/2

. (2.9)

We shall also have use for an auxiliary correlation length – often called finite–size correlation
length – which we will denote by L(p); technically this depends on an additional parameter
δ which will be notationally suppressed. In this note, the length L(p) will be defined as the
smallest 3 × 1 parallelogram – with the short angle being the angle of the rotation symmetry –
such that the probability of an occupied crossing exceeds 1− cδ. Here c is a particular constant
of order unity and δ may be chosen arbitrarily in (0, 1)7. The key item is that if the above
mentioned estimate on the crossing probability is satisfied then, upon tripling the length scale,
the improved estimate becomes 1− cδ3, so that on further rescalings, crossing probabilities tend
to one exponentially fast. In particular, for all n, all p > pc, the probability of a dual crossing of
an n × 3n parallelogram is bounded above by a constant times e−n/L(p), which implies that

P∞(p) ≥ c0 Pp({0 ∂SL(p)}) (2.10)

for some universal constant 0 < c0 < ∞.
It is noted that for length scales smaller than L(p), crossing probabilities of these shorter and

longer parallelograms are bounded above and below by strictly positive constants that depend
only on the aspect ratio, as this is the situation at p = pc on all length scales. This is proved
by a variant of the Russo–Seymour–Welsh theorem, see e.g. the relevant lemmas in [39] Ch. 6.
Obviously, the same kind of bounds hold for dual crossings.

It was shown in [43] that L(p) and ξ̃(p) are uniformly bounded above and below by (δ
dependent) multiples of one another, that is, in the notation of Kesten,

L(p) ≍ ξ̃(p).

It was mentioned in [12] that the relation ξ(p) ≍ L(p) was known; however to the authors’
knowledge, there is no published proof. In any case, at least for 2D percolation problems, this is

7Kesten proved in fact the following in [43]: for any (fixed) δ1, δ2 ∈ (0, 1), we have L(p, δ1) ≍ L(p, δ2).
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not hard to show – we will provide the details in a short appendix – and thus all these correlation
lengths are equivalent. To define the model we have a slight preference for ξ, which is continuous
and monotone, but for proofs the length L will most often be more practical.

Finally, as alluded to above, concerning asymptotic issues, we will use Kesten’s notations: for
two positive functions f and g, f ≍ g means that there exist two positive and finite constants Ca

and Cb such that Cag ≤ f ≤ Cbg (so that their ratio is bounded away from 0 and +∞), whereas
f ≈ g means that log f/log g → 1 (“logarithmic equivalence”). These items will refer to p → pc

or N → ∞ depending on the context.
Kesten proved in [43] than the one–arm probability stays of the same order of magnitude if

we do not go beyond the characteristic scale: more precisely,

Pp(0 ∂Sn) ≍ Ppc(0 ∂Sn) (2.11)

uniformly in p and n ≤ L(p). In particular, we can combine it with Eq.(2.10):

P∞(p) ≍ Pp({0 ∂SL(p)}) ≍ Ppc({0 ∂SL(p)}). (2.12)

This result (stated also in [43]) will prove to be very useful when dealing with small boxes
throughout which the density parameter does not vary too much.

2.2.3 Description of the model

We let α : [0, +∞) → (0, 1− pc] denote the inverse function of ξ with argument of the increment
above threshold:

ξ(pc + α(r)) = r. (2.13)

Letting w ∈ (0, 1), our inhomogeneous density will be defined by

p(z) := pc + ε(r) = pc + α(rw), (2.14)

with r = r(z) = ‖z‖. It is noted that this gives ξ(pc +ε(r)) = rw which will be the starting point
of our analyses. We will denote the corresponding measure by P̃w and expectations therein by
Ẽw.

Remark 46. It is noted that the formulation in Eq.(2.14) has the slight advantage over the
informal description featured in the introduction that it is well-defined at all points of the lattice.
Moreover, in cases such as the triangular site percolation model where a logarithmic form of
scaling can be established, i.e.

ξ(p) ≈ |p − pc|−ν (p ↓ pc) (2.15)

we make direct contact with the more informal description. Indeed using Eqs.(2.15), (2.14) and
(2.13) we get

ν = lim
r→∞

log(ξ(pc + α(rw))

| log α(rw)|
log r

log r
= w lim

r→∞
log r

| log ε(r)| (2.16)

i.e. log ε(r)/ log r → −w/ν = −λ, that is to say ε(r) ≈ r−λ.

We will now consider the inhomogeneous model as described, and we will denote by ΨN the
number of sites in SN that belong to the infinite cluster, and by ΦN the number of sites in SN

that are connected to the origin by a path lying entirely in SN . We are ready for the statement
of our main theorem:
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Theorem 47. Consider the quantity

IN :=
∑

z∈SN

P∞
(

pc + ε(r(z))
)

. (2.17)

Then

(i) We have IN ≍ N2π(Nw), and this quantity measures the size of ΨN and ΦN : As N → ∞,

Ẽw(ΨN ) ≍ Ẽw(ΦN ) ≍ IN . (2.18)

(ii) Furthermore, we have the variance estimate: for any ǫ > 0,

Ṽw(ΨN ) ≤ C2ǫN
2ǫN2+2wπ2(Nw), (2.19)

so that Ṽw(ΨN ) = o(I2
N ) and

ΨN

Ẽw(ΨN )
−→ 1 in L2. (2.20)

Finally, conditionally on {0 ∞}, these results hold for ΦN as well.

Remark 48. Under the assumption of scaling, if we write

P∞(p) ≈ (p − pc)
β (2.21)

then

IN ≍
∫

SN

d2r
1

rλβ
≍ N2−λβ. (2.22)

A result along these lines can be stated for the triangular site model.

Corollary 49. For the triangular site model (or any model where logarithmic scaling can be
established), when N → ∞,

Ẽw(ΨN ) ≈ N2−λβ. (2.23)

Remark 50. We have

Ẽw(ΦN | {0 ∂SN}) ≍ Ẽw(ΦN | {0 ∞}) ≍ N2π(Nw). (2.24)

For the usual Incipient Infinite Cluster (which is the analog of the limiting case as w → 1),
Kesten proved in [40] that

Ẽ(ΦN | {0 ∂SN}) ≍ N2π(N) and Ṽ(ΦN | {0 ∂SN}) ≍ N4π2(N). (2.25)

Our estimates thus imply in particular that the IIIC measures for w ∈ (0, 1) are all singular with
respect to the IIC measure – and to each other as well – which was proved in [36]. Actually this
result can be obtained more directly by noticing that for the IIC, there is a.s. only one arm going
to infinity – two infinite paths have to intersect infinitely many times as can be shown from the
BK inequality – while for the IIIC we can find as many disjoint arms as we want (constructed
with overlapping parallelograms, as in the proofs below).

In the last section we will prove that if ε(r) ≈ α(r/[κ log log r]) there is a κc above which
there is percolation and below which there is not. We will defer to Section 4 a precise statement
of this result.
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2.3 Proofs

The following, our key lemma, is an adaptation of the typical sorts of derivations to be found in
[23], [41] and [43].

Lemma 51. Let ℓ(r) be standing notation for L(pc + ε(r)) and Sℓ(z) = Sℓ(r(z))(z) = Sℓ(‖z‖)(z).
Then for any z,

P̃w({z  ∞}) ≥ c1P̃w({z  ∂Sℓ(z)}). (2.1)

Similarly, if r(z) < N − ℓ(r(z)) then

P̃w({z SN
 

0}) ≥ c2P̃w({z  ∂Sℓ(z)}). (2.2)

In the above, c1 and c2 are constants of order unity independent of z.

Remark 52. Since the above are supplemented with the obvious complementary bounds, the event
{z  ∂Sℓ(z)} is, essentially, necessary and sufficient for z to join the relevant large scale IIIC.
This is the sort of result that Kesten established in the uniform system and, in fact, analogous
statements are anticipated for all low–dimensional critical systems. Note also that

ℓ(r) = L(pc + ε(r)) ≍ ξ(pc + ε(r)) = rw (≪ r). (2.3)

Proof. We will establish the above for all r sufficiently large but it is remarked that just how
large is sufficient may depend on w. Let us start with the first case; here, for various reasons, it
is worthwhile to know that the connection to infinity can be achieved by moving outward from
the immediate vicinity of the point z. Consider the event Aℓ(z) that an occupied ring separates
∂Sℓ(z) from S 1

3
ℓ(r(z))(z). Once Aℓ(z) has occurred, with a few more parallelogram crossings, the

separating circuit can be attached to a crossing of a 3ℓ(r) × ℓ(r) parallelogram that is heading,
more or less, in a direction away from the origin. We further intersect this with a few more
crossings on a few more scales – each scale 3 times the previous one. The number of times we
must do this, which is on the order of just a few and not dependent on r will be made precise
momentarily; the relevant crossings are depicted in Figure 1.

Denoting the intersection of the annular event and the crossing events alluded to by Bℓ we
have, by FKG,

P̃w({z  ∂Sℓ(z)} ∩ Bℓ) ≥ P̃w({z  ∂Sℓ(z)})P̃w(Bℓ) ≥ BP̃w({z  ∂Sℓ(z)}) (2.4)

where B is the probability of Bℓ at p = pc. We remind the reader that this is a uniformly positive
constant (obtained by “Russo–Seymour–Welsh theory” and a few more applications of the FKG
inequality) that does not depend on the particular scale where the action is taking place.

Now, consider the situation at a distance 2r from the origin. Here, by Eq.(2.14) (the definition
of p(z)), the local correlation length has grown to 2w its size at the distance r. Let us estimate
the finite–size correlation length. First we let c3 and c4 denote the constants by which the two
correlation lengths may be compared:

c3L(p) ≤ ξ(p) ≤ c4L(p). (2.5)

Then, it is seen that L(pc + ε(2r)) ≤ 2wc4c
−1
3 L(pc + ε(r)) = 2wc4c

−1
3 ℓ(r), and it is clear that

everywhere in the annular region S2r(0)\Sr(0), the effective finite–size scaling correlation length
is going to be uniformly smaller. The constant 2wc4c

−1
3 determines the scale of our initial cluster

(which, we recall, is attached to the annular ring which in turn is connected to z). Having
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Chapter 2. Large scale properties of the IIIC for 2D percolation

Figure 2.1: The event Aℓ(z) and a few subsidiary crossings which serve to attach z to a cluster
with diameter moderately larger than the local correlation length. This cluster is, in turn, easily
attached to points twice as far from the origin as z and, ultimately, to infinity.

achieved this scale we are beyond the correlation length as defined at the distance 2r. Using
p(2r) as a bound for the density in the annular region, it is not of much cost to connect this
cluster out to ∂S2r(0). This may be done, e.g. by a standard “rectangle rescaling program” –
constructing overlapping crossings the kth of which has probability in excess of 1 − cδ3k

and
whose scale is 3k times that of the original aggregation. Note however, that we have to have
taken r large enough so that 2wc4c

−1
3 ℓ(r) ≤ r.

We have thus hooked the point z to a cluster that connects ∂Sr(0) to ∂S2r(0) at an additional
probabilistic cost, beyond what is in Eq.(2.4), of no more than

∏

k(1 − cδ3k
) > 0 – again

using repeatedly the FKG inequality. The scale r cluster can now be directed to infinity by
straightforward arguments (of a similar nature) which may be directly taken from [25] Theorem
2.

The second bound, Eq.(2.2), is proved in a similar fashion – actually easier because, æsthetics
aside, we are forced to work inwards. The first few steps are identical: assuming that {z  
∂Sℓ(z)} has occurred, we use the event Aℓ(z) and some more crossings to hook z up to a
3ℓ(r)× ℓ(r) crossing – this time headed in the general direction of coordinate decrease. But now,
agreeing to always head inwards, we may do a ×3 rescaling program without apology since p(z)
is only getting bigger. Thus, we continue till we reach the boundary of Sr/2(0), again at a cost

of no more than
∏

k(1 − cδ3k
) > 0. With probability that is (stretched exponentially) close to

one there is an occupied ring in Sr(0) \ Sr/2(0); this may be obtained by summing Eq. (2.8)
over both boundaries. Finally, with non–zero probability, the event {0 ∂Sr(0)} occurs and it
is clear that the intersection of all these events produces the event {z SN

 0}. As before, we have
made repeated use of FKG and it is noted that the probabilities of all the relevant events save
{z  ∂Sℓ(z)} are of order unity independent of z.

Proof of Theorem 47. The above lemma proves almost completely the portion of Theorem 47
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which concerns expectations. Indeed, for a uniform system,

P∞(p) ≍ π(L(p)) (2.6)

by Eq.(2.12), so the summand in Eq.(2.17) may be replaced by π(rw(z)) (as ℓ(r) ≍ rw by
Eq.(2.3)), and it is easily seen that π(rw(z)) ≍ P̃w({z  ∂Sℓ(z)}): indeed, as z′ varies throughout
Sℓ(z), the local correlation length varies by a fractional amount which is only of the order
[r(z)]−(1−w). So, we may as well estimate by the largest value of p within Sℓ(z) and use the
associated slightly smaller L. But then, using bounds as in Eq.(2.4) and Eq.(2.12), we get that
IN ≍∑z∈SN

P̃w({z  ∂Sℓ(z)}), which is our asymptotic expression for Ẽw(ΨN ).

Before we dispense with Ẽw(ΦN ) let us first verify the (asymptotic) evaluation of the quantity
IN . We already have that

IN ≍
∑

z∈SN

π(rw(z)). (2.7)

Let us take a logarithmic division of SN : define k = k(N) so that 2k < N ≤ 2k+1, then

IN ≍
∑

j≤k

(2j)2π(2jw) + E(k) (2.8)

where E(k) is no more than the order of N2π(Nw). In the above, we have used Eq.(2.4) on more
than one occasion. Obviously, the purported principal term is at least of this order so there is
no further need to consider E . We pull out the leading term in the sum:

∑

j≤k

(2j)2π(2jw) ≍ 22kπ(2kw)
∑

j≤k

22(j−k) π(2jw)

π(2kw)
(2.9)

Now we use the fact that π(2wk)/π(2wj) ≍ π(2wj |2wk) (using Eq.(2.6)) so that the coefficient of
22kπ(2kw) (which is also at least as large as the order of unity because of the last term in the
sum) is no more than

c̃5 =
∞
∑

q=0

2−q(2−wµ) < ∞ (2.10)

since µ is certainly less than two. It is obvious given Eq.(2.7) for IN that Ẽ(ΦN ) is (asymptoti-
cally) bounded above by IN and below by IN

2
which by now, are seen to be comparable to each

other.
Let us turn now to the variance bound. We first note that we can write ΨN =

∑

x∈SN
I{x ∞},

so that

Ṽw(ΨN ) =
∑

x,y∈SN

[

P̃w({x ∞}, {y  ∞}) − P̃w({x ∞})P̃w({y  ∞})
]

=
∑

x,y∈SN

[

P̃w(Fx ∩ Fy) − P̃w(Fx)P̃w(Fy)

]

where we have used the notation Fx = {x  ∞}. Now recall that ℓ(r) ≍ rw (Eq. (2.3)).
As w < 1, we can find some ǫ > 0 such that w + ǫ < 1. We introduce the enhanced length
l(r) = ℓ(r)rǫ (which is still ≪ r) and as above, we abbreviate Sl(‖x‖)(x) by Sl(x). We denote by
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Chapter 2. Large scale properties of the IIIC for 2D percolation

F ′
x the event {x ∂Sl(x)}. It is not hard to check that there is a b > 0 (independent of x) such

that for ‖x‖ sufficiently large,

P̃w(Fx∆F ′
x) ≤ e−‖x‖b

. (2.11)

We deduce, for n some small power of N , that

Ṽw(ΨN ) ≤ 17C2
0n4 + C1N

4e−nb
+ 2

∑

x∈Sn,y∈SN\S3n

[

P̃w(Fx ∩ F ′
y) − P̃w(Fx)P̃w(F ′

y)

]

+
∑

x,y∈SN\Sn

[

P̃w(F ′
x ∩ F ′

y) − P̃w(F ′
x)P̃w(F ′

y)

]

.

The first term serves to estimate the terms in which {x ∈ Sn, y ∈ S3n} or {x ∈ S3n, y ∈ Sn}
where, as we recall, C0 is the constant that figures into the volume of a box, and the reader is
invited to verify the factor of 17. Whenever x is in Sc

n, we replace Fx with F ′
x and similarly for

y; the error incurred is accounted for in the second term (and we have assumed that n is large
enough so that the bound in Eq.(2.11) is safely in effect). The last two terms are self–explanatory
and will be dispensed with below.

Let us start with the first sum. For y ∈ Sc
3n and x ∈ Sn, it is observed that, for n large

enough, Sl(y) is disjoint from Sn. Suppose that an occupied circuit surrounding Sl(y) separates
it from Sn. Now the event F ′

y depends only on the configuration inside Sl(y) while (conditioning
on the innermost such ring) the event Fx depends only on the configuration outside and, perhaps,
including the ring. I.e. given such a ring, the events Fx and F ′

y are conditionally independent.
The probability of F ′

y is unchanged while the probability of Fx and the ring event is bounded

above by P̃w(Fx) alone. Thus we learn for y ∈ Sc
3n and x ∈ Sn that

P̃w(Fx ∩ F ′
y) − P̃w(Fx)P̃w(F ′

y)

≤ P̃w({no occupied circuit separates Sn from Sl(y)}). (2.12)

The right–hand side of Eq.(2.12) is bounded by another term of the order e−nb
and we may thus

absorb the entire first sum into the second error term at the expense of shifting the index of the
constant.

We turn attention to the final term in the above written bound on the variance. If x and y
are distant enough, Sl(x) and Sl(y) are disjoint, and the events F ′

x and F ′
y are independent. Now

note that l(‖x‖) ≥ l(‖y‖) if ‖x‖ ≥ ‖y‖, so that Sl(x) ∩ Sl(y) = ∅ if ‖x‖ ≥ ‖y‖ and y ∈ Sc
3l(x).

Hence,

∑

x,y∈SN\Sn

[

P̃w(F ′
x ∩ F ′

y) − P̃w(F ′
x)P̃w(F ′

y)

]

≤ 2
∑

x,y∈SN\Sn,‖x‖≥‖y‖

[

P̃w(F ′
x ∩ F ′

y) − P̃w(F ′
x)P̃w(F ′

y)

]

≤ 2
∑

x∈SN\Sn

∑

y∈S3l(x)∩Sc
n

[

P̃w(F ′
x ∩ F ′

y) − P̃w(F ′
x)P̃w(F ′

y)

]

We now have to estimate, for a site x ∈ SN \ Sn, the sum

Σw(x) =
∑

y∈S3l(x)∩Sc
n

P̃w(x ∂Sl(x), y  ∂Sl(y)) (2.13)
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2.3. Proofs

Note that for y inside S3l(x) ∩ Sc
n, the size l(‖y‖) of the associated box does not vary too much

and certainly (since ‖y‖ is already larger than n) always satisfies l(‖y‖) ≥ ℓ(‖x‖). Thus we have

Σw(x) ≤
∑

y∈S3l(x)

P̃w(x ∂Sℓ(‖x‖)(x), y  ∂Sℓ(‖x‖)(y)) (2.14)

We can then proceed by summing over concentric annuli centered on x cutting down even further
on what we require in accord with ‖x − y‖: take k = k(x) such that 2k < ℓ(‖x‖) ≤ 2k+1. If y is
outside of S2k+1(x), the two boxes S2k(x) and S2k(y) are disjoint. Hence, for these cases,

P̃w(x ∂Sℓ(‖x‖)(x), y  ∂Sℓ(‖x‖)(y))

≤ P̃w(x ∂S2k(x))P̃w(y  ∂S2k(y)) ≍ π2(2k) (2.15)

and the number of such terms does not exceed the volume of S3l(x). Thus, the total contribution
from these well–separated terms is bounded by C3l

2(‖x‖)π2(ℓ(‖x‖)) where C3 is a constant not
dissimilar from C0.

Now if y ∈ S2j+1(x) \ S2j (x) with j ≤ k − 3, we have by independence

P̃w(x ∂Sℓ(‖x‖)(x), y  ∂Sℓ(‖x‖)(y))

≤ P̃w(x ∂S2j−1(x))P̃w(y  ∂S2j−1(y))P̃w(∂S2j+2(x) ∂S2k(x))

≤ C4π
2(2j−1)π(2j+2|2k)

≤ C5π(2j)π(2k).

using once again Eqs.(2.4) and (2.6). If j ≥ k − 2, we just drop the last term P̃w(∂S2j+2(x)  
∂S2k(x)) in the first inequality: since in this case π(2j) ≍ π(2k), the final inequality still
holds. Hence, we must sum

∑

j≤k(2
j)2π(2j)π(2k). This is identical to the previous argu-

ment: pulling out an overall factor of [2kπ(2k)]2, the resulting summand may be expressed
as [π(2j | 2k)22(k−j)]−1, and if we use the bound in Eq.(2.5) with µ < 2, we see

∑

j≤k

22jπ(2j)π(2k) ≤ C6[2
kπ(2k)]2. (2.16)

This is somewhat smaller than the contribution from the well–separated terms (Eq.(2.15)) so,
overall,

Σw(x) ≤ C7l
2(‖x‖)π2(ℓ(‖x‖)). (2.17)

We finally sum on x to conclude

Ṽw(ΨN ) ≤ 17C2
0n4 + C2N

4e−nb
+ 2

∑

x∈SN\Sn

Σw(x)

≤ 17C2
0n4 + C2N

4e−nb
+ C7N

2ǫ

k(N)
∑

j=1

22j22wjπ2(2jw).

In the above, all indexed constants are numbers which are uniformly of order unity. As in
previous arguments, we may bound the sum by a constant times N2+2wπ2(Nw) and, finally, we
choose n a small enough power of N so that n4 is relatively negligible – which will still easily
diminishes the other “error term”. Recalling that I2

N ≈ N4π2(Nw) – and that w + ǫ < 1 – we
have obtained the desired statement about Ṽw(ΨN ).
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Chapter 2. Large scale properties of the IIIC for 2D percolation

Concerning ΦN , although we have to be a bit more cautious, the proof remains essentially
the same. Here we can write

Ṽw(ΦN | {0 ∞}) =

∑

x,y∈SN

[

P̃w({x 0, y  0}|{0 ∞}) − P̃w({x 0}|{0 ∞})P̃w({y  0}|{0 ∞})
]

=
∑

x,y∈SN

[

P̃w(Fx ∩ Fy ∩ {0 ∞})
P̃w({0 ∞})

− P̃w(Fx ∩ {0 ∞})P̃w(Fy ∩ {0 ∞})
P̃w({0 ∞})2

]

We again cut out a central portion at the cost of the order n4 and we are left with two principal
contributors the first of which is given by (twice) the sum with x ∈ Sn and y ∈ Sc

3n. Here, using
another argument involving a separating ring, the positive term is bounded as follows:

P̃w(Fx ∩ Fy | {0 ∞}) ≤ P̃w(Fx | {0 ∞})P̃w(F ′
y) + NR (2.18)

where NR is the “no ring” event described in Eq.(2.12). Meanwhile,

P̃w(Fy | {0 ∞}) ≥ P̃w(Fy)

so we are left with P̃w(Fx | {0  ∞})P̃w(F ′
y∆Fy) plus the NR term both of which are of the

order e−nb
.

We are left with the principal term and first off (at small cost) we replace the events Fx and
Fy by the events F ′

x and F ′
y. Here in addition we will replace {0 ∞} by the event

F
(x,y)
0 = {0 ∞ outside of Sl(x) ∪ Sl(y)} (= {0 [Sl(x)∪Sl(y)]c

−−− ∞}). (2.19)

It is not hard to see that the two events are very close. Indeed while ostensibly F
(x,y)
0 ⊃ {0 ∞},

in the event that Sl(x) and Sl(y) are both surrounded by occupied circuits which separate these
boxes from the origin, the conditional probability is larger. But since we are well away from the
origin these sorts of separating rings occur with probability close to one and we get an upper
bound similar to that of Eq.(2.11) for P̃w(F

(x,y)
0 ∆{0  ∞}). The remainder of the proof is

essentially identical.

2.4 A sharp transition

To treat the marginal case, we take

p(z) := pc + ε(r) = pc + α(r/κ log log(r)) (2.1)

with κ a constant and it is assumed that r is large enough so that all quantities are positive
(otherwise, we set p = 1). We denote by P̃1,κ the associated inhomogeneous probability measure.
Note that this gives ξ(pc + ε(r)) = r/κ log log(r) which is hardly distinguishable from linear in
r. Nevertheless, we will prove

Theorem 53. For the 2D inhomogeneous percolation models defined via Eq.(2.1), there is a
critical value κc ∈ (0, +∞) such that for κ > κc there exists P̃1,κ– a.s. an infinite cluster, while
for κ < κc there is P̃1,κ– a.s. no infinite cluster.
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2.5. Appendix

Proof. By monotonicity, it suffices to prove that there exists a value of κ for which the system
percolates, and another value for which it does not percolate. We start with the percolative part.

Consider the crossing of any 3r × r parallelogram that is situated so that the maximum
distance form the origin is no more than Mr with M a (uniform) constant of order unity.
Within this parallelogram, the lowest value of p estimates a uniform value for the density. This
in turn provides a finite–size scaling correlation length which is smaller than r/[q1 log log r] for
some constant, q1, which is large if κ is large. By starting at this length scale, and instituting
an ×3 rescaling program till the scale of the 3r × r is reached, it is seen that the probability of
a crossing at the larger scale is at least 1 − Q1δ

q1 log log r. Here Q1 is a constant of order unity
– perhaps small – but independent of r and κ. Writing δ as an exponential this bounds the
probability of crossing the parallelogram at scale r below by 1 − Q2/(log r)q2 where Q2 is of
order unity independent of r and κ and q2 is large if κ is large.

We now consider a sequence of overlapping 3× 1 parallelograms at a sequence of scales with
each scale thrice the previous one. Here the sequence is such that the smallest scale is in the
vicinity of the origin and the event of simultaneous crossings of all of them (or all but a finite
number of them) implies the existence of an infinite cluster.8 If the scale of the kth rectangle is
simply a constant times 3k, the P̃1,κ probability of seeing all the crossings is bounded below by

g(κ) =
∏

k

[

1 − Q3

kq2

]

(with Q3 another uniform constant) which is positive for all κ large enough. The quantity g(κ)
bounds the probability that the origin belongs to an infinite cluster, the a.s. existence of an
infinite cluster follows from an application of the Borel–Cantelli lemma. It is remarked that by
the consideration of large scale circuits – which are present even at p = pc – the infinite cluster
is a.s. unique.

For the non–percolative result, when κ is small, we shall consider events in the annular
regions S3r \ Sr. Within this region, L(p(z)) is now uniformly larger than r/[a1 log log r] where
a1 is small if κ is small. This implies that the long–way crossings of 4 × 1 parallelograms occur
with probability of order unity. These crossings may be stitched together, e.g. in a square–wave
fashion, to construct a dual circuit in the annulus; see Figure 2. Using FKG, the probability of
such a ring can be bounded below by A1/(log r)a2 , where a2 is small if κ is small. Once more
looking at interlocking annuli at scales ∝ 3k, this translates into a probability ∝ k−a3 where a3

is small if κ is small. Divergence of
∑

k k−a3 implies the a.s. presence of ∞-ly many of these dual
circuits and, therefore, P̃1,κ–a.s. no infinite cluster.

2.5 Appendix

Here we provide the promised derivation that, in context of 2D percolation models of the sort
described in Section 2, all correlation lengths are asymptotically equivalent. As the reader will
note, the key is already in the proof of Theorem 53.

Proof that L(p) ≍ ξ(p). Let us start by defining R3,N (p) to be the probability of a long–way
crossing of a 3N × N parallelogram and D3,N = 1 − R3,N the probability of the complimentary

8 E.g. in the “T” construction in [25], which the reader may wish to check, there are two rectangles at each
scale; although one of them was 4 × 1 this was only for æsthetic reasons and, in any case, the above mentioned
bounds on crossing probabilities are easily extended to parallelograms with any finite aspect ratio.
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Figure 2.2: Construction of a dual circuit in the annulus S3r \ Sr for the borderline case. If κ is
small, the probability of these circuits tends to zero with a small power of log r and percolation
is prevented.

event, namely a short–way dual–crossing of this shape. First, it is claimed that

lim
N→∞

D
1
N
3,N = e

− 1
ξ . (2.1)

Indeed, D3,N ≤ V1N
2e

−N
ξ by the a priori bounds discussed in Eq.(2.8) where V1 is a uniform

constant (equal to 9 on the square lattice). On the other hand, we may obtain a lower bound
for D3,N by just allowing the site at the center of the base to connect to its counterpart across
the way. While, ostensibly, this would allow for paths to “leak out the ends”, it is not hard to

show that the probability of such a huge lateral excursion is as small as e
− 3

2
N
ξ so, for all intents

and purposes, D3,N & τ∗
N which establishes the limit. Using the ×3 construction discussed at

several points earlier in the text and using e.g. δ = e−1, we get that

R3,3kL ≥ 1 − ce−3k
. (2.2)

Thus, for some sequence of N ’s, D3,N ≤ ce−
N
L which implies e−1/ξ ≤ e−1/L. Now consider the

probability of a hard–way dual crossing of a 4 × 1 parallelogram of scale L′ which is less than
L but, say, larger than 1

2L. This occurs with a probability of order unity independent of p (by
Russo-Seymour-Welsh theory) and, as was just done in the last proof, by stitching together the

order of N/L such rectangles the desired event is produced. Thus we have D3,N ≥ e−σ N
L for

some constant σ (which is uniform in p) and hence e−1/ξ ≥ e−σ/L.

90



Chapter 3

Asymmetry of near-critical percolation
interfaces

Abstract: We study the possible scaling limits of percolation interfaces in two dimensions on
the triangular lattice. When one lets the percolation parameter p(N) vary with the size N of
the box that one is considering, three possibilities arise in the large-scale limit. It is known that
when p(N) does not converge to 1/2 fast enough, then the scaling limits are degenerate, whereas
if p(N)−1/2 goes to zero quickly, the scaling limits are SLE(6) as when p = 1/2. We study some
properties of the (non-void) intermediate regime where the large scale behavior is neither SLE(6)
nor degenerate. We prove that in this case, the law of any scaling limit is singular with respect
to that of SLE(6), even if it is still supported on the set of curves with Hausdorff dimension equal
to 7/4.

This chapter is joint work with Wendelin Werner.
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Chapter 3. Asymmetry of near-critical percolation interfaces

3.1 Introduction

A short general overview. The goal of the present paper is to study some aspects of two-
dimensional percolation near its critical point. The mathematical understanding and description
of the percolation phase transition in the plane has improved a lot during the last decade, thanks
to two new main ingredients: the derivation of conformal invariance of critical percolation on
the triangular lattice by Smirnov [69] and the description of the scaling limits of interfaces
of critical percolation via Schramm’s SLE(6) process introduced in [67]. This has allowed to
identify the critical exponents that had been predicted in the physics literature via conformal
field theory, Coulomb gas methods or quantum gravity. One important feature of the SLE
approach compared to the methods developed by physicists is to view interfaces as global random
geometric objects and to go beyond the “correlation functions”. This is a little bit like defining the
infinitesimal generator of a Markov process and studying its trajectories instead of just looking
at its finite-dimensional distributions. One consequence of this new feature is the universality
of certain random curves. For instance, one can prove that the outer boundaries of the scaling
limits of percolation clusters, the outer boundaries of planar Brownian loops or the conjectured
scaling limits of self-avoiding random walks/loops all have exactly the same distribution (see e.g.
[51, 77]). Such a strong statement had not been formulated in the physics literature, where the
corresponding models are just said to belong to the same “universality classes”.

The derivation of the exponents of critical percolation enabled also to describe “near-critical”
models, thanks to Kesten’s scaling relations [43]. This allowed to prove various features of per-
colation interfaces on the large scale, when the percolation parameter is close (but not equal)
to its critical value. This is roughly speaking due to the fact that in the regime under consider-
ation, the “finite-dimensional distributions” of the interfaces are comparable to those of critical
percolation. In the physics language, these near-critical models are also in the same universality
class as critical percolation.

The goal of the present paper is to study the global geometry of these near-critical percolation
interfaces. Our main result is that – despite the fact that their “finite-dimensional marginals” are
comparable – the scaling limits of near-critical percolation interfaces do intrinsically differ from
SLE(6) curves. By looking at any portion of a sample of such a curve, one can almost surely
detect the difference from an SLE curve. The asymmetry of a near-critical model remains visible
in the scaling limit. This shows the existence of other “universal” random curves than SLE. It is
worth noticing that in most real-life occurrences of critical phenomena, the interfaces that one
observes are these near-critical ones and not the “exactly critical” ones.

Background: critical percolation and SLE. We shall study site percolation on the triangular
planar lattice. Recall that this can be viewed as a random coloring of the hexagonal cells of a
honeycomb lattice, where the color (black or white) of each cell is chosen independently of the
others: each of these cells has a probability p to be black and 1−p to be white, for some parameter
p between 0 and 1. In percolation theory, one is interested in the connectivity properties of the
set of black hexagons (or the set of white ones). They can be regrouped into maximal connected
components called clusters. The phase transition for percolation on this lattice occurs at p = 1/2.
Often, it is described mathematically as follows, in terms of almost sure properties of percolation
in the infinite lattice: when p < 1/2, there exists with probability 1 no infinite cluster of black
sites (subcritical regime) and an infinite cluster of white sites, and conversely when p > 1/2,
there is an infinite cluster of black sites (supercritical regime) but no infinite cluster of white
sites. In the critical case where p = 1/2, there exists neither an infinite white cluster, nor an
infinite black cluster – but if one takes a finite large piece Λ of the lattice, one will see white and
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Figure 3.1: The triangle TN and the interface γN (sketch).

black clusters of size comparable to that of Λ. See e.g. [35, 39] for an introduction to percolation.
A lot of progress has been made recently in the understanding of the large-scale behavior of

critical percolation: in particular, Smirnov [69] proved conformal invariance of the connection
probabilities, which allowed to make the link [69, 16, 70] with the Schramm-Loewner Evolution
(SLE) with parameter 6 introduced in [67], and to use the SLE technology and computations
[47, 48] to derive further properties of critical percolation, such as the value of some critical
exponents, describing the asymptotic behavior of the probabilities of certain exceptional events
(arm exponents) [50, 71]. We refer to [78] for a survey.

One precise relation to SLE goes as follows: we consider the large equilateral triangle TN

with even side length N on the triangular grid such that the middle of the bottom part is the
origin and the top point is the point at distance

√
3N/2 above the origin. We decide to color

all cells on the boundary of the triangle, in white if their x-coordinate is positive and in black
if their x-coordinate is negative, and we perform critical percolation in the inside of TN . Then,
we consider the interface γN (viewed as a path on the hexagonal lattice dual to the triangular
lattice) between the set of black sites attached to the left part of the triangle and the set of white
sites connected to the right part of the triangle (see Figure 3.1). When N → ∞, the law of the
rescaled interface ΓN := γN/N converges (in an appropriate topology) to that of the SLE(6)
process from (0, 0) to (0,

√
3/2) in the equilateral triangle with unit side length. See [17, 70, 78]

for details, and e.g. [46] for an introduction to SLE. Thanks to this convergence result, one is
able to deduce properties of critical percolation from the properties of SLE. For instance (and
we shall come back to this later), one can prove that the typical number of steps of the path γN

is of the order N7/4 (more precisely, for each ǫ > 0, the probability that the number of steps is
between N7/4−ǫ and N7/4+ǫ goes to 1 as N → ∞).

Background: near-critical percolation. Understanding the behavior of critical percolation
allows also to derive some properties of percolation when the parameter p is very close to 1/2.
These are the scaling (and hyperscaling) relations that were first developed in the physics liter-
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Chapter 3. Asymmetry of near-critical percolation interfaces

ature (the names of Fischer, Kadanoff and Wilson are often associated to these ideas), and later
rigorously derived in the case of percolation by Kesten [43] (see also [55, 78]). Before explaining
these relations in a little more detail, let us first make a trivial observation to help the newcomer
to get a feeling of what goes on.

Recall that it is easy to couple realizations of percolation for all values of p on the same
probability space in an increasing manner, in such a way that if a site is black for the realization
wp (that follows the law Pp of percolation with parameter p), then it is also black for all wp′ with
p′ > p. To do this, one can for instance introduce an i.i.d. family of uniform random variables
Ux on [0, 1], where x spans the set of all sites on the lattice, and declare that x is black for wp

if Ux ≤ p and white otherwise. For each given x, the probability that the color of x is not the
same for wp as for wp′ is thus |p − p′|.

Suppose now that we consider the percolation interface in the large equilateral triangle as
before, but choose p = p(N) in such a way that p − 1/2 = o(N−7/4−ǫ). Then, one can couple
it with a critical percolation interface (i.e. with the case when p = 1/2 exactly) in the same
triangle in such a way that the two paths are identical except on an event of probability that
goes to 0 as N → ∞ (this is just because the probability that the color of one of the neighbors of
the interface differs between wp and w1/2 is bounded by |p− 1/2| times the number of neighbors
of the interface – and we have just seen that this number is o(N7/4+ǫ)). Hence, if one lets N go
to infinity, the scaling limit of the interface is still SLE(6). In particular, the probability that
the interface ΓN hits the right side of the triangle before the left side of the triangle – let us call
R(p, N) this probability – goes to 1/2 as N → ∞.

On the other hand, for any fixed ǫ ∈ (0, 1/2), one can define

p∗(N) = p∗(N, ǫ) := inf{p : R(p, N) > 1/2 + ǫ}.

For this choice of p = p∗(N), if one looks at the possible limiting behavior of ΓN , it is clear
that the law can not be exactly SLE(6) anymore because it will hit the right side of the triangle
before the left one with probability at least 1/2 + ǫ (whereas this probability is 1/2 for SLE(6)).
It is therefore natural to ask what can happen to the scaling limit of this curve when N → ∞ in
this regime, and to see how it is related (or not) to SLE(6).

One can equivalently define the so-called correlation length L(p) = L(p, ǫ) in such a way that
p∗(L(p), ǫ) ≃ p. In other words, for p > 1/2,

L(p) = L(p, ǫ) := inf{N : R(p, N) > 1/2 + ǫ}

(note that for p > 1/2 fixed, R(p, N) → 1 as N → ∞ so that L(p) < ∞). Kesten [43] has shown
that it is possible to deduce from the arm exponents of critical percolation the behavior of L(p)
as p → 1/2. This derivation relies on the “four-arm exponent”: In the standard coupling, the
event corresponding to R(p, N) appears exactly when a “pivotal” site is flipped (we will discuss
this is more detail in the next section). Combining Kesten’s results with the exponents computed
using SLE, one gets [71] that

L(p) = (p − 1/2)−4/3+o(1)

when p → 1/2+, for any fixed choice of ǫ ∈ (0, 1/2). This is (see [43, 55, 78]) a crucial step in
the rigorous proof of the fact that the “density” θ(p) of the infinite cluster for percolation with
parameter p decays like (p − 1/2)5/36+o(1) as p decays to 1/2+.

We shall see (and this is quite easy) that in order to get a non-trivial limit for ΓN (i.e. neither
SLE(6) nor a path that just sticks to the boundary of T ), one has to take p(N) in such a way
that N is of the order of the correlation length L(p) i.e. that p(N) ∈ [p∗(N, ǫ), p∗(N, ǫ′)] for
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some ǫ < ǫ′. The terminology to describe this regime depends on the circumstances and the
papers: near-critical, off-critical, massive scaling. It is also very closely related to the scaling
and hyperscaling relations. Anyway, it has been the subject of numerous and interesting works,
see e.g. [1, 22, 13, 24] and the references therein.

One general rule behind the derivation of these results is that as long as n ≤ L(p), estimates
remains roughly the same as at criticality. For example, the probabilities of existence of crossings
of annuli for near-critical percolation are bounded by a constant times those at criticality (see
more details in the next section). This implies that the exponents describing critical percolation
also describe off-critical percolation and lead to Kesten’s scaling relations. In [18, 19], Camia,
Fontes and Newman have suggested that the scaling limit of the near-critical picture could be
obtained from that of the critical picture by just opening a Poissonian family of “pivotal” points.
We understand that [33] have succeeded in proving this fact. A consequence would be that the
subsequential limits that we are discussing in the present paper are in fact limits, and that they
are all related to each other by scaling. Let us also mention that near-critical percolation is
closely related to the questions concerning the noise-sensitivity of percolation, such as studied in
[68, 32].

Before describing the results of the present paper, let us just emphasize the relevance of such
near-critical models for physical applications. Suppose for instance that one is considering a
percolation model in a large box, and that one “heats” progressively the system i.e. that cells
become progressively black one after the other and independently (this corresponds to increase
p in the standard coupling described above). Then, we know that the percolation parameter at
which a left-to-right crossing of the big box will appear is (with a large probability) close to the
critical one. But, if one looks at it more precisely, it is easy to see that the value at which the
crossing occurs will be p∗(N, u) where u is a uniform random variable in [−1/2, 1/2]. Hence, at
this moment, the picture and its fine properties are that of near-critical percolation. Another
example where this near-critical picture appears spontaneously is that of gradient percolation,
an inhomogeneous percolation model introduced in [63] and studied mathematically in [54].

Contributions of this paper. Our focus here will be on the scaling limits of near-critical
interfaces. Here is a list of results that we shall derive in the present paper. Choose a sequence
(p(N), N ≥ 1) and study the behavior of the law of ΓN as N → ∞:

• For any ǫ ∈ (0, 1/2), if we choose p(N) in such a way that p(N) is close to p∗(N, ǫ), then
there exist subsequential limits for the law of ΓN .

• These limiting laws are all singular with respect to the law of SLE(6).

• The only other possible subsequential limits for the laws of such curves ΓN are SLE(6)
itself (this is when p(N) is closer to 1/2) or a degenerate case where γ follows (the right
part of) the boundary of the triangle (this is when |p(N) − 1/2| is larger).

• The critical exponents associated to these non-degenerate scaling limits are the same as
those of SLE(6). In particular, the Hausdorff dimension of the curves is almost surely 7/4.

The first result is a rather direct application of the tightness arguments of Aizenman and
Burchard [2] and the definition of the correlation length. The last two statements follow from
the ideas of Kesten’s paper [43]. Our main result is probably the second one, the fact that the
laws of non-trivial scaling limits are singular with respect to SLE(6). One way to explain it is
the following. In the off-critical regime, one sees on a macroscopic scale a difference between the
law of the interface and that of the critical percolation interface (i.e. the non-critical interface is
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Chapter 3. Asymmetry of near-critical percolation interfaces

Figure 3.2: A coupling of a near-critical interface with critical percolation.

Figure 3.3: The interfaces at pc and at p∗(N, ǫ) of Figure 3.2 depicted separately.
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more to the “right” for instance). If one zooms in by a factor λ, one still sees a difference, but this
difference tends to disappear, because one is not looking at a picture of size ca. L(p) any more,
but at a picture of size L(p)/λ. The question is whether this difference disappears sufficiently
fast when λ → ∞ or not. Note that one can show that (just as for the critical interface) the
number of boxes of size N/λ visited by the path is of order λ7/4 when λ is large (and N very
large). Either this difference vanishes fast with λ and one is not able to almost surely detect a
difference between the two macroscopic interfaces, or the difference between these two behaviors
can be detected by averaging them out over the λ7/4 parts of the path. In the end, one has to
compare certain critical exponents to decide which scenario is correct and it turns out that it
is the second one. A “flavor” of supercritical percolation is therefore still present in the scaling
limit.

We would like to emphasize that we do not really use any complex analytic SLE technology
to derive our results. Our considerations are based on percolation techniques, Kesten’s scaling
ideas and the knowledge of the exact value of the critical exponents (the derivation of which
however used SLE).

3.2 Preliminaries

This paper will build on earlier results on near-critical percolation, and in particular on Kesten’s
paper [43]. In this section, we recall some results and ideas that we shall use. All these results
are stated and derived in [55]. See also the last section of [78] for a rough survey. Throughout the
paper, we will use the notation ≍ to say that the ratio between two quantities remains bounded
away from 0 and ∞. For each p ∈ [0, 1], Pp will denote the law of percolation with parameter p
(i.e. where each cell/site is black with probability p).

Recall our definition of the correlation length

L(p) = L(p, ǫ) = inf{N : R(p, N) > 1/2 + ǫ}.

Note that L is non-increasing with respect to p and non-decreasing with respect to ǫ.
We define the event A4(n) that there exist four disjoint paths of alternating colors (when

ordered clockwise around the origin), each of them connecting a neighbor of the origin to the
circle of radius n. Similarly, we define the event A2(n) (resp. A1(n)) that there exist two paths
of different colors (resp. one black path) from a neighbor of the origin to the circle of radius n.
We will use the following properties, that hold for any fixed ǫ ∈ (0, 1/2):

1. The Russo-Seymour-Welsh estimates remain valid below L(p, ǫ): for all k ≥ 1, there exists
δk(ǫ) > 0 such that for all p, for all N ≤ L(p, ǫ), the probability (for Pp) that there is a
black (resp. white) horizontal crossing of a kN × N parallelogram is at least δk.

2. Let A2(n1, n2) denote the event that there exist two arms of different colors joining the
circles of radii n1 and n2. Then (this follows from the “arm-separation lemmas” that we
will briefly describe at the end of this section),

Pp(A
2(n1/2)) × Pp(A

2(2n1, n2)) ≍ Pp(A
2(n2))

uniformly for p ≥ 1/2 and 2n1 ≤ n2 ≤ L(p, ǫ) (this is known as the quasi-multiplicativity
property). The same is true for four arms and one arm, i.e. with A4 or A1 instead of A2.

97



Chapter 3. Asymmetry of near-critical percolation interfaces

3. It can be used to prove that

n
∑

j=1

jPp(A
2(j)) ≍ n2Pp(A

2(n)),

uniformly for p ≥ 1/2 and n ≤ L(p, ǫ).

4. We have
Pp(A

2(n)) ≍ P1/2(A
2(n)) and Pp(A

4(n)) ≍ P1/2(A
4(n))

uniformly for p ≥ 1/2 and n ≤ L(p, ǫ).

5. Finally,
(p − 1/2)L(p, ǫ)2P1/2(A

4(L(p, ǫ))) ≍ 1

as p → 1/2+.

The last property, which holds for each ǫ ∈ (0, 1/2), implies in particular that for any fixed
ǫ, ǫ′ ∈ (0, 1/2),

p∗(N, ǫ) − 1/2 ≍ p∗(N, ǫ′) − 1/2

as N → ∞, and that
L(p, ǫ) ≍ L(p, ǫ′)

as p → 1/2+. Note that the combination of items 2. and 4. shows that

Pp(A
2(n1, n2)) ≍ P1/2(A

2(n1, n2))

uniformly for p ≥ 1/2, 2n1 ≤ n2 ≤ L(p, ǫ) (and similarly for A4).
Recall also [71] (see also [78]) that the convergence of critical interfaces to SLE(6) imply that

for any η ∈ (0, 1),

P1/2(A
2(ηn, n)) → f2(η) and P1/2(A

4(ηn, n)) → f4(η)

as n → ∞, where f2(η) ∼ η1/4+o(1) and f4(η) ∼ η5/4+o(1) as η → 0+, which in turn (using the
properties of SLE(6)) implies that

P1/2(A
2(n)) = n−1/4+o(1) and P1/2(A

4(n)) = n−5/4+o(1)

as n → ∞. Analogous statements hold for any number of arms (see [55]).
Note that the correlation length introduced here differs slightly from the usual one – let us

denote it here by L∗(p, ǫ) – that is defined in terms of crossing probabilities of rectangles or
rhombi (the one introduced in [23], and used for instance in [43]). Using Russo-Seymour-Welsh
considerations (and also the fact that for any ǫ, ǫ′ ∈ (0, 1/2), L∗(p, ǫ) ≍ L∗(p, ǫ′) – see [43, 55]),
these two definitions can easily be shown to be equivalent: for any ǫ ∈ (0, 1/2), L(p, ǫ) ≍ L∗(p, ǫ).
We are thus allowed to use for L results established for L∗. Alternatively, we could have chosen to
work with rhombi instead of triangles and then, we would have used directly the usual definition
of correlation length. These two definitions are also known to be equivalent to other “natural”
correlation lengths, describing for example the mean radius of a finite cluster or the rate of decay
of connectivity properties (see e.g. the discussion in section 2.2 of [28]). Note also for future
reference that L can be increased by at least any constant factor by choosing a larger ǫ′ (still by
Russo-Seymour-Welsh).
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Figure 3.4: The events A4(n) and Â4(n) (sketch).
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Figure 3.5: Extension of Â4(n) into Â4(2n), and the pivotal site for the crossing event.

An instrumental technique in the derivation of the quasi-multiplicativity result (and that we
shall use in this paper at least three times) are Kesten’s “separation lemmas”. The precise state-
ments are derived in detail in [55] (see also [78] for a survey); here is a hand-waving description
of these ideas in the case of four arms (this is the case that is most relevant for us in the present
paper). Suppose for instance that we divide the annulus An between the circles of radii 3n/4 and
n into 8 slices as depicted in Figure 3.4, and let L1, L2, L3 and L4 be four of them that are all at
positive distance from each other. Consider percolation on the triangular grid restricted to the
disc of radius n. Recall that A4(n) is the event that four disjoint arms u1, . . . , u4 of alternating
color originate from the neighbors of the origin and reach the unit disc. We define the sub-event
Â4(n) of A4(n) where we add the constraint that for j = 1, . . . , 4, uj ∩An ⊂ Lj (see Figure 3.4).
The separation statement states that (uniformly with respect to n ≤ L(p)),

Pp(A
4(n)) ≍ Pp(Â

4(n)).

The events Â4 have the nice feature that it is possible (with some care) to “extend” the arms
further via Russo-Seymour-Welsh estimates: the conditional probability is positive and bounded
from below. For instance (see Figure 3.5), one gets that

Pp(Â
4(2n)) ≍ Pp(Â

4(n)).

More generally, the same argument shows that with positive conditional probability bounded
from below, it is possible to extend these four arms into disjoint paths that land on some pre-
scribed boundary parts of a larger domain than the disc (if one considers the percolation in this
larger domain).
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Since we will be using this type of argument several times, let us briefly describe how this
allows to deduce that

R(p, N) − R(1/2, N) ≥ c(p − 1/2) × N2 × P1/2(A
4(N))

uniformly for N ≤ L(p) and p > 1/2. Note that R(p, N) − R(1/2, N) is exactly the probability
that for some p′ ∈ [1/2, p], the color of some site x is changed exactly at p′, and that at that
moment, the configuration around x is that of four arms of alternating colors originating at x
that join x to prescribed parts of the boundary of the triangle (as in Figure 3.5). This can happen
for only one x and one p for each realization of the coupling. Hence, if we sum only over the sites
x that are at distance at least N/10 of the boundary of TN (and there are at least a constant
times N2 of them), use the separation lemmas and the fact that the four-arm probabilities are
uniformly controlled for n ≤ L(p), we obtain the desired lower bound.

3.3 Tightness

For simplicity of presentation, we will stick to the setup that we described in the introduction,
even if the shape of the considered domain (in our case, it is the triangle) could be chosen
arbitrarily.

Let us describe this setup more precisely. We follow here the definitions of [2], and refer the
reader to this paper for more details. We consider T the (filled) equilateral triangle of unit side
length, with corners (1/2, 0), (−1/2, 0) and (0,

√
3/2). The rescaled interfaces will be elements of

ST , the space of curves in T : these are equivalence classes of continuous functions from [0, 1] to
T , where two functions f1 and f2 represent the same curve if and only if there exists a continuous
increasing bijection φ : [0, 1] → [0, 1] such that f1 = f2◦φ. We endow this space with the quotient
metric:

∆(f1, f2) := inf
φ

(

max
[0,1]

|f1 − f2|
)

where the infimum is over the set of increasing bijections φ from [0, 1] onto itself.
We call Pp,N the law of the rescaled interface ΓN := γN/N of percolation with parameter p

in our triangle (with mesh size 1/N): this is a probability measure on ST . Endowed with the
previous metric, ST is a complete separable space, so that tightness and relative compactness
are equivalent (by Prohorov’s theorem).

Proposition 54. The family (Pp,N , p ∈ [0, 1], N ≥ 1) is relatively compact in the set of probability
measures on ST .

Proof. Let us consider a sequence (Ppk,Nk
) in this family. Our goal is to find a converging

subsequence:

• By symmetry, we can assume that pk ≥ 1/2 for all k ≥ 1.

• If Nk remains bounded along a subsequence, proving convergence of a subsequence of
(Ppk,Nk

) is trivial.

• We can therefore restrict ourselves to the case where Nk → ∞. Suppose that for all
ǫ ∈ (0, 1/2), Nk/L(pk, ǫ) → ∞ along a subsequence; then it is easy to check (using Russo-
Seymour-Welsh arguments) that along that subsequence, Γk = ΓNk

converges in law to the
concatenation of the two parametrized segments [0, 1/2] ∪ [1/2,

√
3i/2].
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• We now suppose that for some ǫ ∈ (0, 1/2), Nk/L(pk, ǫ) remains bounded. In particular,
we get that for some fixed ǫ′ > 0, Nk ≤ L(pk, ǫ

′) for all large enough k (since one can
increase L by at least any constant factor, by considering ǫ′ close enough to 1/2). We
can then use the machinery developed by Aizenman and Burchard (Theorem 1.2 in [2]):
Russo-Seymour-Welsh estimates hold uniformly for all p and N ≤ L(p, ǫ′), so that for any
annulus A(x; r, R) = {z ∈ T : r < |z − x| < R},

Ppk
(A(x; r, R) is traversed by ΓNk

) ≤ Ppk
(A1(rNk, RNk)) ≤ C(r/R)α

for two universal constants α, C (traversed means here that it visits the inner and the outer
boundary of the annulus). The BK inequality (see e.g. [35]) then leads to the fact that

Ppk
(A(x; r, R) is traversed K times by ΓNk

) ≤ CK(r/R)αK

which is exactly the hypothesis (H1) of [2] (uniform power bounds on the probability of
multiple crossings in annuli).

For the sake of completeness, let us just sketch why tightness can be derived from this.
First, the hypothesis (H1) implies regularity properties (Theorem 1.1 in [2]) for the random
curves ΓNk

: for any β > 0, there is some Hölder continuity bound such that for each k,
there is a probability at least 1−β that ΓNk

can be parametrized and satisfy this bound. In
particular, we can exhibit some equicontinuous set such that for each k, ΓNk

belongs to this
set with probability at least 1 − β. Tightness follows (Theorem 1.2 in [2]) using (a slight
adaptation of) Arzela-Ascoli’s characterization of compactness for continuous functions on
a compact set.

Hence, in all cases, one can find a converging subsequence of (Ppk,Nk
).

3.4 Length and dimension of near-critical interfaces

In this section, we will study the non-degenerate case where p(N) − 1/2 is not too large: we
assume that p(N) ∈ [1/2, p∗(N, ǫ)] for some fixed ǫ ∈ (0, 1/2) (note that this includes the critical
case). We exhibit properties that near-critical interfaces share with critical ones. We will first
focus on an estimate for discrete interfaces and then study the scaling limits.

3.4.1 Length of discrete interfaces

The length (number of edges) ℓ(γN ) of the discrete interface γN in the near-critical regime is
roughly the same as that of the critical interface:

Proposition 55. Assume that p(N) ∈ [1/2, p∗(N, ǫ)]. Then for any fixed β > 0,

lim
N→∞

Pp(N)(ℓ(γ
N ) /∈ [N7/4−β , N7/4+β ]) = 0.

Proof. Note that the hypothesis on p(N) implies in particular that N ≤ L(p(N), ǫ), so that we
can use the results on near-critical percolation that we have recalled in the preliminaries.

Let us first derive the upper bound for ℓ(γN ): we estimate its expectation. We note that for
any edge x ∈ TN on the dual hexagonal lattice, x ∈ γN if and only if there exist two arms as
depicted on Figure 3.6, one black joining a neighbor of x to the negative real half-axis, and one
white joining a neighbor of x to the positive real half-axis.
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x

Cj

Figure 3.6: For an edge x, being on γN corresponds to the existence of two arms. For the lower
bound, we consider semi-annuli Cj = T3j \T3j−1 and we restrict to the edges at distance at least
3j−3 from the boundary of Cj (dashed).

In particular,
Pp(x ∈ γN ) ≤ Pp(A

2(d(x, ∂TN ))).

It allows us to get an upper bound on Ep(ℓ(γ
N )): for each β > 0, and for some constants c, c′ . . .

(using the estimates on near-critical percolation and the fact that there are never more than 3N
points at distance j from ∂TN ),

Ep(ℓ(γ
N )) ≤

∑

x∈TN

Pp(A
2(d(x, ∂TN )))

≤ c
∑

x∈TN

P1/2(A
2(d(x, ∂TN )))

≤ c′
N
∑

j=1

NP1/2(A
2(j))

≤ c′′N
N
∑

j=1

j−1/4+β/2

≤ c′′′N7/4+β/2.

The upper bound for ℓ(γN ) follows immediately by Markov’s inequality.

For the lower bound, we use the standard second moment method. For that purpose, take
l such that 3l ≤ N < 3l+1 and decompose the triangle TN into concentric “semi-annuli” Cj :=
T3j \ T3j−1 , j ≤ l. Note that the curve γN has to cross each of these semi-annuli.

For any edge x in Cj at distance at least 3j−3 from the boundary of Cj , the results that
we have recalled together with the separation lemmas (for two arms) imply that the probability
Q(x) that there exist two paths as before, from ∂x to the positive and negative real half-axes,
that stay in Cj , satisfies

Q(x) ≍ P1/2(A
2(3j))
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3.4. Length and dimension of near-critical interfaces

uniformly for such x and 3j ≤ L(p). Such an edge x (see Figure 3.6) is necessarily on γN by the
previous remark. Let Nj denote the number of these edges: we have

Ep(Nj) ≍ (3j)2P1/2(A
2(3j)) ≥ (3j)7/4−β

for large j (and any fixed β > 0).
Now, using the quasi-multiplicativity property and then item 3. we get

Ep(N 2
j ) ≤

∑

x,x′

Pp(A
2(d(x, x′)/2))2Pp(A

2(2d(x, x′), 3j−3))

≤ cEp(Nj) ×
3j
∑

k=1

kPp(A
2(k))

≤ c′Ep(Nj)
2.

It follows that (this is the standard “second-moment method”)

Pp(Nj ≥ Ep(Nj)/2) ≥
Ep(Nj1Nj≥Ep(Nj)/2)

2

Ep((Nj)2)
≥ Ep(Nj)

2/4

Ep((Nj)2)
≥ 1

4c′
.

Consider some j0: since the events {Nl−j ≥ Ep(Nl−j)/2} for j ∈ {0, . . . , j0} are independent,
we get that

Pp(Nl−j < Ep(Nl−j)/2 for all j ≤ j0) ≤ (1 − 1/4c′)j0+1.

The lower bound follows readily because

ℓ(γN ) ≥ max(Nl,Nl−1, . . .)

and our lower bound for Ep(Nj).

3.4.2 Dimension of scaling limits

We now show that scaling limits of near-critical interfaces have the same Hausdorff dimension
as in the critical regime:

Proposition 56. Assume that the law of the curve γ is the weak limit of (Ppk,Nk
), with Nk → ∞

and pk ∈ [1/2, p∗(Nk, ǫ)]. Then the Hausdorff dimension of γ is almost surely 7/4.

Similar statements for n-point correlation functions, multiple crossings, multifractral spec-
trum etc. could be derived in the same way. We leave this to the interested reader (see the
informal discussion at the end of the paper) and we focus here only on this fractal dimension.

We might remark that the a priori estimates for the existence of two or three arms near a
half-plane, or for the existence of five arms in the interior of the domain still hold (uniformly)
for n ≤ L(p, ǫ), as these are consequences of the Russo-Seymour-Welsh estimates only. Hence,
exactly as in the convergence to SLE(6) case (e.g. [70, 78]), the discrete hitting probabilities
converge to the continuous hitting probabilities.

Proof. The argument goes along similar lines as for the discrete length. For the upper bound,
it suffices to prove that for all β > 0, the expected number of balls of radius η needed to cover γ
is bounded by η−7/4−β . But, we know that this expected number is bounded uniformly by this
quantity for the discrete paths ΓNk

, and so this also holds in the scaling limit.
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Chapter 3. Asymmetry of near-critical percolation interfaces

For the lower bound, we decompose the triangle into concentric semi-annuli, and we exhibit a
family (Cj , j ≥ 1) of independent events of probability at least c0, such that on each Cj , the curve
γ has dimension 7/4. Again, we follow exactly the same idea (with second moment estimates)
as in the discrete case, using the fact (noticed in Section 3.2) that the discrete estimates for
Pp(A

2(n1, n2)) hold uniformly.

3.5 The alternative

We now prove that for the scaling limits of percolation interfaces, there are only three main
options.

Proposition 57. Suppose that P is the weak limit of a sequence (Ppk,Nk
) when k → ∞, with

Nk → ∞ and pk ≥ 1/2. Then:

• either for each ǫ > 0, pk ≥ p∗(Nk, ǫ) for all large k, and P is the Dirac mass on the
concatenation of the two boundary segments [0, 1/2] and [1/2, i

√
3/2],

• or for each ǫ > 0, pk ≤ p∗(Nk, ǫ) for all large k, and P is the law of SLE(6),

• or for some 0 < ǫ′ < ǫ < 1/2, p∗(Nk, ǫ
′) ≤ pk ≤ p∗(Nk, ǫ) for all large k.

Note that these three cases are disjoint. In the last case, it is easy to check that under P , the
law of the first point on [1/2, i

√
3/2] ∪ [−1/2, i

√
3/2] that the curve γ hits is neither supported

on the bottom corners (this is because of pk ≤ p∗(Nk, ǫ)) nor symmetric with repect to the
imaginary axis (because pk ≥ p∗(Nk, ǫ

′)).

Proof. Suppose now that P is the limiting law of a sequence Γk := ΓNk
defined under Ppk,Nk

,
where Nk → ∞ and pk ≥ 1/2.

• Let us first suppose that for each ǫ ∈ (0, 1/2), Nk ≥ L(pk, ǫ) for all sufficiently large
k. This implies that for each fixed ǫ′, Nk/L(pk, ǫ

′) → ∞ (since we know that the ratio
L(p, ǫ)/L(p, ǫ′) can be made arbitrarily large, by choosing ǫ very close to 1/2). It follows
readily that the probability that there exists a white cluster of radius greater than any
fixed positive u for Ppk,Nk

in the rescaled triangle goes to 0 as k → ∞ and the P must be
supported on the path that goes along the right boundary of the triangle.

• Let us now suppose that for each ǫ > 0, Nk ≤ L(pk, ǫ) for all sufficiently large k. We
assume that the law P is not the law of an SLE(6). The idea is to first translate this
asumption in a lower bound for a certain four-arm event, and then using the facts recalled
in section 3.2, to show that this leads to a contradiction.

In the discrete setting, it is always possible to couple Γk (corresponding to Ppk
) with a

realization of the interface Γ̃k for P1/2 in such a way that the sites that are black for the
realization of P1/2 are also black for the realization of Ppk

. In this way, the path Γk is

more “to the right” than Γ̃k. Letting k → ∞, we see that we can couple a realization Γ of
P with an SLE(6) Γ̃ in the triangle T with the same property. We will denote by P̃ the
probability measure under which these couplings are defined.

It follows from our results on Hausdorff dimensions (in fact the uniform Russo-Seymour-
Welsh bounds would suffice) that Γ is almost surely a continuous curve with zero Lebesgue
measure. Clearly, one can divide the set of connected components of T \ Γ into two parts.
Intuitively speaking, those “to the right of Γ” and those “to the left of Γ”. Let us call R(Γ)
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3.5. The alternative

and L(Γ) the respective unions of these components. Similarly, we can define R(Γ̃) and
L(Γ̃). Then, we have that L(Γ̃) ⊂ L(Γ).

The fact that the laws of Γ and Γ̃ are not identical implies that with positive probability
the two sets L(Γ̃) and L(Γ) are not equal. It follows (using also the fact that Γ is a curve
that does not backtrack on its own past) that for some z ∈ T with rational coordinates
and for some positive r, if we denote by D(z, r) the disc centered at z with radius r,

P̃ (D(z, r) ⊂ L(Γ) and D(z, r) ⊂ R(Γ̃)) > 0.

We can also choose r small enough so that the distance between z and the boundary of
the triangle is at least 4r. From now on, z and r will be fixed.

The convergence of the discrete interfaces to the continuous ones imply that for some
positive constant c,

P̃ (D(z, 3r/4) ⊂ L(Γk) and D(z, 3r/4) ⊂ R(Γ̃k)) > c

for any large k, with obvious notation. Note that these discrete events are independent of
the state of the sites inside NkD(z, 5r/8) as they imply that neither Γk nor Γ̃k intersect
that disc. On the other hand, the uniform RSW estimates imply that the probability of the
event Hk that there exist a white circuit in Nk(D(z, 5r/8) \D(z, r/2)) for Ppk

and a black
circuit for P1/2 in the same annulus (where both circuits disconnect z from Nk∂D(z, 5r/8))
is bounded from below (uniformly for all large enough k) by a positive constant. This event
depends only on the state of the sites inside NkD(z, 5r/8). Hence, we get that for some
absolute positive constant c′ and all sufficiently large k,

P̃ (Hk and D(z, r/2) ⊂ L(Γk) and D(z, r/2) ⊂ R(Γ̃k)) > c′.

It follows that if one increases continuously p from 1/2 to pk (in the standard coupling),
there will exist – with probability bounded from below – a value p at which the interface
jumps from the left to the right of D(z, r/2) without hitting it. For this value of p, there
exist necessarily four arms of alternating colors originating at this site x that is flipped
precisely at p. The different possibilities are depicted in Figure 3.7.

For each given site x on the grid TNk
/Nk, let us evaluate the probability that this occurs.

When x is not close to the boundary of the triangle, i.e. if it is at distance at least r/2, then
we see that four arms of alternating colors must originate from x all the way to distance
r/2 from x. The probability is then bounded by Pp(A

4(2Nk/r)) ≍ P1/2(A
4(Nk)) (recall

that r is fixed and that p ≤ pk).

When x is at distance j/Nk < r/2 from the boundary, then one must have four arms of
alternating colors up to distance j/Nk, and then two arms that cross a semi-annulus (in a
half-plane) from radius j/Nk to r/2. Combining this with quasi-multiplicativity and the
known bounds (2 arms in a half-plane, 5 arms in the plane that give an upper-bound for
the four-arm probability) leads to a bound of the type

cP1/2(A
4(Nk)) × (2j/rNk) × (j/Nk)

−2+β .

For any j, there are at most a constant times Nk points on our grid that are at distance
exactly j/Nk from the boundary of the triangle. Hence, when we sum over all possible sites
x in the triangle, we get that the infinitesimal probability that between p and p + dp a site
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Chapter 3. Asymmetry of near-critical percolation interfaces

Figure 3.7: The different possibilities to jump from the left to the right of the small disc D(z, r/2).

x is flipped in such a way that the curve jumps from the left to the right of the small disc
is bounded by dp times

c′P1/2(A
4(Nk))

(

N2
k + Nk × N1−β

k

Nk
∑

j=1

j−1+β

)

≤ c′′N2
kP1/2(A

4(Nk))

(for some constants c′, c′′ that do not depend on k).

It finally follows that for some positive constant c,

(pk − 1/2) × N2
k × P1/2(A

4(Nk)) ≥ c.

We now have shown that the fact that the scaling limit is not SLE(6) implies a lower bound
for pk − 1/2. But we know (this is the statement recalled at the end of Section 3.2) that

R(pk, Nk) − R(1/2, Nk) ≥ c′′′(pk − 1/2) × N2
k × P1/2(A

4(Nk)).

for some constant c′′′. Hence, we finally get that there exists a positive constant c′′′′ such
that R(pk, Nk) ≥ 1/2 + c′′′′ for all sufficiently large k. In other words, Nk ≥ L(pk, c

′′′′) for
all sufficiently large k. This contradicts our assumption.

• Finally to conclude the proof of the proposition, let us suppose that we are not in the last
scenario described in its statement i.e. that it is not true that for some 0 < ǫ′ < ǫ < 1/2,
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3.6. Asymmetry of near-critical interfaces

p∗(Nk, ǫ
′) ≤ pk ≤ p∗(Nk, ǫ) for all large k. Then it means that a subsequence of (pk, Nk)

falls into one of the two cases that we have just studied. Hence, the limiting probability
measure is either the law of SLE(6) or the Dirac mass on the union of the two boundary
segments.

3.6 Asymmetry of near-critical interfaces

In this section, we are going to assume that we are in the intermediate regime where the discrete
percolation parameter p used at scale N satisfies

p(N) ∈ [p∗(N, ǫ), p∗(N, ǫ′)]

for some fixed 0 < ǫ < ǫ′ < 1/2. The previous alternative tells us that these are the “non-trivial”
cases in the large-scale limit. We are going to exhibit asymmetry properties that enable to detect
the difference with a critical interface. We will first derive a result in the discrete setting, and
then a result in the continuous setting for the scaling limit.

3.6.1 Discrete asymmetry

On the discrete level, it is possible to explore the interface dynamically: each time one discovers
a new hexagon, one tosses a coin to decide if it is black or white, so that with probability p
(resp. 1 − p), one makes a 60 degree turn to the right (resp. to the left). Of course, one often
bumps into an already discovered hexagon, and in this case, the turn is already determined by a
previous tossing. Hence, the percolation interface is the image under some map of a sequence of
coin tosses. Let us call ℓ+(γN ) and ℓ−(γN ) the number of black (resp. white) cells neighboring
the path γN .

Proposition 58. Suppose that p(N) ∈ [p∗(N, ǫ), p∗(N, ǫ′)]. Then for any fixed β > 0,

lim
N→∞

Pp(N)(ℓ
+(γN ) − ℓ−(γN ) ≥ N1−β) = 1.

On the other hand, for critical percolation,

lim
N→∞

P1/2(ℓ
+(γN ) − ℓ−(γN ) ≤ N7/8+β) = 1.

Proof. Define v(N) = p(N)−1/2. Clearly the difference between the number of black neighbors
discovered by γN and the number of white discovered neighbors evolves like a biased simple
random walk with drift 2v (at each step the probability to add one is 1/2 + v) stopped after a
certain random number of steps ℓ that is roughly of the order N7/4 (see Proposition 55). Hence,
we see that this difference will be of the order

2v × ℓ + O(
√

ℓ)

(with high probability) i.e. more precisely that for all β > 0,

lim
N→∞

Pp(N)(ℓ
+(γN ) − ℓ−(γN ) ≥ 2vℓ − ℓ1/2+β/2) = 1.

In the off-critical case where v(N) ≥ N−3/4−β/2, we see that the drift term dominates because
of Proposition 55 so that the first statement follows readily. Similarly, when v = 0, the result
follows directly from Proposition 55.
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Chapter 3. Asymmetry of near-critical percolation interfaces

Hence, the discrete interface in the off-critical regime where p(N) ≥ p∗(N, ǫ) will have (on a
microscopical scale) anomalously more “black neighbors” than “white neighbors”. Moreover, the
proof shows that one can detect a good approximation of the actual value of p(N) by looking at
this difference because (ℓ+(γN ) − ℓ−(γN ))/ℓ will be close to v(N).

But this result is not sufficient to deduce asymmetry of scaling limits. Indeed, if we had for
instance taken

p(N) = 1/2 + N−b

for some b ∈ (3/4, 7/8), then an analogous discrete asymmetry result would hold i.e. for some
small β > 0

lim
N→∞

Pp(N)(ℓ
+(γN ) − ℓ−(γN ) ≥ N7/8+β) = 1,

but we have proved in the previous section that in this case, the interface still converges to
SLE(6) as N → ∞ (and we know that SLE(6) is symmetric).

3.6.2 Continuous asymmetry

The goal of this section is to prove the following result:

Proposition 59. Suppose that γ is the limit (in law) of a sequence of ΓNk
’s where pk ∈

[p∗(Nk, ǫ), p
∗(Nk, ǫ

′)] (and Nk → ∞). Then the law of γ is singular with respect to that of
SLE(6).

Proof. Let us fix a very small positive β. Define the rectangle R = [−a, a]× [0, 1/4] for a small
fixed a. Define the segments M = [−a, a] × {1/8} and B = [−a, a] × {1/4}, and the smaller
triangle T ′ = {(x, y) ∈ T : y ≥ 1/8} (see Figure 3.8). For each small equilateral triangle t of
size η (i.e. that one can obtain by translating ηT ), we define analogously the sets r, m, b and t′.
We say that the triangle t is good for γ, if at the first hitting time σ(t) of t \ r, γ(σ(t)) ∈ b, and
if γ does exit r through b after its first hitting time of m. When there is no ambiguity, we will
simply write σ instead of σ(t).

Let us consider the connected component d of t′ \ γ[0, σ] that has the top boundaries of t′ on
its boundary. We define the following points on the boundary of d: suppose that we go along
the boundary of d clockwise starting from the bottom right corner of t′ (that we call a0). Then
a1 is the right-most point on m∩ γ(0, σ) and a2 is the left-most point on m∩ γ(0, σ) (see Figure
3.9). We call ∂1 (resp. ∂2) the part of the boundary of d between a0 and a1 (resp. between a2

and a0).
When t is a good triangle, we define F (γ, t) to be the probability given by Cardy’s formula

of the existence in d of a black crossing from ∂1 to the part ∂3 of the boundary between γ(σ) and
a2. If after σ, γ does hit ∂1 before ∂2, we then say that t is very good for γ. If γ was an SLE(6),
then F (γ, t) would just be the conditional probability given γ([0, σ]) that t is very good for γ.

But here, the law of γ is the limit of the law of near-critical percolation interfaces Γk = ΓNk

defined under Ppk,Nk
, where pk ≥ p∗(Nk, ǫ) and Nk → ∞. By Skorokhod’s representation

theorem, we can couple on the same probability space samples of all Γk’s and γ in such a way
that Γk → γ almost surely just as in the proof of convergence of critical percolation interfaces to
SLE(6) (as in [78] for instance). For Γk, we can also check if a triangle t is good and very good.
In fact, for each fixed triangle, the probability that its status for γ is not identical to its status
for Γk goes to zero as k → ∞. Indeed, if we suppose for instance that t is good for γ but not for
Γk, then it means that a three-arm event occurs for γ and a priori bounds do exclude this.
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M
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η

T

T ′
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t

t′

R

r

η

t

Figure 3.8: In the triangle T , we consider the subsets R, M , B and T ′. In any small equilateral
triangle t of size η, we define similarly the corresponding sets r, m, b and t′.

m

b

a0

a1a2

γ(σ)

∂3

∂1

∂2

Figure 3.9: Using “pivotal” sites like the one depicted here provides a lower bound on the condi-
tional probability that the small triangle t is very good.
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If we define the stopping time σk associated to the triangle t and the path Γk, this means
that when t is good, then Γk[0, σk] converges almost surely to γ[0, σ]. So, the domains dk (with
obvious notation) converge in Carathéodory topology towards d almost surely.

We now couple each realization of Γk with a realization wk of critical percolation on the same
lattice, in such a way that the realization used to define Γk dominates wk (i.e. its set of black
sites is larger). Then (see e.g. [78]), it follows that the probability F k(Γk, t) that there exists a
crossing from ∂k

1 to ∂k
3 in dk for wk (with natural notation) converges almost surely to F (γ, t).

Suppose now that the triangle t is good for Γk and consider the configurations as depicted on
Figure 3.9: we restrict ourselves to the case where there exist sites in a smaller rhombus of size
comparable to ηNk from which four arms of alternating colors originate. For each such site x, and
conditionally on Γk[0, σk], the probability that this four-arm configuration exists for percolation
of parameter p ∈ [1/2, pk] in the domain not yet explored by Γk is bounded from below by a
constant c times P1/2(A

4(ηNk)), uniformly over p, k and the choice of p (this follows again from
the uniform estimates for four arms, the separation lemmas and Russo-Seymour-Welsh). The
probability that this site is flipped from white to black when one increases p from 1/2 to pk, and
that at this value p the configuration is as described above, is therefore larger than

(pk − 1/2) × c × P1/2(A
4(ηNk)).

Finally, note that this event can happen for only one site (when p increases, since the crossing
event is increasing, there can exist only one value of p and therefore one site x such that the
state of x is flipped exactly at p and x at that moment is pivotal). Hence, we can sum over all
sites x in the small rhombus, and deduce that the conditional probability given Γk[0, σk] that t
is very good is bounded from below by

F k(Γk, t) + (pk − 1/2) × c′(ηNk)
2 × P1/2(A

4(ηNk))

≥ F k(Γk, t) + c′′η2 P1/2(A
4(ηNk))

P1/2(A4(Nk))
× (pk − 1/2)N2

kP1/2(A
4(Nk))

≥ F k(Γk, t) +
c′′′η2

P1/2(A4(ηNk, Nk))

≥ F k(Γk, t) + η3/4+β

(we have used the quasi-multiplicativity to estimate the ratio on the second line) for all small η
and uniformly with respect to k and to the good configurations Γk[0, σk]. Letting k → ∞, we
conclude that for any good triangle t, the conditional probability given γ[0, σ] that t is very good
for γ is at least

F (γ, t) + η3/4+β .

We now want to estimate the number of good triangles t. We divide the triangle T into
M(η) ≍ η−2 small deterministic triangles. Using the same method as when studying the dimen-
sion of γ (and the arm-separation ideas that allow to estimate the probability that a triangle is
good i.e. to say that the probability for a triangle t to be good is comparable to the probability
to be hit), we see that with probability going to 1 as η → 0, the number of good triangles is at
least η−7/4+β .

We now count how many triangles are very good among the first η−7/4+β good ones, and
we subtract the sum of the F (t, γ) for these good triangles. If γ was an SLE(6), the obtained
quantity Z(η) would satisfy E(Z) = 0 and var(Z) ≤ η−7/4+β . But, in our case, we see that

E(Z) ≥ η−7/4+β × η3/4+β ≥ η−1+2β
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and var(Z) ≤ 4η−7/4+β .
If the sequence (ηl) has been chosen to converge sufficiently fast to zero, we see that almost

surely (using Borel-Cantelli), for all sufficiently large l,

Z(ηl) ≥ η−1+3β
l ,

whereas if γ had been an SLE(6), we would almost surely have had

Z(ηl) ≤ η
−7/8−β
l

for infinitely many l’s.
We thus found an event that holds with probability one for γ, but with probability zero for

SLE(6).

3.7 Informal discussion

Seemingly, the fact that the laws of near-critical interfaces are singular with respect to the law of
SLE(6) surprises some theoretical physicists who work on this topic. Recall that one important
aspect of the SLE approach to critical systems was precisely to show that critical conformally
invariant models in the same “universality class” give rise to exactly the same curves in the scaling
limit. For near-critical models that are not strictly conformally invariant such as near-critical
percolation here, this strong “universality” can fail to be true.

Suppose that a random curve γ is the scaling limit of a near-critical percolation interface.
The tightness arguments, together with the estimates for existence of multiple arms indicate that
the curve γ is almost surely a Loewner chain, and that it can be defined via its random driving
function (w(t), t ≥ 0). It is of course a natural question to ask what this driving function could
be (recall that in the case of SLE(6), w(t/6) is a standard Brownian motion). Note that after
each (fixed or stopping) time, we expect the curve γ to turn “more right” as what a SLE(6) would
do in the same situation. This leads naturally to the conjecture that (if one extends properly the
probability space) one can couple (w(t), t ≥ 0) with a standard Brownian motion (β(t), t ≥ 0)
in such a way that w(t) − β(6t) is an increasing continuous process adapted to the filtration
generated by the processes (β(6t)) and (w(t)).

One may think that this contradicts the fact that the law of (w(t/6), t ≥ 0) is singular with
respect to that of β (since the curves are generated by the driving functions, this is equivalent
to say that the law of γ is singular with respect to that of SLE(6)) because the law of Brownian
motion with drift is known to be absolutely continuous with respect to that of Brownian motion.
But this last fact is only valid under some regularity properties for the drift, and in the present
case, one can expect this drift to be quite complicated (its derivative measure might be supported
on a set of exceptional times i.e. a fractal-type set).

We have seen that important properties (such as the dimension of the curve) are shared by
the critical interfaces and the near-critical interfaces in the scaling limit, so that the technology
based on conformal invariance of the critical model still provides the correct description of the
near-critical interfaces in terms of exponents (this was used in [54] to describe the “percolation
front”). In fact, the near-critical percolation technology allows to prove the following result (this
is a direct consequence of the quasi-multiplicativity property and the fact that arm probabilities
are comparable uniformly to the arm probabilities at p = 1/2): for any k, there exists a constant
ck, such that for any z1, · · · , zk in T , and for any sufficiently small ǫ, the ratio between the
probability that γ visits the ǫ-neighborhood of these k points and the probability of the same
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event for SLE(6) stays in (ck, 1/ck) for all small ǫ and uniformly over the choices of z1, . . . , zk.
Loosely speaking, the “finite-dimensional marginals” of the law of γ are uniformly comparable to
those of SLE(6) (even when the zi’s are very close to each other). Note that this is the type of
functions that is computable via the Conformal Field Theory technology. But this result does
not contradict the fact that the law of γ is singular with respect to that of SLE(6). For instance,
the constant ck does depend on the number of considered points. Our proof used the fact that we
did not zoom on the behavior of the curve at just one point, but that we detected the asymmetry
by looking at the mean of the behavior of the curve near to more and more points.
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Chapter 4

Critical exponents of planar gradient
percolation

Abstract: We study gradient percolation for site percolation on the triangular lattice. This is
a percolation model where the percolation probability depends linearly on the location of the
site. We prove the results predicted by physicists for this model. More precisely, we describe
the fluctuations of the interfaces around their (straight) scaling limits, the expected and typical
lengths of these interfaces. These results build on the recent results for critical percolation on
this lattice by Smirnov, Lawler, Schramm and Werner, and on the scaling ideas developed by
Kesten.
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Figure 4.1: A simulation for N = 50 and ℓN = 100.

4.1 Introduction

We study some aspects of “gradient percolation”. This is a model of inhomogeneous site per-
colation where the probability for each site to be occupied varies along some fixed direction,
for instance the y-axis in the plane. This model is described in the percolation survey paper
[9]. It has been introduced by physicists (see [63, 29]) to model phenomena like diffusion or
chemical etching, for example to describe the interface created by the welding of two pieces of
metal. They argued that this is a case where some aspects of critical percolation can be em-
pirically observed, without fine-tuning any parameter (this is a self-critical system – the critical
phenomenon appears spontaneously).

Since we will restrict our study to the triangular planar lattice anyway, let us briefly describe
the model in this particular case, even if it makes sense for other lattices and dimensions.

Recall that if one colors each cell of a honeycomb lattice independently in black or white with
respective probability p and 1−p, then when p > 1/2 there is an infinite connected component of
black cells, and when p < 1/2 there is an infinite connected component of white cells. The value
1/2 is called the critical probability of this homogeneous percolation model (and percolation at
p = 1/2 is called critical percolation). This model has recently received a lot of attention, which
has led among other things to the computation of “critical exponents” (see [71]).

Suppose now that a large integer N is given. We consider an inhomogeneous percolation
model, where each cell z is colored in black and white independently, but with a probability that
depends on z. More precisely, a cell z with y-coordinate equal to y(z) ∈ [0, N ] will be colored
in black with probability p(z) = y/N (when y < 0, we take p(z) = 0 and when y > N , we take
p(z) = 1). It is then easy to see that there almost surely is a (unique) infinite black connected
component (that contains the half space {y > N}) and a unique white connected component
(containing the half-space {y < 0}). Furthermore, the upper boundary of this white cluster and
the lower boundary of the black cluster coincide. This separating curve is called the “percolation
front”.

Intuitively, it is quite clear what happens when N is large. The percolation front will tend
to be localized near the line {y/N = 1/2}. Furthermore, since at this level, the percolation is
close to critical, the fine structure of the percolation front will be described in terms of critical
percolation and its critical exponents.

Let us now briefly describe the main results of the present paper. Suppose that we restrict
ourselves to a strip of height N and of length ℓN . Then, as N → ∞ (provided ℓN goes to infinity
too – not too fast but not too slowly – for instance ℓN = N is OK for what follows), one can
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with high probability still define “the” percolation front separating the two “giant components”.
We call RN the front (a precise definition will be given in Section 4.3), and TN its length (i.e.
number of steps). We shall see that for each positive δ, when N → ∞, and with high probability:

• The front will remain in the strip of width N4/7+δ near the line {y = N/2}.

• The front will not remain in the strip of width N4/7−δ near the line {y = N/2}.

• The expected length tN = E[TN ] of the front satisfies N3/7−δℓN ≤ tN ≤ N3/7+δℓN .

• TN is close to its expected value, i.e. TN/tN is close to 1.

The localization of the front near the line {y = N/2} and the value of the two exponents
(4/7 for the width and 3/7 for the length) had been predicted by Sapoval et al. in [63, 29].

Our proofs build on the following mathematical results and ideas: Kesten’s scaling relations
[43], Smirnov’s conformal invariance result [69], and the computation of the critical exponents
for SLE6 by Lawler, Schramm and Werner [48]. More precisely, we shall develop further some
ideas introduced in the first paper [43], and use directly results of [71], where Smirnov and
Werner showed how to derive the critical exponents for percolation from those for SLE6. We
will not mention SLE6 in our proofs but we would like to stress that it plays a crucial role in
the derivation of the results of [71] that we will use.

In fact, gradient percolation is rather easy to simulate. It has turned out to be an efficient
practical tool to obtain numerical estimates for the critical probability of percolation on various
lattices (by using the mean height of the front in order to approximate pc, see e.g. [59, 79]), for
instance the square lattice, and it has also been one of the first ways to get numerical evidence
for values of the critical exponents of standard percolation (that then supported the conjectures
based on Coulomb gas and conformal field theory).

Let us stress the fact that the anisotropy of this model yields that despite the fact that the
front converges to a straight line in the fine mesh limit (i.e. a curve of dimension one), its length
for a lattice approximation of mesh-size δ (in a rhombus) behaves roughly like δ−3/7 (i.e. it has
δ−10/7 steps). One can expect to observe a non-trivial limit – of fractal dimension 7/4 – with an
appropriate scaling (in N4/7) of the axes, but the critical exponents obtained do not correspond
directly to a fractal dimension for the limiting object.

4.2 Homogeneous percolation preliminaries

We recall in this section some known facts concerning percolation (not gradient percolation) that
we will use later on.

4.2.1 Setting

The setting in this paper will be site percolation in two dimensions on the triangular lattice. We
will represent it as usual as a random (black or white) coloring of the faces of the hexagonal
lattice. It has been proved by Harry Kesten [38] and it is by now a classical fact that for this
model, the critical probability is pc = 1/2 and that there is almost surely no infinite cluster
when the percolation parameter is taken to be 1/2. The reason why we focus here on this lattice
is that it is (at present) the only one for which conformal invariance in the scaling limit has
been proved (Smirnov [69]). Conformal invariance will not be used directly in the following, but
this property combined with the study of SLE by Lawler, Schramm and Werner [47, 48] allows
the rigorous computation of the so-called “critical exponents” that will be instrumental in our
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0

Sn

Figure 4.2: The triangular lattice, its associated basis and Sn.

considerations. On other regular lattices like the square lattice Z2, these exponents are expected
to be the same, but no rigorous derivation exists yet. However, some inequalities can be proved,
that would imply weaker but nevertheless interesting statements. We will not develop this aspect
in the present paper.

The percolation parameter will be denoted by p: each site is occupied (or black) with probabil-
ity p, and vacant (white) otherwise, independently of each other. The corresponding probability
measure on the set of configurations will be referred to as Pp, and Ep will be the expectation.

We will use oblique coordinates, with the origin in 0 and the basis given by 1 and eiπ/3 (in
complex notation). The parallelogram R of corners aj + bke

iπ/3 (j, k = 1, 2) will thus be denoted
by [a1, a2]× [b1, b2]. Its interior and its boundary will be denoted by R̊ and ∂R, respectively. We
will consider ‖z‖ the infinity norm of a site z as measured with respect to the chosen coordinates,
and d(z, z′) := ‖z − z′‖ the associated distance. For a site z = (z1, z2), we will often use the
rhombus Sn(z) := [z1 −n, z1 +n]× [z2 −n, z2 +n], which is the set of sites at distance at most n
from z (its interior S̊n(z) and its boundary ∂Sn(z) consisting of the sites at distance strictly less
than n and exactly n, respectively). We will refer to Sn(0) simply as Sn, and call it the “box of
size n”.

For two positive functions f and g, f ≍ g means that there exist two positive and finite
constants C1 and C2 such that C1g ≤ f ≤ C2g (so that their ratio is bounded away from 0 and
+∞), and f ≈ g means that log f/log g → 1 (when p → 1/2 or when n → ∞, which will be clear
from the context).

We now recall some relevant results on critical percolation that we will use in the present
paper.

4.2.2 Arm exponents

We first briefly recall some facts concerning critical exponents for the existence of a certain
number of “arms”. These exponents describe the asymptotic behavior of the probability of certain
exceptional events.

Let us consider a fixed integer j ≥ 2. For each positive integers m ≤ n, define the event
Aj(m, n) that there exist j disjoint monochromatic paths from ∂Sm to ∂Sn that are not all of
the same color (each path is either completely black/occupied or completely white/vacant, and
there is at least one vacant path, and one occupied path). As noticed in [3, 71], we could also
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prescribe the cyclic order of the paths without changing the results that we state below.
Combining the property of conformal invariance in the scaling limit (see [69, 16]) with the

study of SLE made by Lawler, Schramm and Werner [48], it has been proved that:

Proposition 60 ([71]). For all fixed j ≥ 2, m ≥ j,

P1/2(A
j(m, n)) ≈ n−(j2−1)/12 (4.1)

when n → ∞.

In fact, we will use this result only for j = 2, 3 and 4. Let us just remark that to derive
these three exponents, it might be possible to bypass the use of the rather involved results of
Camia and Newman [16] as these are exponents related to outer boundaries of clusters, so that
“universality”-based ideas might just be enough.

The value of the related “one-arm” exponent is 5/48 and has been derived in [50], but we
shall not need it in the present paper.

4.2.3 Behavior near criticality

In the seminal paper [43], Kesten showed how the behavior of percolation at its critical point
was related to the asymptotic behavior of percolation near its critical point, and derived the so-
called scaling relations that link some of the previous arm exponents to other critical exponents
describing the behavior of connectivity probabilities near p = pc.

A key idea in his article is to use a certain “characteristic length” L(p) defined in terms of
crossing probabilities (sometimes referred to as “sponge-crossing probabilities”). This idea (or
adaptations of it) was also used in papers concerning finite-size scaling, e.g. [23, 24, 12, 13].

Let us introduce some more notation. We will denote by CH([a1, a2]×[b1, b2]) (resp. CV ([a1, a2]×
[b1, b2])) the event that there exists a horizontal (resp. vertical) occupied crossing of the parallel-
ogram [a1, a2]× [b1, b2], and by C∗

H , C∗
V the same events with vacant crossings. However, we will

use for convenience a definition slightly different from the usual one. First, we decide to relax
the condition on the boundary sites: a horizontal occupied crossing of a parallelogram R will
be a path connecting its left and right sides, all the sites of which except its two extremities are
in R̊ and occupied. The events CH(R) and CH(R′) will thus be independent if R and R′ share
one side. We also allow such a crossing to incorporate “dangling ends”: it is not necessarily a
self-avoiding path.

We have for example

Pp(CH([a1, a2] × [b1, b2])) = 1 − Pp(C∗
V ([a1, a2] × [b1, b2])). (4.2)

Consider now rhombi [0, n] × [0, n]. At p = 1/2, Pp(CH([0, n] × [0, n])) = 1/2. When p < 1/2
(sub-critical regime), this probability tends to 0 when n goes to infinity, and it tends to 1 when
p > 1/2 (super-critical regime).

We define a quantity that will roughly measure the scale up to which these crossing proba-
bilities remain bounded away from 0 and 1. For each fixed ǫ0 > 0, we define

L(p, ǫ0) =

{

min{n s.t. Pp(CH([0, n] × [0, n])) ≤ ǫ0} when p < 1/2,

min{n s.t. Pp(C∗
H([0, n] × [0, n])) ≤ ǫ0} when p > 1/2.

(4.3)

If we use the Russo-Seymour-Welsh theory (see e.g. [35, 39]), we see that for each k ≥ 1,
there exists some δk > 0 (depending only on ǫ0) such that

∀n ≤ L(p), Pp(CH([0, kn] × [0, n])) ≥ δk. (4.4)
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For symmetry reasons, this bound is also valid for horizontal vacant crossings.
These estimates for crossing probabilities are then the basic building blocks on which many

further considerations are built. One of the main results of Kesten’s paper [43] is for instance
the following one-arm probability estimate:

Pp[0 ∂Sn] ≍ P1/2[0 ∂Sn] (4.5)

for all n ≤ L(p) (uniformly in p). In Section 4.4.1 of the present paper, we will derive the
analogous result for “two-arm probabilities”.

This result is basically saying that when n is not larger than L(p), things can be compared
to critical percolation. On the other hand, the definition of L(p) shows that when n > L(p), the
picture starts to look like super/sub-critical percolation. For instance:

Lemma 61 (exponential decay with respect to n/L(p)). If ǫ0 has been chosen sufficiently small,
there exists a constant C > 0 such that for all n, all p < 1/2,

Pp(CH([0, n] × [0, n])) ≤ Ce−n/L(p). (4.6)

Variants of this result are implicitly used or mentioned in Kesten’s paper [43] or in other
papers on finite-size scaling. We now give its proof, as it just takes a couple of lines and clarifies
things.

Proof. Observe first that for all integer n,

Pp(CH([0, 2n] × [0, 4n])) ≤ C ′[Pp(CH([0, n] × [0, 2n]))]2 (4.7)

with C ′ = 102 some universal constant. It suffices for that (see figure) to divide the parallelogram
[0, 2n]×[0, 4n] into 4 horizontal sub-parallelograms [0, 2n]×[in, (i+1)n] (i = 0 . . . 3) and 6 vertical
ones [in, (i + 1)n] × [jn, (j + 2)n] (i = 0, 1, j = 0 . . . 2). Indeed, consider a horizontal crossing of
the big parallelogram: we can extract from it two pieces, one between its extremity on the left
side and its first intersection with the vertical median x = n, and in the same way another one
starting from the right side. These two sub-paths both cross one of the sub-parallelograms “in
the easy way”: as they are disjoint by construction, the claim follows by using the BK inequality
([10, 35]).

We then obtain by iterating:

C ′Pp(CH([0, 2kL(p)] × [0, 2k+1L(p)])) ≤ (C ′ǫ1)2
k

(4.8)

as soon as ǫ1 ≥ Pp(CH([0, L(p)] × [0, 2L(p)])).
Recall that by definition, Pp(CH([0, L(p)]× [0, L(p)])) ≤ ǫ0. Consequently, the RSW theorem

entails that for all fixed ǫ1 > 0, if we take ǫ0 sufficiently small, we get automatically (and
independently of p) that

Pp(CH([0, L(p)] × [0, 2L(p)])) ≤ ǫ1. (4.9)

We now choose ǫ1 = 1/(e2C ′). For each integer n ≥ L(p), we can define k = k(n) such that
2k ≤ n/L(p) < 2k+1, and then,

Pp(CH([0, n] × [0, n])) ≤ Pp(CH([0, 2kL(p)] × [0, 2k+1L(p)]))

≤ e−2k+1
/C ′

≤ e × e−n/L(p),

which is also valid for n < L(p), thanks to the extra factor e.
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4.3. Localization of the front

Figure 4.3: A horizontal crossing of the parallelogram [0, 2n] × [0, 4n].

By counting the sites which are pivotal for the existence of a crossing, as sketched in Kesten’s
paper [43] (see the remark following Lemma 8 p.144-145 – and also [55] for more details), we can
prove that

|p − 1/2|(L(p))2P1/2(A
4(1, L(p))) ≍ 1. (4.10)

Combining it with the estimate of Proposition 60 for 4 arms leads to the following:

Proposition 62 ([43, 71]). When p → 1/2,

L(p) ≈ |p − 1/2|−4/3. (4.11)

Remark 63. It has been shown in [43] that for any fixed ǫ1 and ǫ2 with 0 < ǫ1, ǫ2 ≤ ǫ0,

L(p, ǫ1) ≍ L(p, ǫ2). (4.12)

Thus, the particular choice of ǫ0 is not really important here (as long as it is sufficiently small).

4.3 Localization of the front

4.3.1 Framework of gradient percolation

We will now define the model itself and fix some notation. The starting point is still site
percolation on the triangular lattice. We first consider a strip SN of finite width 2N (we assume
it to be even for simplicity), centered around the x-axis, such that the y-coordinate varies between
−N and N . This strip may for the moment be unbounded in one or both directions, and we will
denote its length by ℓN .

In this strip, we assume the parameter to decrease linearly according to y, that is we choose
it to be

p(y) = 1/2 − y/2N. (4.1)

With this choice, all the sites on the bottom edge BN will be occupied (p = 1), all the sites on
the top edge TN vacant (p = 0). The corresponding probability measure will be denoted by P.

When we perform such a percolation, two opposite regions appear. At the bottom of SN , the
parameter is close to 1, we are in a super-critical region and most occupied sites are connected
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N

−N

p = 0

p = 1/2

p = 1

ℓN

p = 1/2 − y/2N

Figure 4.4: The strip where the percolation parameter p varies.

to the bottom edge. On the contrary, we observe on the top a big cluster of vacant sites. The
characteristic phenomenon of this model is the existence of a unique “front”, a continuous interface
touching in the same time the occupied sites connected (by an occupied path) to the bottom of
the strip, and the vacant sites connected to the top (by a vacant path). Temporarily, we adopt
the following definition:

Definition 64. A front will be any path γN on the dual hexagonal lattice that is bordered on
one side by an occupied (horizontal) crossing of SN , and by a vacant (horizontal) crossing on the
other side.

We will prove at the end of this section that under suitable hypotheses, with high probability
there is a unique such interface. Note that when the length ℓN of the strip is finite, there is not
necessarily a unique front. For instance, there is a positive probability to observe two horizontal
crossings, one vacant and one occupied above it. If the strip is infinite, by independence of
the different columns there exists almost surely a column on which all the sites, except the
highest one, are occupied. In that case, the front is unique and can be determined “dynamically”
by starting two exploration processes from the top of this random column in the two possible
directions (these processes follow the interface between black and white sites – making at each
step a 60 degree turn, to the left or to the right according to the color of the hexagon they meet).

However, for practical purposes, it will be more natural to consider strips of finite length.
The argument above shows that on an infinite strip, exceptional events occur (the front touches
the top and the bottom of the strip), and we may expect them not to happen when the length
ℓN is not too large compared to N .

We now use the strip SN = [0, ℓN ] × [−N, N ]. We will often consider sub-strips of this big
strip. For the sake of simplicity, the strip [0, ℓN ] × [−⌊Nα⌋, ⌊Nα⌋] will be written [±Nα].

4.3.2 Localization

We study now the convergence of the front when it is unique. Temporarily, we will consider,
instead of “the” front, the highest horizontal crossing, and we will denote it by RN . Note that
the sites just above RN form a vacant horizontal crossing of SN , so that the upper boundary
ρN of RN (the path on the dual hexagonal lattice bordering it above) is a front. We shall see a
little bit later that it is indeed the front (i.e. the only interface) with high probability.

We a priori expect it to be close to the line {y = 0} corresponding to the sites where p is
critical. A hand-waiving argument goes as follows: if we are at a distance approximately N4/7

from the line, say for instance above it, the corresponding percolation parameter will be about
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Figure 4.5: Localization of the front (2N = 500, ℓN = 1000).

1/2−N−3/7 and the associated characteristic length of order N4/7 too (by using (4.11)). Hence,
the strip on which everything looks close to critical percolation has width of order N4/7, and
outside of this strip, one is in the super- or sub-critical regime. This explains intuitively the
following result.

Theorem 65 (Localization).

• For all δ > 0, there exists a δ′ > 0 such that for all sufficiently large N and all ℓN ≥ N4/7,

P(RN ⊆ [±N4/7−δ]) ≤ e−Nδ′

. (4.2)

• For all δ > 0, for all γ ≥ 1, there exists a δ′ > 0 such that for all sufficiently large N , and
all N4/7 ≤ ℓN ≤ Nγ,

P(RN * [±N4/7+δ]) ≤ e−Nδ′

. (4.3)

Proof. Let us first derive the statement concerning P(RN ⊆ [±N4/7−δ]). For that purpose,
consider disjoint rhombi of the form

[i, i + 2N4/7−δ] × [−N4/7−δ, N4/7−δ] (i = 0, 2N4/7−δ + 1, 4N4/7−δ + 2 . . .).

We can take at least ℓN/3N4/7−δ such rhombi, and each of them possesses (independently of the
other ones) a vertical vacant crossing with probability larger than

P1/2+N−3/7−δ/2

(

C∗
H([0, 2N4/7−δ]2)

)

.

But (using (4.11), the critical exponent for L)

L(1/2 + N−3/7−δ/2) ≈ (N−3/7−δ/2)−4/3 ≈ N4/7+4δ/3,

hence
L(1/2 + N−3/7−δ/2) ≫ 2N4/7−δ,

so that there exists a vertical vacant crossing with probability larger than ǫ0. By independence,
a “block” entailing that RN * [±N4/7−δ], will occur with probability larger than

1 − (1 − ǫ0)
ℓN/3N4/7−δ

,
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N 4/7+δ

N 4/7+δ/2

Figure 4.6: RN crosses horizontally or vertically one of the small rhombi.

which proves the claim as ℓN ≥ N4/7 by assumption.

Let us now turn our attention to the quantity P(RN * [±N4/7+δ]). Assume that RN is not
entirely contained in the strip [±N4/7+δ].

If at some point it is for example above this strip, we face the following alternative:

• Either RN is in the strip [±N4/7+δ/2] at some point. In that case, consider the following
rhombi, located between the lines y = N4/7+δ/2 and y = N4/7+δ: [i, i + N4/7+δ/2] ×
[N4/7+δ/2, N4/7+δ] (i = 0, 1, 2 . . .). It is easy to see that RN will have to cross vertically
or horizontally one of them.

There are at most ℓN such rhombi, and they are in a zone for which p ≤ 1/2−N−3/7+δ/4,
a crossing thus occurs with probability less than

ℓNP1/2−N−3/7+δ/4(CH([0, N4/7+δ/2]2) ∪ CV ([0, N4/7+δ/2]2))

≤ 2ℓNP1/2−N−3/7+δ/4(CH([0, N4/7+δ/2]2))

≤ 2CℓNe−N4/7+δ/2L(1/2−N−3/7+δ/4)

by using Lemma 61 (of sub-exponential decay).

But (by (4.11))

L(1/2 − N−3/7+δ/4) ≈ (N−3/7+δ/4)−4/3 ≈ N4/7−4δ/3,

and ℓN does not grow too fast, so that the probability of the considered event tends to 0
sub-exponentially fast.

• Either RN stays constantly above the strip [±N4/7+δ/2], where the percolation parameter
remains smaller than 1/2−N−3/7+δ/4. In that case, RN will cross vertically or horizontally
one of the rhombi (forming a “column”) [0, N4/7+δ/2] × [j + N4/7+δ/2, j + N4/7+δ] (j =
0, 1, 2 . . .).

There are at most N such rhombi. Once again, Lemma 61 entails that a crossing occurs
with probability less than

2CNe−N4/7+δ/2L(1/2−N−3/7+δ/4).
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As before,
L(1/2 − N−3/7+δ/4) ≈ N4/7−4δ/3,

so that the considered probability tends to 0 sub-exponentially fast.

If RN is below the strip at some point, the argument is identical: consider instead the vacant
crossing bordering RN . Hence, the final probability just has to be multiplied by 2.

4.3.3 Uniqueness of the front

In the previous subsection, we have focused on the highest horizontal crossing RN . Clearly, the
results remain valid if we consider the lowest horizontal vacant crossing R∗

N instead. Recall that
RN is bordered above by a horizontal vacant crossing, so that its upper boundary ρN is a front.
Similarly, R∗

N is bordered below by an occupied crossing, and its lower boundary ρ∗N is a front
too.

Note that ρ∗N is always below ρN . It is easy to see that uniqueness of the front amounts to
checking whether ρN and ρ∗N coincide. It is also equivalent to verifying that RN is connected to
the bottom BN by an occupied path (or that R∗

N is connected to the top TN by a vacant path).
We are now going to prove that this indeed occurs with a very large probability.

Note that if one starts an exploration process from the top-left corner of SN , one discovers the
top-most occupied crossing without discovering the status of the sites below it. This RSW-type
observation will be essential in our proof.

Proposition 66 (Uniqueness). Assume that ℓN ≥ N4/7+δ for some δ > 0. Then, there is a
δ′ > 0 (depending on δ) such that for all sufficiently large N ,

P(ρN = ρ∗N ) ≥ 1 − e−Nδ′

. (4.4)

Proof. As announced, we will work with RN . Our goal is to show that the probability for RN

not to be connected to BN is very small. For that purpose, we first divide the strip SN into
disjoint sub-strips (Si

N ) as follows. For ǫ := δ/4, we choose N3ǫ/6 disjoint sub-strips of length
3N4/7+ǫ (not necessarily covering entirely SN ) of the type

Si
N = [ni

N , ni
N + 3N4/7+ǫ] × [−N, N ] (i = 0, . . . , N3ǫ/6 − 1).

Consider one of these strips Si
N . RN crosses it horizontally, and remains “below” its highest

horizontal crossing, that we denote by ri
N . Consequently, it will be sufficient to show that one

of the ri
N ’s is connected to BN in Si

N .
We now fix an i, and we try to find a lower bound for the probability that ri

N is connected to
the bottom of Si

N by an occupied path that stays in that sub-strip. Let us suppose for notational
convenience that i = 0 and ni

N = 0. Note first that with probability at least 1/2, there exists
a vacant top-to-bottom crossing of the rhombus [N4/7+ǫ, 2N4/7+ǫ] × [0, N4/7+ǫ] (percolation is
sub-critical in this region), so that a lowest point z on ri

N in the middle part [N4/7+ǫ, 2N4/7+ǫ]×
[−N, N ] of the strip lies below the x-axis with probability at least 1/2 + o(1) (the localization
result (Theorem 65) tells us that ri

N remains below the height N4/7+ǫ with high probability).
Now, if we have explored this highest crossing of S0

N “from above”, we have not yet discovered
the status of the sites below it, so that we can apply the FKG inequality for events involving
only the state of these remaining sites. We are now going to show that in the case where r0

N
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N 4/7+ǫ

−N 4/7+ǫ

Figure 4.7: Construction of an arm going out of [±N4/7+ǫ].

passes below the x-axis, the conditional probability that it is connected to the bottom part of
the sub-strip by an occupied crossing is bounded from below by a quantity of order N−2ǫ.

A way to prove this goes as follows. Let us first choose z, and define the annulus S2N4/7−ǫ(z)\
S̊N4/7−ǫ(z) around z. Since it is contained in the region where p ≥ 1/2 − 2N−3/7−ǫ, and since
the characteristic length corresponding to this value of the parameter is of order

L(1/2 − 2N−3/7−ǫ) ≈ N4/7+4ǫ/3,

there is a probability at least δ4
4 (this is the constant coming from RSW-theory) to observe an

occupied circuit in this annulus.
We now want to connect this circuit to the bottom boundary of the sub-strip. Note that

the part of the circuit that is below r0
N together with r0

N contain an occupied circuit around
the segment I = z + [−N4/7−ǫ, N4/7−ǫ] × {−N4/7−ǫ}. We need the following simple lemma for
critical percolation:

Lemma 67. Consider the rhombus [−N4/7+ǫ, N4/7+ǫ]× [−2N4/7+ǫ, 0] and the sub-interval IN =
[−N4/7−ǫ, N4/7−ǫ]×{0} on its top edge. Then the event CIN

V ([−N4/7+ǫ, N4/7+ǫ]× [−2N4/7+ǫ, 0])
that there exists a vertical occupied crossing connecting IN to the bottom edge has a probability
at least

P1/2

[

CIN
V ([−N4/7+ǫ, N4/7+ǫ] × [−2N4/7+ǫ, 0])

]

≥ C

N2ǫ
(4.5)

for some universal constant C (depending neither on N nor on ǫ).

Proof. Consider the parallelogram [0, N4/7+ǫ]× [−2N4/7+ǫ, 0], and cover its top edge by less than
N2ǫ intervals Ij

N = [n′j
N − N4/7−ǫ, n′j

N + N4/7−ǫ] × {0} of length 2N4/7−ǫ. We know from the
RSW theorem that there exists a vertical occupied crossing with probability at least δ2 > 0, so
that

δ2 ≤
∑

j

P1/2

[

CIj
N

V ([0, N4/7+ǫ] × [−2N4/7+ǫ, 0])
]

.

But for each j,

P1/2

[

CIj
N

V ([0, N4/7+ǫ] × [−2N4/7+ǫ, 0])
]

≤ P1/2

[

CIj
N

V ([n′j
N − N4/7+ǫ, n′j

N + N4/7+ǫ] × [−2N4/7+ǫ, 0])
]

= P1/2

[

CIN
V ([−N4/7+ǫ, N4/7+ǫ] × [−2N4/7+ǫ, 0])

]
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2N
4/7+ǫ

2N
4/7−ǫ

IN

Figure 4.8: Existence of an arm from IN to the bottom side.

by translation invariance. Hence

δ2 ≤ N2ǫ × P1/2

[

CIN
V ([−N4/7+ǫ, N4/7+ǫ] × [−2N4/7+ǫ, 0])

]

,

which completes the proof. Note that a repeated application of the RSW theorem (log(N2ǫ)
times) would have given a lower bound of the type N−κǫ that would have been also sufficient for
our purpose here.

Putting the pieces together, with the help also of the FKG inequality, we get that for each
i ≤ N3ǫ/6 − 1, the probability that RN is connected to the bottom part of the strip in the
sub-strip Si

N is bounded from below by C ′/N2ǫ independently for each i. The proposition then
follows readily: indeed, RN is connected to BN with probability at least

1 − (1 − C ′N−2ǫ)N3ǫ/6 ≥ 1 − e−Nǫ′

(4.6)

for some positive ǫ′.

Remark 68. On the other hand, note that if ℓN ≤ N4/7−δ for some δ > 0, then by RSW there
exist several interfaces with probability bounded away from 0.

The previous results suggest to make some restrictions on the length ℓN of the strip. In
the following, we will thus assume that there exists a δ > 0 such that ℓN ≥ N4/7+δ: this
hypothesis entails that the event corresponding to uniqueness has a probability tending to 1
sub-exponentially fast. For convenience, we also assume that ℓN = o(Nγ) for some γ ≥ 1, to
ensure that the front remains localized.

From now on, we will simply refer to the front and denote it by FN , which means that we
will implicitly neglect the error term in the estimates that we derive. In particular, the front will
be exactly the set of edges from which two arms can be drawn, one occupied to the bottom BN ,
and one vacant to the top TN .
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4.4 Length of the front

We would like now to study the length TN of the front i.e. its number of edges. The preceding
remark shows that we will need a two-arm probability estimate for that purpose. Unless otherwise
stated, the expression “two arms” refers to two arms of opposite colors.

We will often have to count edges rather than sites. Since we are mostly interested in rough
estimates, we will then just use the fact that number of edges and number of corresponding
sites are comparable (i.e. up to a multiplicative factor of 6). To simplify notations, it will be
convenient to associate to each edge e one of its two neighboring sites xe, which we do arbitrarily
and once for all.

4.4.1 Two-arm estimates

We are now going to derive the analog of (4.5) in the case of two arms and for non-constant p.
This lemma will enable us to estimate the probability of having two arms from an edge e in the
“critical strip”. The goal is to show roughly that

Pp[A
2(0, n)] ≍ P1/2[A

2(0, n)] (n ≤ L(p)).

In fact, for our purpose, we will have to consider, instead of Pp, product measures P ′ with
associated parameters p′(v) which may depend on the site v but remain between p and 1 − p
(we will simply say that P ′ is “between Pp and P1−p”). The present situation is a little more
complicated than for the one-arm estimate, because of the lack of monotonicity (A2 events
correspond to the combination of one path of each type, so that they are neither increasing nor
decreasing).

For a parallelogram R and a site v contained in its interior, Kesten considered in [43] the
event Γ(v, R) that there exist 4 arms alternatively occupied and vacant from the set ∂v of vertices
neighboring v to the boundary ∂R of R:

Γ(v, R) = {There exist four paths r1, . . . , r4 from ∂v to ∂R ordered clockwise, such that
r1, r3 are occupied, and r2, r4 are vacant}.

Here we will need this event in the course of proof, but we will be more interested in the analog
for two arms:

Γ2(v, R) = {There exist an occupied path r1 and a vacant path r2 from ∂v to ∂R}.

Note that A2(0, n) = Γ2(0, Sn). Let us now state and prove the result:

Lemma 69. Uniformly in p, P̂ between Pp and P1−p, n ≤ L(p), we have

P̂ [Γ2(0, Sn)] ≍ P1/2[Γ2(0, Sn)]. (4.1)

Proof. This proof is an adaptation of the proof of Theorem 1 in Kesten’s paper [43]. We first
recall some estimates contained in this paper, and then we adapt the original proof for 1 arm to
the case of 2 arms. However, note that this result could be addressed as in [43]: Lemma 8 in
this paper is the “four-arm” version of the present two-arm result.

Let us first introduce the events that we use throughout the proof. All of them are exact
analogs of events defined in Kesten’s paper [43]. We consider a parallelogram R and a site v such
that v ∈ R̊.
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v

A(2, k)

A(1, k)

S2k−1

S2k

Figure 4.9: Definition of the event ∆2(v, S2k).

• In the case of 1 arm, we do not lose much (a factor 4) by imposing the extremity to be
on a specified edge of R, at least if v is not too close to one of the edges. Here we impose
the occupied arm to arrive on the bottom edge of R, and the vacant arm on the top edge.
This event is denoted by Ω2(v, R):

Ω2(v, R) = {Γ2(v, R) occurs, r1 and r2 having their extremities on (resp.) the bottom
and the top edges of R}.

• The two paths r1 and r2 might be a bit difficult to extend, so we may want to add further-
more “security strips”. This leads to the definition of the event ∆2, analog of the event ∆
(in the case of 4 arms). Albeit more restrictive, this event has a probability that remains
comparable to Ω2(0, R).

We consider thus the two horizontal strips

A(1, k) := [−2k−1, 2k−1] × [−2k,−2k−1]

A(2, k) := [−2k−1, 2k−1] × [2k−1, 2k],

and we define for a site v in S2k−1 ,

∆2(v, S2k) = {Γ2(v, S2k) occurs, with ri ∩ (S2k \ S̊2k−1) ⊆ A(i, k) and there exist two
horizontal crossings, one occupied of A(1, k) and one vacant of A(2, k)}.

• We define similarly for a parallelogram R′ contained in the interior of S2k :

Γ̃2(S2k , R′) = {There exist an occupied path r1 and a vacant path r2 from ∂R′ to
the bottom and top edges respectively of S2k , which are (with the exception of their
extremities on ∂R′) contained in S2k \ R′}.

and for a site v in S2k−1 , j ≤ k − 2, the following strips (centered on v):

Ã(1, j) := [v(1) − 2j , v(1) + 2j ] × [v(2) − 2j+1, v(2) − 2j ]
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Ã(2, j) := [v(1) − 2j , v(1) + 2j ] × [v(2) + 2j , v(2) + 2j+1],

and then

∆̃2(S2k , S2j (v)) = {Γ̃2(S2k , S2j (v)) occurs, with associated paths ri satisfying ri ∩
(S2j+1(v) \ S̊2j (v)) ⊆ Ã(i, j), and there exist two horizontal crossings, one occupied of
Ã(1, j) and one vacant of Ã(2, j)}.

Let us now state the estimates that we will use. We will not prove them, since these are exact
analogs for 2 arms of results stated for 4 arms in Kesten’s paper [43], except that we generalize
the condition “between P1/2 and Pp” to “between Pp and P1−p”. This generalization can be done
as the only tool used in the proofs is the Russo-Seymour-Welsh theorem (we also implicitly use
the symmetry about 1/2, which implies that L(p) = L(1 − p)). In the following, P̂ denotes any
product measure “between Pp and P1−p”.

(1) Extension of ∆2: There exists a constant C1 < ∞ such that

P̂ (∆2(0, S2k)) ≤ C1P̂ (∆2(0, S2k+1)) (4.2)

for all p, P̂ and 2k ≤ L(p).

(2) Comparison of Γ2 and ∆2 (analog of Lemma 4 in [43]): There exists a constant C2 < ∞
such that

P̂ (Γ2(0, S2k)) ≤ C2P̂ (∆2(0, S2k)) (4.3)

for all p, P̂ and 2k ≤ L(p).

(3) Comparison of Γ̃2 and ∆̃2 (analog of Lemma 5 in [43]): There exists a constant C3 < ∞
such that

P̂ (Γ̃2(S2k , S2j )) ≤ C3P̂ (∆̃2(S2k , S2j )) (4.4)

for all p, P̂ , 2k ≤ L(p) and j ≤ k − 2.

These prerequisites being recalled, we are now able to turn to the proof of Lemma 69. For
that purpose, we will have to adapt Kesten’s original proof. Recall that we consider a parameter
p, a measure P̂ between Pp and P1−p and an integer n ≤ L(p). The parameters of P̂ will be
denoted by p(v). We may assume that p < 1/2. Note also that it suffices to prove the theorem
with Pp instead of P1/2.

1st step: We first notice that we can replace Γ2(0, Sn) by Ω2(0, S2k), with k such that 2k ≤ n <
2k+1. Indeed, the estimates (4.2) and (4.3) entail

P̂ (Γ2(0, Sn)) ≥ P̂ (Γ2(0, S2k+1)) ≥ P̂ (∆2(0, S2k+1))

≥ C−1
1 P̂ (∆2(0, S2k))

≥ C−1
2 C−1

1 P̂ (Γ2(0, S2k)) ≥ C−1
2 C−1

1 P̂ (Ω2(0, S2k))

and

P̂ (Ω2(0, S2k)) ≥ P̂ (∆2(0, S2k))

≥ C−1
2 P̂ (Γ2(0, S2k)) ≥ C−1

2 P̂ (Γ2(0, Sn)).
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4.4. Length of the front

2nd step: We would like now to use Russo’s formula, but for technical reasons which will
become clear in the next step, this will work nicely only for the points that are not too close to
the boundary. We therefore first have to see how the change of p(v) for the points that are close
to the boundary affects the probabilities that we investigate. More precisely, we start with Pp

and change p p(v) only in S2k \ S2k−3 . The resulting measure P̃ is between Pp and P1−p: so,

Pp(Ω2(0, S2k)) ≍ Pp(∆2(0, S2k)) ≍ Pp(∆2(0, S2k−3))

thanks to (4.2) and (4.3), and similarly

P̃ (Ω2(0, S2k)) ≍ P̃ (∆2(0, S2k−3)),

which allows us to conclude, since Pp(∆2(0, S2k−3)) = P̃ (∆2(0, S2k−3)) by definition.

3rd step: In order to handle the sites v located in S2k−3 , we will apply a generalization of
Russo’s formula to the family of measures (P̂t)t∈[0,1] with parameters

p(v, t) = tp(v) + (1 − t)p,

which corresponds to a linear interpolation between p  p(v) in S2k−3 . The event Ω2(0, S2k)
can be written as the intersection of A2(0, S2k) = {There exists an occupied path from ∂0 to the
bottom side of S2k} and B2(0, S2k) = {There exists a vacant path from ∂0 to the top side of S2k}.
These two events are respectively increasing and decreasing, and in that case, d

dt P̂t(A2 ∩B2) can
be expressed as (see Lemma 1 in [43]):

∑

v∈S
2k−3

dp(v, t)

dt

[

P̂t(v is pivotal for A2, but not for B2, and B2 occurs)

− P̂t(v is pivotal for B2, but not for A2, and A2 occurs)
]

.

A vertex v ∈ S2k−3 , v 6= 0, is pivotal for A2 iff there exist two paths both containing v such
that

1. Their sites, except for v, are respectively all occupied and all vacant.

2. The first path connects ∂0 to the bottom side of S2k .

3. The second path separates 0 from the bottom side of S2k .

In the case of 1 arm, Kesten used a vacant loop around the origin, here the separating path can
have its extremities on the boundary. This will not change the computations, since we still have
4 arms locally, that we will sum in the same way.

Actually, we must also assume that k ≥ 7 and put apart the vertices which are too close to
the origin, for instance those in S16. For these sites,

P̂t(v is pivotal for A2, but not for B2, and B2 occurs)

≤ P̂t(Γ̃2(S2k , S16))

≤ C4P̂t(Ω2(0, S2k))

for some universal constant C4.
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We now associate to each site v ∈ S2k−3 \ S16 a parallelogram R(v) such that 0 /∈ R(v), so
that we make appear four arms locally. We choose them to present the following property: if j
is such that 2j+1 < d(v, 0) ≤ 2j+2, then R(v) is included in S̊2j+3 \ S2j . This will imply that

P̂t(v is pivotal for A2, but not for B2, and B2 occurs)

≤ P̂t

[

Γ2(0, S2j ) ∩ Γ(v, R(v)) ∩ Γ̃2(S2k , S2j+3)
]

= P̂t[Γ2(0, S2j )]P̂t[Γ(v, R(v))]P̂t[Γ̃2(S2k , S2j+3)]

by independence (these events depending on sites in disjoint sets).
We can take the parallelograms R(v) like in Kesten’s paper (see [43] p. 117). As noticed in

this paper, the precise choice is not really important. On one hand, we have to ensure that the
four arms are not too small. For that purpose, the distances between v and each of the sides of
R(v) must be comparable to the distance between 0 and v. On the other hand, if the announced
property is satisfied, we will be in position to join the paths outside R(v), that are respectively
between 0 and ∂S2j , and between ∂S2j+3 and ∂S2k . For the sake of completeness, let us just
recall briefly how Kesten chooses these R(v). Consider v = (v1, v2) /∈ S16. If |v1| ≤ |v2| ≤ 2k−3

and 16 ≤ 2j+1 < v2 ≤ 2j+2, take l1 and l2 such that

l12
j−2 < v1 ≤ (l1 + 1)2j−2 and l22

j−2 < v2 ≤ (l2 + 1)2j−2,

and define

R(v) = [(l1 − 2)2j−2, (l1 + 2)2j−2] × [l22
j−2 − 2j , l22

j−2 + 2j ].

If v2 < 0, take the image of R((v1,−v2)) by the symmetry with respect to the x-axis. Finally,
if |v2| < |v1|, simply exchange the roles of the first and second coordinates. We can easily check
that these parallelograms possess by construction the desired property.

Now, by joining the two terms P̂t[Γ2(0, S2j )] and P̂t[Γ̃2(S2k , S2j+3)], we can make appear
P̂t[Ω2(0, S2k)]: indeed, we get easily from the Russo-Seymour-Welsh theorem (see Lemma 6 in
[43])

δ2
16P̂t[∆2(0, S2j )]P̂t[∆̃2(S2k , S2j+3)] ≤ P̂t[Ω2(0, S2k)]

as, by assumption, 2k ≤ L(p) and j ≤ k − 5 (here a slight generalization of the FKG inequality
is needed (see for instance Lemma 3 in [43]), invoking zones where “everything is monotonous”).

We obtain then from

P̂t[∆2(0, S2j )] ≥ C−1
2 P̂t[Γ2(0, S2j )]

(which follows from (4.3)), and

P̂t[∆̃2(S2k , S2j+3)] ≥ C−1
3 P̂t[Γ̃2(S2k , S2j+3)]

(using (4.4)), that

P̂t[Γ2(0, S2j )]P̂t[Γ̃2(S2k , S2j+3)] ≤ C5P̂t[Ω2(0, S2k)]. (4.5)

Hence,

P̂t(v is pivotal for A2, but not for B2, and B2 occurs)

≤ C5P̂t[Ω2(0, S2k)]P̂t[Γ(v, R(v))].
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For symmetry reasons, the same is true if we invert A2 and B2. Consequently, dividing by
P̂t[Ω2(0, S2k)] will make appear its logarithmic derivative in the left-hand side of Russo’s formula:

∣

∣

∣

∣

d

dt
log
[

P̂t(Ω2(0, S2k))
]

∣

∣

∣

∣

≤ 2C5

∑

v∈S
2k−3\S16

∣

∣

∣

∣

dp(v, t)

dt

∣

∣

∣

∣

P̂t[Γ(v, R(v))] + 2C4

∑

v∈S16

∣

∣

∣

∣

dp(v, t)

dt

∣

∣

∣

∣

.

Finally, the first term that we obtain (the sum encoding the existence of 4 arms locally) is
exactly the same as in Kesten’s paper [43] (end of the proof of Theorem 1 p. 140), and its
integral between 0 and 1 is bounded by some universal constant C6:

∫ 1

0

(

∑

v∈S
2k−3\S16

∣

∣

∣

∣

dp(v, t)

dt

∣

∣

∣

∣

P̂t[Γ(v, R(v))]

)

dt ≤ C6.

The desired conclusion then follows.

4.4.2 Expected length of the front

We are now able to study properties of the front in the “critical strip”. Roughly speaking,
only the sites in [±N4/7] must be taken into account, and each of these sites has a probability
approximately (N4/7)−1/4 = N−1/7 (the two-arm exponent being equal to 1/4) to be on the
front. Starting from this idea, we will prove the following estimate on the expectation of TN :

Proposition 70. Recall that by assumption, ℓN ≥ N4/7+δ and ℓN = o(Nγ). For all ǫ > 0, we
have for N sufficiently large:

N3/7−ǫℓN ≤ E[TN ] ≤ N3/7+ǫℓN . (4.6)

Proof. Throughout the proof, we will use the fact that

E[TN ] =
∑

e∈SN

P(e ∈ FN ). (4.7)

We consider first the upper bound. Take ǫ′ = ǫ/4: we have

E[TN ] ≤ 6|SN | × P(FN * [±N4/7+ǫ′ ]) +
∑

e∈[±N4/7+ǫ′ ]

P(e ∈ FN ),

and it follows from localization and the fact that |SN | = (2N +1)× (ℓN +1) = o(Nγ+1), that the
first term tends to 0 sub-exponentially fast. We can thus restrict the summation to the vertices
in the strip [±N4/7+ǫ′ ].

But for e ∈ [±N4/7+ǫ′ ],

P(e ∈ FN ) ≤ P[2 arms xe  ∂SN4/7−2ǫ′ (xe)],

and as SN4/7−2ǫ′ (xe) ⊆ [±2N4/7+ǫ′ ], the percolation parameter in this box remains in the range
[1/2 ± 2N−3/7+ǫ′ ]. The associated characteristic length being

L(1/2 ± 2N−3/7+ǫ′) ≈ N4/7−4ǫ′/3 ≫ N4/7−2ǫ′ ,
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we get (using Lemma 69)

P[2 arms xe  ∂SN4/7−2ǫ′ (xe)]

≍ P1/2[2 arms xe  ∂SN4/7−2ǫ′ (xe)]

≈ (N4/7−2ǫ′)−1/4 (by using the 2-arm exponent)

≪ N−1/7+ǫ′ .

Now we just have to sum this inequality to get the desired result: for N large enough,
∑

e∈[±N4/7+ǫ′ ]

P(e ∈ FN ) ≤ 6(2N4/7+ǫ′ + 1)(ℓN + 1) × N−1/7+ǫ′

≤ N3/7+ǫℓN .

Let us turn now to the lower bound. We restrict to the edges e in the strip [2N4/7+ǫ′ , ℓN −
2N4/7+ǫ′ ]× [±N4/7−ǫ′ ], with ǫ′ = ǫ/6. For such edges, we would like to estimate the probability
of having two arms, one occupied to BN and one vacant to TN , we will so use the event ∆2 rather
than Γ2. Indeed, take j such that N4/7−ǫ′ < 2j ≤ 2N4/7−ǫ′ : the probability of having two arms,
one occupied to the bottom of ∂S2j (xe), and one vacant to the top, is at least

P(∆2(xe, S2j (xe))).

These two paths can then be extended, so that they go out of the strip [±N4/7+ǫ′ ]: Lemma 67
(contained in the proof of uniqueness) implies that this can be done with probability at least

(CN−2ǫ′)2 = C ′N−4ǫ′ . (4.8)

On the other hand, since we stay in the strip [±3N4/7−ǫ′ ], of associated characteristic length
L(1/2 ± 3N−3/7−ǫ′) ≈ N4/7+4ǫ′/3, we get that

P(∆2(xe, S2j (xe))) ≍ P(Γ2(xe, S2j (xe)))

≍ P1/2(Γ2(xe, S2j (xe)))

≥ P1/2(Γ2(0, S2N4/7−ǫ′ )),

and the 2-arm exponent implies that

P1/2(Γ2(0, S2N4/7−ǫ′ )) ≈ (2N4/7−ǫ′)−1/4 ≫ N−1/7. (4.9)

We can thus construct two arms going out of the strip [±N4/7+ǫ′ ] with probability at least
N−1/7−4ǫ′ (for N large enough).

In that case, e has a high probability to be connected to the top and to the bottom of SN .
Indeed, the front would go out of the strip [±N4/7+ǫ′ ] otherwise, which occurs with a probability
less that ǫN , for some ǫN (independent of e) tending to 0 sub-exponentially fast. The conclusion
follows, by summing the lower bound over all edges e in the strip [2N4/7+ǫ′ , ℓN − 2N4/7+ǫ′ ] ×
[±N4/7−ǫ′ ]: for N large enough,

∑

e∈SN

P(e ∈ FN ) ≥ (2N4/7−ǫ′)(ℓN − 4N4/7+ǫ′) × (N−1/7−4ǫ′ − ǫN )

≥ N3/7−ǫℓN .
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4.4.3 Convergence in L2

As seen in Section 4.4.2, everything happens in the strip [±N4/7], and it is possible to determine
whether or not an edge e is on the front on a neighborhood of size N4/7 (with probability very
close to 1). Distant points will thus be almost completely decorrelated, and a phenomenon of
horizontal “averaging” therefore occurs, so that we get the following bound on Var[TN ]:

Proposition 71. We still assume that ℓN ≥ N4/7+δ and ℓN = o(Nγ). For each ǫ > 0, we have
for N sufficiently large:

Var[TN ] ≤ N10/7+ǫℓN . (4.10)

By combining this result to the estimates on E[TN ] of the previous subsection, we immediately
get that

Var[TN ] = o(E[TN ]2) (4.11)

and consequently

Theorem 72. If ℓN ≥ N4/7+δ and ℓN = o(Nγ), then

TN

E[TN ]
−→ 1 in L2, when N → ∞. (4.12)

Remark 73. On each vertical line, among the (about) N4/7 edges which lie in the critical strip,
approximately N3/7 of them will be on the front, that is a proportion 1/N1/7. If we take ℓN to
be equal to N , we get E[TN ] ∼ N10/7, and this exponent can indeed be observed numerically.

Proof. For an edge e, the event “e ∈ FN ” will be denoted by Fe. Using the expression

TN =
∑

e

IFe (4.13)

we get
Var[TN ] =

∑

e,f

[P(Fe ∩ Ff ) − P(Fe)P(Ff )]. (4.14)

First, take ǫ′ = ǫ/8 and note that we can restrict the summation to the edges e, f ∈
[±N4/7+ǫ′ ]: similarly to the argument following (4.7), the remaining term tends to 0 sub-
exponentially fast.

The idea is to replace Fe by an event F̃e which depends only on sites in a box around e of
size N4/7+ǫ′ , and such that P(Fe∆F̃e) → 0 sub-exponentially fast (uniformly in e). To construct
such an event, we simply invoke the result of uniqueness in the strip of length 2N4/7+ǫ′ centered
horizontally on xe: it implies that we can take

F̃e := { 2 arms e top and bottom sides of ∂
(

SN4/7+ǫ′ (xe) ∩ SN

)

}.

We have thus
Var[TN ] =

∑

e

∑

f

[

P(F̃e ∩ F̃f ) − P(F̃e)P(F̃f )
]

+ ǫN

with an error term ǫN tending to 0 sub-exponentially fast.
We now fix an edge e and we estimate the corresponding sum. Only the edges f in S2N4/7+ǫ′ (xe)

must be taken into account: otherwise the two associated boxes do not intersect and

P(F̃e ∩ F̃f ) − P(F̃e)P(F̃f ) = 0.
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We are thus turned to estimate

∑

f∈S
2N4/7+ǫ′ (xe)∩SN

P(F̃e ∩ F̃f ).

Introduce d = d(xe, xf ). If d > N4/7−2ǫ′/4, we have

P(F̃e ∩ F̃f ) ≤ P(Γ2(xe, SN4/7−2ǫ′/8(xe)) ∩ Γ2(xe, SN4/7−2ǫ′/8(xf )))

= P(Γ2(xe, SN4/7−2ǫ′/8(xe)))P(Γ2(xf , SN4/7−2ǫ′/8(xf )))

≤ N−2/7+2ǫ′

for N large enough, by using the 2-arm exponent in the boxes SN4/7−2ǫ′/8(xe) and SN4/7−2ǫ′/8(xf ).
The sum over the edges f in S2N4/7+ǫ′ (xe) \ SN4/7−2ǫ′/4(xe) is thus at most

6(4N4/7+ǫ′ + 1)2N−2/7+2ǫ′ ≤ N6/7+5ǫ′ .

Now assume that 4 ≤ d ≤ N4/7−2ǫ′/4. By introducing two boxes of size d/2 around xe and
xf , and another box of size 2d around xe, we see that

P(F̃e ∩ F̃f )

≤ P(Γ2(xe, Sd/2(xe)))P(Γ2(xf , Sd/2(xf )))P(Γ̃2(S2N4/7−2ǫ′ (xe), S2d(xe))).

(here to be completely rigorous we should prove that the condition on the extremities of the
arms in Γ̃2 can be relaxed: the methods of [43] apply – see also [55]). We can then join the first
and the third term as in (4.5):

P(Γ2(xe, Sd/2(xe)))P(Γ̃2(S2N4/7−2ǫ′ (xe), S2d(xe)))

≤ C1P(Γ2(xe, S2N4/7−2ǫ′ (xe)))

≤ N−1/7+ǫ′ .

Hence, using that there are at most C2j edges at distance j from e and the 2-arm exponent,

∑

f∈(S
N4/7−2ǫ′/4

(xe)\S4(xe))∩SN

P(F̃e ∩ F̃f )

≤
N4/7−2ǫ′/4
∑

j=4

(C2j) × (N−1/7+ǫ′P(Γ2(xf , Sj/2(xf ))))

≤ C3N
−1/7+ǫ′

N4/7−2ǫ′/4
∑

j=4

j × j−1/4+ǫ′

≤ C4N
−1/7+ǫ′(N4/7−2ǫ′/4)7/4+ǫ′

≤ N6/7+2ǫ′ .

Finally, the edges at distance d < 4 give a contribution which is at most C5P(F̃e) ≤ N−1/7+ǫ′ ≪
N6/7+2ǫ′ .
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Summing the different contributions, we get that
∑

f∈S
2N4/7+ǫ′ (xe)∩SN

P(F̃e ∩ F̃f ) ≤ N6/7+6ǫ′ .

Hence,

Var[TN ] ≤ [6(2N4/7+ǫ′ + 1)(ℓN + 1)] × [N6/7+6ǫ′ ] + ǫN

≤ N10/7+ǫℓN .

Remark 74. Heuristically, this bound can be explained as follows: if we divide the strip SN into
ca. (ℓN/N4/7) disjoint (and thus more or less independent) boxes, the contribution of each of
them to the variance is of order ((N4/7)2)2N−2/7 = N14/7, so that the total variance is of order

(ℓN/N4/7) × N14/7 = N10/7ℓN .

4.5 Outer boundary

To further describe FN (still assuming it is unique), we can also consider its outer boundary
(or accessible perimeter). Actually, two curves arise: the “upper” outer boundary U+

N , and the
“lower” outer boundary U−

N . The upper outer boundary can be defined for instance as the lowest
self-avoiding vacant crossing of SN . It can be viewed as the upper boundary of FN “without the
fjords” (the sites that are connected to the top of SN only by a one-site wide passage). For a
site v, being on U+

N is equivalent to have 3 arms: two disjoint vacant arms to the left and right
sides of SN , and an occupied arm to the bottom.

The lengths of U+
N and U−

N , denoted respectively by U+
N and U−

N , can be computed in a similar
way as the length TN of the front, by counting the 3-arm sites (two vacant and one occupied
for U+

N , two occupied and one vacant for U−
N ). There is however an extra technical difficulty to

adapt Kesten’s result: being pivotal still leads to 4 arms locally, but not necessarily long enough
(due to consecutive arms of the same color), and the reasoning has to be adapted (see [55] for
more details). We get the following estimate on E[U±

N ]:

Proposition 75. We still assume that ℓN ≥ N4/7+δ and ℓN = o(Nγ). For all ǫ > 0, we have
for N sufficiently large:

N4/21−ǫℓN ≤ E[U±
N ] ≤ N4/21+ǫℓN . (4.1)

The upper bound can be treated in the same way as in Proposition 70, but for the lower
bound, we have to be a little more careful: we have to ensure that we can extend the two arms of
the same type into two disjoint macroscopic arms. It can be done by using the fact that we can
impose an occupied crossing in a N4/7+ǫ ×N4/7+ǫ rhombus to arrive in a “corner” of size N4/7−ǫ

with probability at least N−κǫ for some constant κ (for instance applying the RSW estimate
log N2ǫ times: see figure).

The decorrelation arguments that we used for the length of the front can also be applied to
the outer boundary, entailing convergence in L2.

Proposition 76. If ℓN ≥ N4/7+δ and ℓN = o(Nγ), then for each ǫ > 0, we have for N
sufficiently large:

Var[U±
N ] ≤ N20/21+ǫℓN . (4.2)
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Figure 4.10: We can extend the 3 arms by successive applications of RSW.

Hence,
U±

N

E[U±
N ]

−→ 1 in L2, when N → ∞. (4.3)

Note that when ℓN = N , this result implies that U±
N is of order N25/21 with high probability.

4.6 Open questions

We have used here the logarithmic equivalence of Proposition 60, that has been proved in [71].
It is in fact conjectured that this equivalence holds up to multiplicative constants. For instance,
the stronger assumption P1/2(A

4
n) ≍ n−5/4 would lead to L(p) ≍ |p − 1/2|−4/3, which would

make it possible to derive a sharper description of the front.
A natural question would be to describe (if it exists) the scaling limit of the front, once

properly renormalized. We could first argue as follows: in each of the sub-strips [±N4/7−ǫ],
everything “looks like criticality”, so that some aspects of the front will be the same as those of
critical percolation interfaces, i.e. SLE6 curves.

However, we do not know at present how the front “bounces”, that is to say what happens
when we are at a distance approximately N4/7 from the critical line. In fact, the front could be
linked to the objects Camia, Fontes and Newman have recently introduced to describe percolation
near criticality [18, 19], when we take the parameter to be p = 1/2 + λδ3/4, with a possibly
inhomogeneous λ.

136



Chapter 5

Scaling limits for the gradient
percolation front

Abstract: We further study the interface arising in the gradient percolation model, known as
the “percolation front”. More precisely, we identify a characteristic length, that enables us to
tighten the previous estimates and to construct non-trivial scaling limits for the front. These
limiting objects are similar to off-critical percolation interfaces.
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N

−N

p = 0

p = 1/2

p = 1

ℓN

p = 1/2 − y/2N

Figure 5.1: Gradient percolation in a strip.

5.1 Introduction

This paper is a sequel to [54] where we studied the gradient percolation model, an inhomogeneous
percolation process where the density of black (occupied) sites depends on the location in space.
We considered in that paper a strip of length ℓN and of finite width 2N , with a parameter p(y)
decreasing linearly from 1 to 0 (see Figure 5.1).

For standard (homogeneous) percolation on the triangular lattice (we will often restrict our-
selves to this lattice) at criticality, i.e. with parameter p = 1/2, Smirnov’s proof of conformal
invariance in the scaling limit [69] and the SLE computations by Lawler, Schramm and Werner
(see e.g. [50]) provided a complete rigorous proof of the existence and values of the so-called “arm
exponents” [71]. Combining these results with Kesten’s scaling relations [43], one gets a rather
precise description of percolation near criticality in two dimensions, for instance the power law
for the characteristic length

ξ(p) = |p − 1/2|−ν+o(1)

as p → 1/2, with ν = 4/3.

We used these results and ideas to describe gradient percolation in a strip (still on the
triangular lattice). We showed in particular that if the length of the strip satisfies ℓN ≫ Nν/(1+ν)

(= N4/7), then with high probability, there exists a unique “front”, an interface between the
cluster of black sites connected to the bottom of the strip and the cluster of white sites connected
to the top, and the vertical fluctuations of this front are of order Nν/(1+ν). We also proved that
various other macroscopic quantities related to it – its length for instance – can be described via
critical exponents related to the exponents of standard percolation.

These results suggest that in order to construct non-trivial scaling limits for the front, one
should scale it by a factor of order N4/7 – if one scales it directly by N , then one just gets a
straight line in the limit. However, the existence of such scaling limits was not proved due to
possible logarithmic corrections in all estimates coming from SLE computations.

In this paper, we identify a – both horizontal and vertical – characteristic length σN for this
model, which turns out to be the right way to scale the front. Our main result is that we can use
tightness arguments due to Aizenman and Burchard to construct such non-trivial scaling limits,
whose properties are reminiscent of those of interfaces in off-critical regime, studied in [56].
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5.2 Characteristic length for gradient percolation

5.2.1 Percolation background

This paper uses earlier results on near-critical percolation, in particular Kesten’s paper [43]. In
this section, we recall some results that we shall use. All these results are stated and derived in
[55], and we follow the notations of this paper. In particular, we restrict ourselves to the triangular
lattice, with basis (1, eiπ/3), so that the parallelogram of corners ai + bje

iπ/3 (i, j ∈ {1, 2}) is
denoted by [a1, a2]× [b1, b2]. The notation f ≍ g means that there exist two constants C1, C2 > 0
such that C1g ≤ f ≤ C2g, and f ≈ g means that log f/log g → 1.

Recall the definition of the correlation length: for any ǫ ∈ (0, 1/2),

Lǫ(p) = min{n s.t. Pp(CH([0, n] × [0, n])) ≤ ǫ} (5.1)

when p < 1/2, and the same with white crossings when p > 1/2 (so that Lǫ(p) = Lǫ(1− p)). We
use the events

A2(n1, n2) = A2,BW (n1, n2) = {∂Sn1  2,BW ∂Sn2}
that there exist two arms, one black and one white, crossing the annulus Sn1,n2 = Sn2 \ S̊n1 of
radii n1 and n2 centered on the origin, and

A4(n1, n2) = A4,BWBW (n1, n2) = {∂Sn1  4,BWBW ∂Sn2}.

We also introduce the notation, for j = 2 or 4,

πj(n1, n2) = P1/2(Aj(n1, n2)).

The following properties hold for any fixed ǫ ∈ (0, 1/2):

1. The Russo-Seymour-Welsh estimates are valid below Lǫ(p): for all k ≥ 1, there exists
δk = δk(ǫ) > 0 such that for all p, all n ≤ Lǫ(p), any product measure P̂ between Pp and
P1−p,

P̂(CH([0, kn] × [0, n])) ≥ δk. (5.2)

2. The crossing probabilities decay exponentially fast with respect to Lǫ(p): there exist con-
stants Ci = Ci(ǫ) > 0 such that for all p < 1/2, all n,

Pp(CH([0, n] × [0, 2n])) ≤ C1e
−C2n/Lǫ(p). (5.3)

3. We have (this is known as “quasi-multiplicativity”) for j = 2 or 4

P̂(Aj(n1/2)) × P̂(Aj(2n1, n2)) ≍ P̂(Aj(n2)) (5.4)

uniformly in p, 2n1 ≤ n2 ≤ Lǫ(p) and P̂ between Pp and P1−p, and also

P̂(Aj(n1, n2)) ≍ P1/2(Aj(n1, n2)). (5.5)

4. For any η ∈ (0, 1),
P1/2(A2(ηn, n)) → f2(η) (5.6)

as n → ∞, where f2(η) = η1/4+o(1) as η → 0+. This implies that

P1/2(A2(n)) ≈ n−1/4 (5.7)

as n → ∞.

139



Chapter 5. Scaling limits for the gradient percolation front

5.2.2 Regularity and asymptotic behavior of Lǫ

Recall [55] that for any (fixed) ǫ ∈ (0, 1/2),

|p − 1/2|Lǫ(p)2π4(Lǫ(p)) ≍ 1 (5.8)

as p → 1/2. By combining this relation with an a-priori bound for π4, namely that

π4(n1, n2) ≥ c(n1/n2)
2−α (5.9)

for any n < N (c, α > 0 being universal constants), we obtain:

• For any two ǫ, ǫ′ ∈ (0, 1/2),
Lǫ(p) ≍ Lǫ′(p). (5.10)

• For any ǫ ∈ (0, 1/2),
Lǫ(p) ≈ |p − 1/2|−ν (5.11)

as p → 1/2, with ν = 4/3.

Here we will need to compare Lǫ(1/2 + δ) and Lǫ(1/2 + δ′) for two small values δ, δ′ > 0. We
could write

Lǫ(1/2 + δ)

Lǫ(1/2 + δ′)
≈
(

δ

δ′

)−4/3

,

but this logarithmic equivalence is not precise enough. We bypass this difficulty by deriving a
weaker result that is sufficient for our purpose.

Lemma 77. There exist some universal constants C1, C2, α1, α2 > 0 such that

C1

(

δ

δ′

)−α1

≤ Lǫ(1/2 + δ)

Lǫ(1/2 + δ′)
≤ C2

(

δ

δ′

)−α2

(5.12)

for any two 0 < δ < δ′ < 1/2.

Proof. The proof is essentially the same as that of Eq.(5.10). We know from Eq.(5.8) that

δ
(

Lǫ(1/2 + δ)
)2

π4(Lǫ(1/2 + δ)) ≍ 1 ≍ δ′
(

Lǫ(1/2 + δ′)
)2

π4(Lǫ(1/2 + δ′)), (5.13)

hence,
(

Lǫ(1/2 + δ)
)2

(

Lǫ(1/2 + δ′)
)2 ≍ π4(Lǫ(1/2 + δ′))

π4(Lǫ(1/2 + δ))
× δ′

δ
. (5.14)

We deduce that

(

Lǫ(1/2 + δ)
)2

(

Lǫ(1/2 + δ′)
)2 ≍

(

π4(Lǫ(1/2 + δ′), Lǫ(1/2 + δ))
)−1 × δ′

δ
(5.15)

by quasi-multiplicativity (item 3. above, in the case of 4 arms). The estimate for 4 arms Eq.(5.9),
and also the trivial bound π4(n1, n2) ≤ 1, now provide the desired conclusion.
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5.2.3 Gradient percolation: setup

We consider gradient percolation in the strip

S∞
N = (−∞, +∞) × [−N, N ], (5.16)

with parameter

p(y) =
1

2
− y

2N
. (5.17)

For our purpose, working with such a strip infinite in both directions will be more convenient:
we get in this way a “stationary process”, and we avoid the boundary effects.

Note that with this setting, there is a.s. a unique interface between the infinite cluster of
black sites connected to (−∞, +∞) × {−N} and the infinite cluster of white sites connected to
(−∞, +∞) × {N}: indeed, there exists a column consisting – except for the top site – only of
black sites. We refer to this (random) interface as “the front”, and we denote it by FN . We also
introduce the sub-strips

St1,t2
N = [t1, t2] × [−N, N ] ⊆ S∞

N (5.18)

for −∞ < t1 < t2 < +∞, and

[u1, u2] = (−∞, +∞) × [u1, u2]. (5.19)

We use in particular the notation [±u] = [−u, u] = (−∞, +∞) × [−u, u].

5.2.4 Characteristic length for gradient percolation

We now introduce a quantity σǫ
N that measures the vertical fluctuations of the front. As will

become clear in the following, this quantity can be seen as a – both horizontal and vertical –
characteristic length for the gradient percolation model.

Definition 78. For any ǫ ∈ (0, 1/2), any N ≥ 1, we define

σǫ
N = sup

{

σ s.t. Lǫ

(

p(σ)
)

= Lǫ

(

1

2
− σ

2N

)

≥ σ

}

. (5.20)

Note that if we plug into this definition the value of the exponent ν associated to Lǫ (i.e.
Eq.(5.11)), we get that

σǫ
N ≈ Nν/(1+ν) = N4/7 (5.21)

as N → ∞. This implicit definition makes life easier compared to the closed value N4/7 that we
used in [54], for which we had to take care of potential logarithmic corrections.

Eq.(5.10) implies that
σǫ

N ≍ σǫ′

N (5.22)

for any two ǫ, ǫ′ ∈ (0, 1/2): the scale σǫ
N is unique up to multiplicative constants. We thus fix

some ǫ ∈ (0, 1/2) (e.g. ǫ = 1/4) for the rest of the paper. We will see in the next section that
σǫ

N is the right “scale” of this model.
Note that by definition of σǫ

N , we have

Lǫ(p(σǫ
N )) ≍ σǫ

N . (5.23)
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On one hand, we know that for any fixed u ≥ 1, the Russo-Seymour-Welsh lower bounds hold
in the strip [±uσǫ

N ], uniformly for N ≥ 1. On the other hand, the previous regularity lemma for
Lǫ (Lemma 77) implies that for any u ≥ 1,

Lǫ

(

p(uσǫ
N )
)

= Lǫ

(

1

2
− uσǫ

N

2N

)

≤ C−1
1 u−α1Lǫ

(

1

2
− σǫ

N

2N

)

= C−1
1 u−α1Lǫ

(

p(σǫ
N )
)

, (5.24)

so that using Eq.(5.23),
Lǫ

(

p(uσǫ
N )
)

≤ cu−ασǫ
N (5.25)

for some universal constants c, α > 0 (we would expect that α = 4/3, but this is not clear due
to the logarithmic corrections that we have mentioned).

5.2.5 Macroscopic properties of the front

The definition of σǫ
N enables us to tighten the estimates of [54]. The proofs are essentially the

same, we recall them briefly since small adaptations are needed. Our reasonings are based on
the following two main observations:

• The front FN never goes far from the strip [±σǫ
N ], due to the exponential decay property

Eq.(5.3).

• The behavior of FN in any strip [±uσǫ
N ] (u ≥ 1) is roughly the same as that of critical

percolation.

Localization

Proposition 79. There exist some universal constants α, C1, C2 > 0 such that

P(FN ∩ S0,tσǫ
N

N * [±uσǫ
N ]) ≤ C1

(

t

u
+

u

t

)

e−C2uα
(5.26)

for all t, u ≥ 1.

Proof. Assume that FN ∩ S0,tσǫ
N

N * [±uσǫ
N ]. If for instance FN ∩ S0,tσǫ

N
N exits the strip [±uσǫ

N ]
from above, then either it stays above it and crosses horizontally the strip [0, tσǫ

N ] × [uσǫ
N , N ],

either it crosses vertically the strip [0, tσǫ
N ] × [u

2σǫ
N , uσǫ

N ].
Consider the first case: the event CH([0, tσǫ

N ]×[uσǫ
N , N ]) occurs. If t ≥ u, there is a horizontal

crossing in one of the parallelograms [0, uσǫ
N ] × [(u + ku)σǫ

N , (u + (k + 2)u)σǫ
N ] (k = 0, 1, . . .),

or a vertical crossing in one of the parallelograms [0, 2uσǫ
N ] × [(u + k′u)σǫ

N , (u + (k′ + 1)u)σǫ
N ]

(k′ = 0, 1, . . .). Using the exponential decay property Eq.(5.3), we get

P
(

CH([0, uσǫ
N ] × [(u + ku)σǫ

N , (u + (k + 2)u)σǫ
N ])
)

≤ C1e
−C2uσǫ

N/Lǫ(p((u+ku)σǫ
N ))

≤ C1e
−C3(k+1)αuα

since Lǫ(p((u+ku)σǫ
N )) ≤ c((k+1)u)−ασǫ

N (by Eq.(5.25)). The same bound holds for P(CV ([0, 2uσǫ
N ]×

[(u + k′u)σǫ
N , (u + (k′ + 1)u)σǫ

N ])), and by summing over k, k′ ≥ 0, we get that the considered
event has a probability at most

2
∞
∑

k=1

C1e
−C3kαuα ≤ 2C1e

−C3uα
∞
∑

k=1

e−C3(kα−1)

≤ C4
t

u
e−C3uα

,
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by using that uα ≥ 1 and t/u ≥ 1.
If t < u, we use parallelograms of size t instead, and the considered event has a probability

at most:

2
∞
∑

k=0

C1e
−C3(u+kt)α ≤ C4

u

t

∞
∑

l=1

e−C3lαuα

≤ C5
u

t
e−C3uα

,

since for each l, there are of order u/t values of k for which lu ≤ u + kt < (l + 1)u.
Consider now the second case: the event CV ([0, tσǫ

N ] × [u
2σǫ

N , uσǫ
N ]) occurs. If t ≥ u, there is

a vertical crossing in one of the parallelograms [kuσǫ
N , (k + 1)uσǫ

N ] × [u
2σǫ

N , uσǫ
N ] (0 ≤ ku ≤ t),

or a horizontal crossing in one of the parallelograms [k′ u
2σǫ

N , (k′ + 1)u
2σǫ

N ] × [u
2σǫ

N , 3u
2σǫ

N ] (0 ≤
k′ u

2 ≤ t). There are of order t/u such parallelograms, and for each of them there is a crossing
with probability at most

C1e
−C2

u
2
σǫ

N/Lǫ(p(u
2
σǫ

N )) ≤ C1e
−C3uα

.

The considered event has thus a probability at most

C4
t

u
e−C3uα

.

If t < u, we use the parallelogram [0, tσǫ
N ]× [u

2σǫ
N , uσǫ

N ]: it is crossed vertically with probability
at most

C1
u

t
e−C3uα

,

since u/t ≥ 1.

Remark 80. In the other direction, let us fix some u ≥ 1. For t ≥ u, we can consider the
independent parallelograms [kuσǫ

N , (k +1)uσǫ
N ]× [−uσǫ

N , uσǫ
N ] (0 ≤ k ≤ t

u − 1): in each of them,
a vertical black crossing occurs with probability at least δ2 = δ2(u) > 0, so that

P(FN ∩ S0,tσǫ
N

N ⊆ [±uσǫ
N ]) ≤ (1 − δ2)

t/u−1 ≤ C1e
−C2t, (5.27)

for some constants C1, C2 > 0 (depending on u).

Uniqueness

Proposition 81. There exist some universal constants C1, C2 > 0 such that

P( unique crossing in S0,tσǫ
N

N ) ≥ 1 − C1e
−C2t. (5.28)

Proof. We need the following property: we state it as a separate lemma since we will use it again
later.

Lemma 82. For each fixed v ≥ 0, there exists some η(v) > 0 independent of N such that

P
(

CV ([0, σǫ
N ] × [−N, vσǫ

N ])
)

≥ η(v). (5.29)
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σ
ǫ

N

−σ
ǫ

N

σ
ǫ

N
2σ

ǫ

N

rN

Figure 5.2: With positive probability, the front is connected to the bottom of the strip S0,3σǫ
N

N .

Proof. We construct a vertical crossing in [0, σǫ
N ]× [−N, vσǫ

N ] by combining vertical crossings in
the parallelograms [0, σǫ

N ] × [(v − (k + 2))σǫ
N , (v − k)σǫ

N ] (k = 0, 1, . . .) and horizontal crossings
in the parallelograms [0, σǫ

N ] × [(v − (k′ + 1))σǫ
N , (v − k′)σǫ

N ] (k′ = 1, 2, . . .). It is easy to check
that all these crossings exist with probability at least

C1(v)

∞
∏

k=k0

(1 − C2e
−C3kα

) = η(v) > 0, (5.30)

using (as for localization) the exponential decay property Eq.(5.3) and Eq.(5.25).

Consider now the strip S0,3σǫ
N

N . Let us condition on the upper-most crossing rN in this strip.
We know from Lemma 82 that

P
(

C∗
V ([σǫ

N , 2σǫ
N ] × [0, N ])

)

≥ η(0) > 0, (5.31)

a lowest point on rN thus lies below the x-axis with probability at least η(0): let us assume that
this is the case. The construction of Figure 5.2 then shows that with probability at least δ4

4η(0),

rN is connected to the bottom of the strip S0,3σǫ
N

N , by a path staying in this strip.

Now, consider ct disjoint sub-strips S(i)
N of length 3σǫ

N in the strip S0,tσǫ
N

N , for c > 0 a

small constant: for each i, FN is connected to the bottom of S(i)
N (by a path staying in S(i)

N )

with probability at least δ′ = δ4
4η(0)2, so that FN is connected to the bottom of S0,tσǫ

N
N with

probability at least
1 − (1 − δ′)ct ≥ 1 − C1e

−C2t.

Remark 83. Note that this uniqueness property implies in particular that the front does not
“bounce back” too much: we would otherwise observe multiple interfaces in some sub-strips (see
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k
u

2
σ

ǫ
N (k + 1)u

2
σ

ǫ
N

Figure 5.3: If the front bounced back of a distance larger than uσǫ
N , it would create several

interfaces in one of the sub-strips Sk u
2
σǫ

N ,(k+1) u
2
σǫ

N

N .

Figure 5.3), which has a very small probability. We use this remark in Section 5.3, when con-
structing scaling limits. We have for instance:

P
(

FN bounces back of a distance ≥ uσǫ
N in S0,tσǫ

N
N

)

≤ C1
t

u
e−C2u. (5.32)

Length

Proposition 84. The following estimate on the discrete length of FN holds:

E
[

|FN ∩ S0,tσǫ
N

N |
]

≍ t(σǫ
N )2π2(σ

ǫ
N ) (5.33)

uniformly for t ≥ 1 and N ≥ 1.

Proof. It comes from Eq.(5.5) and Lemma 82 (it also uses the “arm separation lemmas”, see [55])
that

P(e ∈ FN ) ≍ π2(σ
ǫ
N )

uniformly for e ∈ [±σǫ
N ], which provides the lower bound.

On the other hand, the construction of Figure 5.4 implies that if e ∈ [kσǫ
N , (k+1)σǫ

N ] (k ≥ 1),

P(e ∈ FN ) ≤ C1e
−C2kα

π2

(

Lǫ(p((k + 1)σǫ
N ))
)

, (5.34)

by combining Eqs.(5.3) and (5.25) as for localization. We have

π2(Lǫ(p((k + 1)σǫ
N ))) ≤ C3π2

(

Lǫ(p((k + 1)σǫ
N )), Lǫ(p(σǫ

N ))
)−1

π2(Lǫ(p(σǫ
N )))

≤ C4

(

Lǫ(p((k + 1)σǫ
N ))

Lǫ(p(σǫ
N ))

)−α̃

π2(σ
ǫ
N )

≤ C5

(

k−α′)−α̃
π2(σ

ǫ
N ),

by quasi-multiplicativity (item 3. above) and Lemma 77 (we also used an a-priori bound on π2,
that π2(n1, n2) ≥ c̃(n1/n2)

α̃). This provides the upper bound by summing over k ≥ 1:

∞
∑

k=1

t(σǫ
N )2C1e

−C2kα
π2

(

Lǫ(p((k + 1)σǫ
N ))
)

≤ C6t(σ
ǫ
N )2π2(σ

ǫ
N )

( ∞
∑

k=1

kα′α̃e−C2kα

)

≤ C7t(σ
ǫ
N )2π2(σ

ǫ
N ).
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e

2Lǫ(p((k + 1)σǫ

N
))

Figure 5.4: If e ∈ [kσǫ
N , (k + 1)σǫ

N ] is on FN , then there are two arms from e going to distance
Lǫ(p((k + 1)σǫ

N )), and a black crossing in the U-shaped region.

5.3 Existence of non-trivial scaling limits

Eqs.(5.26) and (5.27) show that σǫ
N is the unique way (up to multiplicative constants) to scale

FN in order to get non-trivial scaling limits. Indeed, using a quantity much smaller or much
larger than σǫ

N would not produce any interesting limit. We now consider the interface fN ,
obtained by scaling FN in both directions by σǫ

N , and we use the classical tightness arguments
of Aizenman and Burchard [2] to construct scaling limits. Eq. (5.27) will then ensure that the
scaling limits so obtained are non-trivial.

Let us make the setting a bit more precise. We work with the following space of interfaces
S: we consider the set of continuous functions γ : (−∞, +∞) −→ R2 such that the x-coordinate
of γ(t) tends to +∞ as t → +∞, and to −∞ as t → −∞, where we identify two curves γ
and γ̃ if they are the same up to reparametrization, i.e. if there exists an increasing bijection
φ : (−∞, +∞) −→ (−∞, +∞) such that γ = γ̃ ◦ φ.

Recall that we usually endow the space of curves defined on a compact, say [0, 1], with the
uniform distance “up to reparametrization”

d(γ1, γ2) = inf
φ

sup
t∈[0,1]

|γ1(t) − γ2(φ(t))|, (5.1)

where the infimum is taken over the set of increasing bijections φ : [0, 1] −→ [0, 1]. The same
distance over (−∞, +∞) would be too strong for our purpose, we rather use the particular
structure of S to define a notion of convergence “on every compact”.

For a curve γ ∈ S, we consider its piece γ(n) between t(n) the first time it reaches x = −n

and t
(n) the last time it hits x = n. We can choose the parametrization such that t(n) = −n and

t
(n)

= n, so that γ(n) is parametrized by [−n, n]. We then define

d(n)(γ1, γ2) = inf
φ

sup
t∈[0,1]

|γ1(t) − γ2(φ(t))|, (5.2)
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5.3. Existence of non-trivial scaling limits

with φ : [−n, n] −→ [−n, n], and finally the product distance

d(γ1, γ2) =
+∞
∑

n=1

1

2n

(

d(n)(γ1, γ2) ∧ 1
)

. (5.3)

One can check (see [11] for instance) that a sequence (γk) of interfaces converges in distribu-

tion toward γ in (S, d) iff each γ
(n)
k converges toward γ(n) in (S(n), d(n)), with obvious notation

for S(n). Note also that in our setting, tightness and relative compactness are equivalent, by
Prohorov’s theorem.

The scaled fronts fN are elements of S, and we are in position to use the arguments of
Aizenman and Burchard [2] in each S(n).

Proposition 85. Denoting by PN the law of fN , the sequence (PN )N≥1 is relatively compact in
the set of probability measures on (S, d).

Proof. We show the existence of scaling limits in each S(n). Let us fix some n ≥ 1. First, there
exist some universal t, u ≥ 1 such that for all N ,

P(f
(n)
N ⊆ [−(n + t)σǫ

N , (n + t)σǫ
N ] × [−uσǫ

N , uσǫ
N ]) ≥ 1 − ǫ/2. (5.4)

Indeed, it comes from uniqueness in the strips S−(n+t)σǫ
N ,−nσǫ

N
N and Snσǫ

N ,(n+t)σǫ
N

N (Proposition

81), and then localization for FN ∩ S−(n+t)σǫ
N ,(n+t)σǫ

N
N (Proposition 79).

We can now use Theorem 1.2 in [2]. Indeed, since the Russo-Seymour-Welsh estimates hold in
the strip [±uσǫ

N ] uniformly for all N , we have for any annulus A(x; r, R) = {z s.t. r < |z−x| <
R},

P(A(x; r, R) is crossed by f
(n)
N ) ≤ c(r/R)α

for two universal constants α, c > 0, and the BK inequality implies that

P(A(x; r, R) is crossed k times by f
(n)
N ) ≤ ck(r/R)αk

which is exactly the hypothesis (H1) of [2] (uniform power bounds on the probability of multiple

crossings in annuli). Hence, the sequence (P
(n)
N )N≥1, consisting of the laws of the f

(n)
N , is tight.

This proves that the sequence (PN )N≥1 is relatively compact (using a diagonal argument).

Remark 86. Up to now, for the definition of σǫ
N and the subsequent reasonings, we have made

no mention of the existence of the exponent ν. The previous results are thus valid on the other
“regular” lattices – for which conformal invariance has not been established – like the square lattice
Z2. For this lattice, we know for instance that

Lǫ(p) ≤ C|p − pc|−A

for some C, A > 0 (see [55]), which implies that for some α > 0,

σǫ
N ≤ N1−α.

Hence, our proofs still show in this case that the front is unique, converges toward the line p = pc,
and that non-trivial scaling limits can be constructed by scaling by σǫ

N .
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Chapter 5. Scaling limits for the gradient percolation front

5.4 Properties of the scaling limits

We now examine some properties of the potential scaling limits of the front. Their behavior is
comparable to that of near-critical interfaces, studied in [56], since the front remains (with high
probability) in a region where Lǫ(p(y)) = O(y).

5.4.1 Similarities with critical percolation

On one hand, these scaling limits share some properties with critical percolation interfaces, i.e.
SLE6, since for instance the probabilities of arm events remain the same up to multiplicative
constants. Hence the (discrete) length remains comparable (this is Proposition 84).

In the scaling limit, the Hausdorff dimension of any limit is the same as that of critical
percolation interfaces: if f is the weak limit along some sub-sequence (fNk

) of the sequence of
interfaces, then the Haussdorff dimension of f is almost surely 7/4.

5.4.2 Local asymmetry

On the other hand, when the front is macroscopically far from y = 0, it is by construction in a
region where Lǫ(p(y)) ≍ y ≍ σǫ

N . Gradient percolation thus provides a natural setting where the
off-critical regime, studied in [56], arises.

A hexagon h is on the front iff there exist two arms from h to the bottom and top boundaries
of the strip (respectively black and white), no matter the state of h. Hence, denoting by ∂FN

(resp. ∂+FN , ∂−FN ) the set of hexagons adjacent to FN (resp. black hexagons, white hexagons),

P(h ∈ ∂+FN ) − P(h ∈ ∂−FN )

= P(h ∈ ∂FN and h is black) − P(h ∈ ∂FN and h is white)

= P( two arms from h ) × (2p(yh) − 1).

Consequently, in any sub-strip s = [0, tσǫ
N ] × [u1σ

ǫ
N , u2σ

ǫ
N ] (0 < u1 < u2), the following asym-

metry property holds:

E
[

|∂+FN ∩ s|
]

− E
[

|∂−FN ∩ s|
]

≍ −σǫ
N

N
×
(

t(σǫ
N )2π2(σ

ǫ
N )
)

≈ −N4/7. (5.1)

This quantity happens to be much larger than the statistical deviation: indeed,
√

E
[

|∂FN ∩ s|
]

≍
√

t(σǫ
N )2π2(σǫ

N ) ≈
√

N. (5.2)

If f is the weak limit along some sub-sequence (fNk
) of the sequence of interfaces, the same

type of local asymmetry as for off-critical interfaces in [56] holds for any (small) portion of f
located in a strip of the form [u1, u2] (0 < u1 < u2): the interface turns more to the right for
instance. In particular, its law is (expected to be) singular with respect to that of SLE6.
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Chapter 6

Geometry of diffusion fronts

Abstract: We study the diffusion front for a natural two-dimensional model where many parti-
cles that start at the origin diffuse independently. It turns out that this model can be described
using properties of near-critical percolation, and provides a natural example where critical fractal
geometries spontaneously arise.
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Chapter 6. Geometry of diffusion fronts

6.1 Introduction

In this paper, we study a simple two-dimensional model where a large number of particles that
start at a given site diffuse independently on a planar lattice (we will often restrict ourselves to the
triangular lattice T). As the particles evolve, a concentration gradient appears, and the random
interfaces that arise can be described by comparing the model to an inhomogeneous percolation
model (where the probability that a site is occupied or vacant depends on its location). We
exhibit in particular a regime where the (properly rescaled) interfaces are fractal with dimension
7/4: this model thus provides a natural setting where fractal geometry spontaneously appears,
as predicted by physicists.

To our knowledge, the study of the geometry of such “diffusion fronts” has been initiated by
the physicists Gouyet, Rosso and Sapoval in [63]. In this 1985 paper, they showed numerical
evidence that such interfaces are fractal, and they measured the dimension Df = 1.76±0.02. To
carry on simulations, they used the approximation that the status of the different sites (occupied
or not) are independent of each other: they computed the probability p(z) of presence of a
particle at site z, and introduced the gradient percolation model, an inhomogeneous percolation
process with occupation parameter p(z). Gradient percolation provides a model for phenomena
like diffusion or chemical etching – the interface created by welding two pieces of metal for
instance – and it has been since then applied to a wide variety of situations (for more details,
see the recent account [29] and the references therein).

Based on the observations that the front remains localized where p(z) ≃ pc and that the
dimension Df was close to 7/4, a value already observed for critical (homogeneous) percolation
interfaces, they argued that there should be a close similarity between these diffusion fronts and
the boundary of a large percolation cluster. For critical percolation, this conjectured dimension
7/4 was justified later via theoretical physics arguments (see for instance [61, 20, 3]). In 2001,
thanks to Smirnov’s proof of conformal invariance [69] and to SLE computations by Lawler,
Schramm and Werner (see e.g. [50]), a complete rigorous proof appeared [71] in the case of the
triangular lattice.

In the paper [54], we have studied the gradient percolation model from a mathematical per-
spective, building on the works of Lawler, Schramm, Smirnov and Werner. Combining their
results with Kesten’s scaling relations [43], one first gets a rather precise description of homoge-
neous percolation near criticality in two dimensions, for instance the power law for the so-called
characteristic length

ξ(p) = |p − 1/2|−4/3+o(1)

as p → 1/2 (here and in the sequel we restrict ourselves to the triangular lattice). This type of
estimates (and the underlying techniques) then enabled us to show that the description by [63]
is indeed valid for gradient percolation, and to confirm rigorously that the 7/4 dimension shows
up in this context.

The goal of the present paper is to investigate “diffusion front” models mathematically and
to use our results concerning gradient percolation to show that their geometry and roughness
can also be rigorously estimated.

Let us now describe our main model in more detail. We start at time t = 0 with a large
number n of particles located at the origin, and we let them perform independent random walks.
At each time t, we then look at the sites containing at least one particle. These occupied sites
can be regrouped into connected components, or “clusters”, by connecting two occupied sites if
they are adjacent on the lattice.

As time t increases, different regimes arise, as depicted on Figure 6.1. Roughly speaking and
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6.1. Introduction

(a) t = 10. (b) t = 100. (c) t = 500.

(d) t = 1000. (e) t = 1463 (= λmaxn). (f) t = 2500.

(g) t = 3977 (= λcn). (h) t = 5000. (i) t = 10000.

Figure 6.1: Different stages of evolution as the time t increases, for n = 10000 particles.
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Chapter 6. Geometry of diffusion fronts

in the large n-limit, at first, a very dense cluster around the origin forms. This clusters grows as
long as t remains small compared to n. When t gets comparable to n, the cluster first continues
to grow up to some time tmax = λmaxn, then starts to decrease and it finally dislocates at some
critical time tc = λcn – and never re-appears. The constants λmax and λc are different and their
ratio is equal to 1/e.

To be more specific, the phase transition corresponding to λc can be described as follows:

• When t = λn for a λ < λc, then (with probability going to one as n → ∞), the origin
contains a macroscopic cluster. Its boundary is roughly a circle – we will provide a formula
for its radius in terms of λ and n– and its roughness can be described via the dimension
7/4. This is a dense phase.

• When t = λn for a λ > λc, then all the clusters – in particular the cluster of the origin –
are very small, and the whole picture is “dominated” by a subcritical percolation picture.
This is a dilute phase.

Actually, alongside these two principal regimes, at least two other interesting cases could be
distinguished: the critical regime when t is very close to λcn, and an intermediate regime when t
is very small compared to n (t ≪ nα for any α > 0, typically t = log n), for which the boundary
is smoother. We will not discuss these regimes in the present paper.

We will study some variants of this model and in particular, we will consider the case where
a source of particles at the origin does create new particules at the origin in a stationary way.
One can for instance think of the formation of an ink stain. If new particles arrive at the origin
at some fixed rate µ > 0, then after a long time, one observes a macroscopic cluster near the
origin, that grows as time passes. We will explain briefly how such a model can be described
using the same techniques and ideas.

6.2 Setup and statement of the results

6.2.1 Description of the model

As previously mentioned, our results will be obtained by comparing our model with an (inho-
mogeneous) independent percolation process, for some well-chosen occupation parameters. This
process is now rather well-understood, we will thus be able to get precise estimates on quantities
related to fractal dimensions. Recall that site percolation on a lattice G = (V, E), where V is
the set of vertices (or “sites”), and E is the set of edges (or “bonds”) can be described as follows.
We consider some family of parameters (p(z), z ∈ V ), and we declare each site z occupied with
probability p(z), vacant with probability 1− p(z), independently of the other sites. We are then
often interested in the connectivity properties of the set of occupied sites, that we group into
connected components, or “clusters”.

From now on, we will focus on the triangular lattice T = (VT , ET ), since at present this
is the lattice for which the most precise properties, like the existence of critical exponents, are
known – a key step being conformal invariance in the scaling limit [69], that remains open on
other lattices. However, let us mention that most results remain valid on the common regular
lattices like Z2, except those explicitly referring to the value of some critical exponents, like the
fractal dimension of the boundary (see Section 8.1 in [55] for a discussion of this issue). In the
standard homogeneous case where p(z) ≡ p ∈ [0, 1], a celebrated result of Kesten asserts that
there is a phase transition at the critical parameter pc = 1/2: when p ≤ 1/2 there is (a.s.) no
infinite cluster, while for p > 1/2 there is (a.s.) a unique infinite cluster. In the following, we
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6.2. Setup and statement of the results

call “interface” a curve on the dual hexagonal lattice bordered by occupied sites on one side, and
by vacant sites on the other side (the boundary of a finite cluster for instance).

We assume that a fixed number n of particles is deposited at the origin at time t = 0, and
we let these particles perform independent random walks on the lattice, with equal transition
probabilities 1/6 on every edge. We then look at the “occupied” sites containing at least one
particle at each time t. We denote by πt = (πt(z), z ∈ VT ) the distribution after t steps of a
simple random walk starting from 0, so that the probability of occupation for a site z is

p̃n,t(z) = 1 − (1 − πt(z))n ≃ 1 − e−nπt(z), (6.1)

and we expect

πt(z) ≃ CT

t
e−‖z‖2/t

for some constant CT depending only on the lattice. This type of bound is usually known as a
Local Central Limit Theorem, for our purpose we will need a strong version of it that we recall
in a next section. We also denote by Nn,t(z) the number of particles at site z.

Roughly speaking, p̃n,t(z) is maximal for z = 0, and p̃n,t(0) decreases to 0 as the particles
evolve. Hence, different regimes arise according to t: if pn,t(0) > 1/2, there is a giant component
around the origin, and its boundary is located in a region where the probability of occupation
is close to pc = 1/2. On the other hand, if pn,t(0) < 1/2 the model behaves like sub-critical
percolation, so that all the different clusters are very small.

As usual in the statistical physics literature, the notation f ≍ g means that there exist two
constants C1, C2 > 0 such that C1g ≤ f ≤ C2g, while f ≈ g means that log f/log g → 1 – we
will also sometimes use the notation “≃”, which has no precise mathematical meaning.

6.2.2 Main ingredients

Local Central Limit Theorem

To describe the fine local structure of the boundary, we need very precise estimates for πt. We
will use the following strong form of the Local Central Limit Theorem:

πt(z) =

√
3

2πt
e−‖z‖2/t + O

(

1

t2

)

(6.2)

uniformly for z ∈ VT . This equation means that locally, the estimate given by the CLT holds
uniformly: the constant

√
3/2 comes from the “density” of sites on the triangular lattice.

This result can be obtained by sharpening the proofs of [72], as done in the case of Z2 by
Lawler [45]. For the sake of completeness, we provide a proof in an appendix. Note that the
estimate in [72], with a o(1/t), would be enough to get localization, but establishing properties
like the fractal dimension requires this strong form, with a O(1/t2).

Poisson approximation

If we took instead a Poissonian number of particles N ∼ P(n), the thinning property of the
Poisson distribution would immediately imply that the random variables (Nn,t(z), z ∈ VT ) are
independent of each other, with Nn,t(z) ∼ P(nπt(z)). We thus simply get an independent
percolation process with parameters

pn,t(z) = 1 − e−nπt(z). (6.3)
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Chapter 6. Geometry of diffusion fronts

As will soon become clear, this Poisson approximation turns out to be valid, since we only
need to observe a negligible fraction of the particles to fully describe the boundary: what we
observe locally looks very similar to the “Poissonian case”. For that, we use the classical Chen-
Stein bound (see Theorem 2.M p.34 in [6], or [21]). Assume that W = X1 + . . . + Xk is a sum
of k independent random variables, with Xi ∼ B(pi). Then for λ = E[W ] =

∑k
i=1 pi, we have

∥

∥L(W ) − P(λ)
∥

∥

TV
≤ 1 − e−λ

λ

k
∑

i=1

p2
i . (6.4)

Now, assume that we look at what happens in a (small) subset A of the sites. The distribution
in A can be obtained by first drawing how much particles fall in A, and then by choosing
accordingly the configuration in A. Each particle has a probability πt(A) =

∑

z∈A πt(z) to be in
A, so that the number of particles in A is Nt(A) ∼ B(n, πt(A)), and Chen-Stein bound entails
that (λ = nπt(A) in this case)

∥

∥L(Nt(A)) − P(nπt(A))
∥

∥

TV
≤ 1

nπt(A)
nπt(A)2 = πt(A). (6.5)

We can thus couple Nt(A) with NA ∼ P(nπt(A)) so that they are equal with probability at least
1 − πt(A), which tends to 1 if A is indeed negligible. Hence to summarize, we can ensure that
the configuration in A coincide with the “Poissonian configuration”, i.e. with the result of an
independent percolation process, with probability at least 1 − πt(A).

Radial gradient percolation

We use earlier results on near-critical percolation, especially Kesten’s paper [43]. All the results
that we will use here are stated and derived in [55], and we follow the notations of this paper.
In particular, we use the basis (1, eiπ/3), so that [a1, a2] × [b1, b2] refers to the parallelogram of
corners ai + bje

iπ/3 (i, j ∈ {1, 2}).
We recall that the correlation length is defined as

Lǫ(p) = min{n s.t. Pp(CH([0, n] × [0, n])) ≤ ǫ} (6.6)

when p < 1/2 (CH denoting the existence of a horizontal occupied crossing), and the same with
vacant crossings when p > 1/2 (so that Lǫ(p) = Lǫ(1 − p)), for any ǫ ∈ (0, 1/2), and that we
have

Lǫ(p) ≍ Lǫ′(p) ≈ |p − 1/2|−4/3 (6.7)

for any two 0 < ǫ, ǫ′ < 1/2. We will also use the property of exponential decay w.r.t. L: for any
ǫ ∈ (0, 1/2) and any k ≥ 1, there exist some universal constants Ci = Ci(k, ǫ) such that

Pp(CH([0, n] × [0, kn])) ≤ C1e
−C2n/Lǫ(p) (6.8)

uniformly for p < 1/2 and n ≥ 1.
The aforementioned approximation allows to use results concerning the independent Bernoulli

case: we will consider a “radial” gradient percolation, a percolation process where the parameter
decreases with the distance to the origin. Let us first recall the description obtained in a strip
[0, ℓN ] × [0, N ] with a constant vertical gradient, i.e. with parameter p(y) = 1 − y/N : we will
explain later how to adapt these results in our setting. The characteristic phenomenon is the
appearance of a unique “front”, an interface touching at the same time the occupied cluster at
the bottom of the strip and the vacant cluster at the top, and:
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6.2. Setup and statement of the results

(i) This front remains localized around the line y = yc = ⌊N/2⌋, where p(y) ≃ 1/2.

(ii) Its fluctuations are of order

σN = sup
{

σ s.t. L(p(yc + σ)) ≥ σ
}

≈ N4/7. (6.9)

(iii) In the strip of width 2σN around yc, its behavior is comparable to that of critical percolation
(in particular its fine structure can be described via the exponents for critical percolation).

6.2.3 Statement of the results

In view of the previous sections, let us introduce

π̄t(r) =

√
3

2πt
e−r2/t (6.10)

(so that π̄t(‖z‖) = πt(z) + O(1/t2) by Eq.(6.2)), and the associated “Poissonian” parameters

p̄n,t(r) = 1 − e−nπ̄t(r). (6.11)

Since p̄n,t is a decreasing continuous function of r, and tends to 0 when r → ∞, there is a
unique r such that p̄n,t(r) = 1/2 iff p̄n,t(0) ≥ 1/2, or equivalently iff t ≤ tc = λcn, with

λc =

√
3

2π log 2
(≃ 0.397 . . .). (6.12)

We introduce in this case
r∗n,t = (p̄n,t)

−1(1/2). (6.13)

In particular, r∗n,t = 0 when t = λcn. We can check that

r∗n,t =

√

t log
λc

t/n
. (6.14)

An easy calculation shows that r∗n,t, as a function of t, increases on (0, λmaxn] and then decreases
on [λmaxn, λcn] (until being equal to 0), with

λmax =
λc

e
=

√
3

2eπ log 2
(≃ 0.146 . . .). (6.15)

In particular, the ratio tmax/tc is equal to 1/e, and is thus independent of n. For future reference,
note also that

• When t = λn, with λ < λc, r∗n,t increases as
√

t ≍ √
n:

r∗n,t =

√

log
λc

λ

√
t.

• When t = nα, with 0 < α < 1,

r∗n,t =
√

t

√

(

1

α
− 1

)

log t + log λc =

√

1

α
− 1
√

t log t + O

(
√

t√
log t

)

.
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We also introduce
σ±

n,t = sup
{

σ s.t. L(p(⌊r∗n,t⌋ ± σ)) ≥ σ
}

(6.16)

that will measure the fluctuations of the interface. We will see that σ±
n,t ≈ t2/7 under suitable

hypotheses on n and t. We are now in a position to state our main result. We denote by Sr

(resp. Sr,r′) the circle of radius r (resp. the annulus of radii r < r′) centered at the origin.

Theorem 87. Consider some sequence tn → ∞. Then

(i) If tn ≥ λn for some λ > λc, then there exists a constant c = c(λ) such that

Pn,t(every cluster is of diameter ≤ c log n) → 1

when n → ∞.

(ii) If nα ≤ tn ≤ λ′n for some α > 2/3 and λ′ < λc, then for any fixed small ǫ > 0, the
following properties hold with probability tending to 1 as n → ∞:

(a) There is a unique interface γn surrounding ∂Stǫ .

(b) This interface remains localized in the annulus of width 4t2/7+ǫ around ∂Sr∗n,t
(recall

that r∗n,t ≈
√

t), and its fluctuations (compared to this circle) are larger than t2/7−ǫ.

Remark 88. The hypothesis α > 2/3 is due to technical limitations only i.e. to the O(1/t2)
error bound in our version of the CLT that we use for Eq.(6.10). This is the only instance where
it is used.

6.3 Proofs

Let us start with item (i), which is the simpler one. In this case, the hypothesis tn ≥ λn implies
that for any site z,

p̄n,t(‖z‖) ≤ p̄n,t(0) ≤ 1 − e−
λc
λ

log 2 = ρ < 1/2. (6.1)

Since
πt(z) = π̄t(‖z‖) + O(1/t2) = π̄t(‖z‖) + O(1/n2)

uniformly on z, we also have

pn,t(z) = 1 − e−nπt(z) = 1 − e−nπ̄t(‖z‖)+O(1/n) ≤ ρ′ < 1/2 (6.2)

for some ρ′ > ρ.
This enables us to dominate our model by a subcritical percolation process. Take some δ > 0,

and consider the model with N ∼ P((1 + δ)n) particles: N ≥ n with probability tending to 1,
and in this case the resulting configuration dominates the original one. Moreover, if we choose δ
such that

λc(1 + δ)n ≤ λ + λc

2
n,

the hypothesis tn ≥ λ̃n holds for some λc < λ̃ < λ, so that the bound (6.2) is satisfied by the
associated parameters for some ρ′ < ρ′′ < 1/2.

Let us assume furthermore that t ≤ n3, and subdivide St into ∼ t2 horizontal and vertical
parallelograms of size c

2 log n × c log n. Any cluster of diameter larger than c log n would have
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6.3. Proofs

to cross one of these parallelograms “in the easy direction”, which – using the exponential decay
property – has a probability at most

C0t
2e−C(ρ′′)c log n ≤ C0n

6−C(ρ′′)c, (6.3)

that tends to 0 as n → ∞ for c large enough.
In fact, the case t ≥ n3 can be handled more directly. We dominate our model by using

N ∼ P(2n): N ≥ n with high probability, and we have p̄2n,t(‖z‖) ≤ p̄2n,t(0) = O(1/n2), so that

p2n,t(z) = p̄2n,t(‖z‖) + O(1/n2) = O(1/n2).

Hence, the probability to observe two neighboring sites is at most

∑

z∈VT

∑

z′∼z

p2n,t(z)p2n,t(z
′) ≤ 6 max

z′∈VT
p2n,t(z

′) ×
(

∑

z∈VT

p2n,t(z)

)

= O

(

1

n

)

,

since
∑

z∈VT p2n,t(z) ≤ 2n.
Let us turn now to item (ii). First of all, the hypothesis on tn ensures that

Cλ′

√
t ≤ r∗n,t ≤ Cα

√

t log t (6.4)

Let us study the behavior of p̄n,t around r∗n,t: we have

∂

∂r
p̄n,t(r) = (1 − p̄n,t(r)) ×

(

log(1 − p̄n,t(r))
)

×
(

2r

t

)

. (6.5)

The hypothesis tn ≤ λ′n also implies that

p̄n,t(0) ≥ 1/2 + 2δ

for some δ > 0 (like in Eq.(6.1)). We can thus define

r−n,t = (p̄n,t)
−1(1/2 + δ) and r+

n,t = (p̄n,t)
−1(1/2 − δ)

as we defined r∗n,t. A formula similar to Eq.(6.14) apply in this case, in particular we have

C±
λ′

√
t ≤ r±n,t ≤ C±

α

√

t log t. (6.6)

Hence, we get from Eq.(6.5) that for r ∈ [r−n,t, r
+
n,t],

−C1
√

log t√
t

≤ ∂

∂r
p̄n,t(r) ≤ −C2√

t
. (6.7)

We deduce
C2√

t

∣

∣r − r∗n,t

∣

∣ ≤
∣

∣p̄n,t(r) − 1/2
∣

∣ ≤ C1
√

log t√
t

∣

∣r − r∗n,t

∣

∣. (6.8)

Now, for any z in the annulus Sr−n,t,r
+
n,t

,

pn,t(z) − p̄n,t(z) = e−nπ̄t(‖z‖)(1 − en(π̄t(‖z‖)−πt(z))
)

, (6.9)

and using π̄t(‖z‖) − πt(z) = O(1/t2), we get

pn,t(z) − p̄n,t(z) = O(n/t2) = O(1/tα
′
) (6.10)
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Sr∗n,t−2t2/7+ǫ,r∗n,t−t2/7+ǫ

Sr∗n,t+t2/7+ǫ,r∗n,t+2t2/7+ǫ

∂Sr∗n,t

Stǫ,2tǫ
r = r

−

n,t r = r
+

n,t

s
−

1s
−

2
s
−

3 s
+

1 s
+

2
s
+

3

Figure 6.2: Construction showing localization of the macroscopic interface.

with α′ = 2 − 1/α > 1/2 (thanks to α > 2/3). Hence, Eq.(6.8) is also valid with pn,t(z) (take
different constants if necessary).

We now consider the configuration depicted on Figure 6.2. We take as a subset A of sites
the annulus Sr∗n,t−2t2/7+ǫ,r∗n,t+2t2/7+ǫ , together with the smaller annulus Stǫ,2tǫ and some strips

connecting these annuli, s−1 = [r−n,t/2, r∗n,t − 0.99 × t2/7+ǫ] × [0, t2/7+ǫ], s−3 = [0, r−n,t] × [0, tǫ] and

some vertical strip s−2 in the middle. We also add external strips, s+
1 = [r∗n,t+0.99×t2/7+ǫ, 2r+

n,t]×
[0, t2/7+ǫ] and s+

3 = [r+
n,t, t] × [0, tǫ], connected by a vertical strip s+

2 .
We claim that for this choice of A, we have

πt(A) = O(t−3/14+2ǫ). (6.11)

Indeed, this is a direct consequence of πt(z) = O(1/t) and r∗n,t = O(
√

t log t), except for the most
external strip s+

3 = [r+
n,t, t] × [0, tǫ]: for this strip, we have (recall that r+

n,t ≥ C+
λ′

√
t)

πt(s
+
3 ) = O

(

tǫ
∞
∑

u=C+
λ′

√
t

1

u
e−r2/u

)

= O(t−1/2+ǫ).

The correlation length in both annuli Sr∗n,t−2t2/7+ǫ,r∗n,t−t2/7+ǫ and Sr∗n,t+t2/7+ǫ,r∗n,t+2t2/7+ǫ is at
most

L

(

1

2
± C2√

t
t2/7+ǫ

)

= L

(

1

2
± C2t

−3/14+ǫ

)

≈ t2/7−4ǫ/3, (6.12)
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e

Figure 6.3: By considering sub-sections of the main annulus, we can show the existence of an
edge in Sr∗n,t−t2/7+ǫ,r∗n,t+t2/7+ǫ possessing two arms as depicted, which implies uniqueness of the
interface.

the property of exponential decay w.r.t. L (cf Eq.(6.8)) thus implies that there are circuits in these
annuli, an occupied circuit in the internal one and a vacant circuit in the external one: indeed,
these circuits can be constructed with roughly r∗n,t/t2/7 ≈ t3/14 overlapping parallelograms of
size 2t2/7 × t2/7 (this size is at the same time ≫ t2/7−4ǫ/3, so that crossing probabilities tend to
1 sub-exponentially fast, and ≪ t2/7+ǫ). For the same reason, there are also occupied crossings
in s−1 and s−2 , and vacant crossings in s+

1 and s+
2 . Since the parameter pn,t is at least 1/2 + δ

in Sr−n,t
, there is also an occupied crossing in s−3 , and an occupied circuit in Stǫ,2tǫ . Since pn,t

is at most 1/2 − δ outside of Sr+
n,t

, there is also a vacant crossing in s+
3 . As a consequence, the

potential interfaces have to be located in the annulus Sr∗n,t−2t2/7+ǫ,r∗n,t+2t2/7+ǫ .

By considering ∼ r∗n,t/t2/7+ǫ ≈ t3/14−ǫ sub-sections of length t2/7+ǫ in the main annulus
as on Figure 6.3, and using the same construction as for uniqueness in [54] (Proposition 7),
we can then show that with probability tending to 1, there is an edge e (on the dual lattice)
in Sr∗n,t−t2/7+ǫ,r∗n,t+t2/7+ǫ with two arms, one occupied going to ∂Sr∗n,t−2t2/7+ǫ and one vacant to
∂Sr∗n,t+2t2/7+ǫ . In this case, the interface is unique, and can be characterized as the set of edges
possessing two such arms.

Finally, the previous sub-sections of the main annulus also allow to see that the fluctuations
of the interface are larger than t2/7−ǫ, by using “blocking vertical crossings” as for Theorem 6 in
[54].

Remark 89. Characterizing the interface as the set of two-arm edges allows to describe its fine
local structure, by comparing it to critical percolation interfaces like in [54]. For instance:

• Its length – number of edges – behaves like Ln ≈ t2/7
√

t(t2/7)−1/4 = t5/7 (α2 = 1/4 being
the so-called “two-arm exponent” measuring the probability to observe two arms for critical
percolation).

• More generally, its “discrete Minkowski dimension” is 7/4 like for critical percolation (the
number of balls of size ≈ ηt2/7 needed to cover it increases as η−7/4).

• A decorrelation property between the different sub-sections also holds, so that quantities
like Ln are concentrated around their expectation (more precisely, Ln/E[Ln] → 1 in L2 as
n → ∞).

Remark 90. Here item (ii) contains simultaneously the two cases t ∼ λn (for λ < λc) and
t ∼ nα. However, note that these two regimes can be distinguished by the size of the “transition
window”, where the parameter decreases from 1/2 + δ to 1/2 − δ, as shown on Figure 6.4:

• When t ∼ λn, the transition takes place gradually w.r.t.
√

t. The parameter at the origin
is bounded away from 1.
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• When t ∼ nα, the transition is concentrated in a window of size ∼
√

t/
√

log t around
r∗ ≍ √

t log t. The parameter at the origin tends to 1.

Here we used that around r∗n,t, the local behavior of pn,t is similar, with an extra
√

log t factor
that does not affect the exponents.

6.4 Model with a source

We briefly discuss in this section a dynamical model for the formation of an ink stain, with a
source of particles at the origin. We start with no particles, and at each time t ≥ 0, new particles
are added at the origin with rate µ: the number nt of new particles at time t has distribution
P(µ) for some fixed µ > 0. Once arrived, the particles perform independent simple random
walks. As shown on Figure 6.5, we observe in this setting a macroscopic cluster around the
origin, whose size increases as the number of particles gets larger and larger.

The number of particles Nt(z) on site z at time t is given by a sum of independent Poissonian
random variables:

Nt(z) ∼ P(µπt(z)) + . . . + P(µπ0(z)) ∼ P(µρt(z)), (6.1)

with

ρt(z) =
t
∑

u=0

πu(z). (6.2)

We thus introduce like for the previous model

qµ,t(z) = 1 − e−µρt(z). (6.3)

For any value of µ, this parameter tends to 1 near the origin, and this dynamical model
turns out to behave like the previous model. We will show that the constructions of the previous
section can be adapted in this new setting.

Lemma 91. For each ǫ > 0, there exist constants Ci = Ci(ǫ) such that

ρt(z) ≥ C1 log t − C2 (6.4)

uniformly on sites z such that ‖z‖ ≤ t1/2−ǫ.

Hence in particular, qµ,t(z) → 1 uniformly on St1/2−ǫ .

Proof. We write

ρt(z) ≥
t
∑

u=t1−2ǫ

πu(z) ≥
t
∑

u=t1−2ǫ

( √
3

2πu
e−‖z‖2/u + O

(

1

u2

)

)

.

Since ‖z‖2/u ≤ t1−2ǫ/u ≤ 1, and
∑t

u=t1−2ǫ 1/u2 ≤∑∞
u=1 1/u2 < ∞, we get

ρt(z) ≥
√

3e−1

2π

( t
∑

u=t1−2ǫ

1

u

)

− C, (6.5)
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6.4. Model with a source

(a) t ≪ n: localized transition.

(b) t ∼ n: gradual transition.

Figure 6.4: Cluster of the origin in dense phase.
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(a) t = 10. (b) t = 100. (c) t = 1000.

Figure 6.5: A “stain” growing as the time t increases, with new particles arriving at rate µ = 50.

whence the result, since
t
∑

u=t1−2ǫ

1

u
=
(

log t + γ + o(1)
)

−
(

(1 − 2ǫ) log t + γ + o(1)
)

= 2ǫ log t + o(1).

Let us now consider for r > 0

ρ̄t(r) =

√
3

2π

∫ +∞

r2/t

e−u

u
du, (6.6)

and also
q̄µ,t(r) = 1 − e−µρ̄t(r). (6.7)

Lemma 92. We have

ρt(z) = ρ̄t(‖z‖) + O

(

1

t3/4

)

(6.8)

uniformly on sites z such that ‖z‖ ≥ t7/16.

For this lemma, we will use the following a-priori upper bound on πt(z), providing exponential
decay for the sites z at distance ≫

√
t: for some universal constant C > 0, we have

πt(z) ≤ Ce−‖z‖2/2t (6.9)

for all sites z and for any time t ≥ 0. This is for instance a direct consequence of Hoeffding’s
inequality.

Proof. We write

ρt(z) =
t3/4
∑

u=0

πu(z) +
t
∑

u=t3/4+1

πu(z)

=
t3/4
∑

u=0

πu(z) +
t
∑

u=t3/4+1

( √
3

2πu
e−‖z‖2/u + O

(

1

u2

)

)

.
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For each 0 ≤ u ≤ t3/4, we have by Eq.(6.9)

πu(z) ≤ Ce−‖z‖2/2u ≤ Ce−t1/8/2 (6.10)

since ‖z‖2 ≥ t7/8, so that the corresponding sum is a O(t3/4e−t1/8/2) = o(1/t3/4). We also have

t
∑

u=t3/4+1

O

(

1

u2

)

= O

(

1

t3/4

)

.

Let us now estimate the main sum. We can write

t
∑

u=t3/4+1

1

u
e−‖z‖2/u =

t
∑

u=t3/4+1

1

t
fλ

(

u

t

)

, (6.11)

with fλ(x) = e−λ/x/x and λ = ‖z‖2/t ≥ t−1/8, and we have
∣

∣

∣

∣

∣

t
∑

u=t3/4+1

1

t
fλ

(

u

t

)

−
∫ 1

t−1/4

fλ(x)dx

∣

∣

∣

∣

∣

≤
t
∑

u=t3/4+1

∫ u/t

(u−1)/t

∣

∣

∣

∣

∣

fλ

(

u

t

)

− fλ(x)

∣

∣

∣

∣

∣

dx. (6.12)

By an easy calculation,

f ′
λ(x) =

1

x2

(

λ

x
− 1

)

e−λ/x =
1

λ2
g

(

λ

x

)

,

with g(y) = y2(y − 1)e−y, that is bounded on [0, +∞). Hence for some M > 0,

f ′
λ(x) ≤ M

λ2
= O(t1/4),

so that for x ∈ [(u − 1)/t, u/t],
∣

∣

∣

∣

∣

fλ

(

u

t

)

− fλ(x)

∣

∣

∣

∣

∣

≤ C ′t1/4

∣

∣

∣

∣

u

t
− x

∣

∣

∣

∣

≤ C ′

t3/4
, (6.13)

and finally
t
∑

u=t3/4+1

∫ u/t

(u−1)/t

∣

∣

∣

∣

∣

fλ

(

u

t

)

− fλ(x)

∣

∣

∣

∣

∣

dx = O

(

1

t3/4

)

.

Putting everything together, we get

ρt(z) =

∫ 1

t−1/4

1

x
e−‖z‖2/txdx + O

(

1

t3/4

)

. (6.14)

Making the change of variable u = ‖z‖2/tx, we obtain

ρt(z) =

∫ ‖z‖2/t3/4

‖z‖2/t

e−u

u
du + O

(

1

t3/4

)

, (6.15)

which allows us to conclude, since
∫ +∞

‖z‖2/t3/4

e−u

u
du = O

(

t3/4

‖z‖2
e−‖z‖2/t3/4

)

= O(t−1/8e−t1/8
). (6.16)
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Since qµ,t(r) tends to 0 as r → ∞, and to 1 as r → 0+, we can introduce

r∗µ,t = (q̄µ,t)
−1(1/2), (6.17)

and an easy calculation shows in this case that

r∗µ,t =

√

F−1

(

2π log 2

µ
√

3

)√
t, (6.18)

with F (x) =
∫ +∞
x

e−u

u du, that is a decreasing bijection from (0, +∞) onto itself. We also consider

r−µ,t = (q̄µ,t)
−1(3/4) and r+

µ,t = (q̄µ,t)
−1(1/4), (6.19)

and we have
r±µ,t = C±√t. (6.20)

If we compute the derivative of q̄µ,t(r) w.r.t. r

∂

∂r
q̄µ,t(r) = (1 − q̄µ,t(r)) ×

√
3µ

2π
× e−r2/t

r2/t
× 2r

t
,

we get, similarly to Eq.(6.8), that

C1√
t

∣

∣r − r∗n,t

∣

∣ ≤
∣

∣q̄µ,t(r) − 1/2
∣

∣ ≤ C2√
t

∣

∣r − r∗n,t

∣

∣ (6.21)

for r ∈ [r−µ,t, r
+
µ,t]. We are thus in position to apply the same construction as in the previous

section (Figure 6.2), and the properties of Theorem 87 (case (ii)) still hold: with probability
tending to 1 as t → ∞,

(a) There is a unique interface γt surrounding ∂Stǫ .

(b) This interface remains localized in the annulus Sr∗µ,t−2t2/7+ǫ,r∗µ,t+2t2/7+ǫ around ∂Sr∗µ,t
, and its

fluctuations are larger than t2/7−ǫ.

Remark 93. We could also modify our model by adding a fixed number n0 of particles at each
time t: the same results apply in this case, by using a Poissonian approximation in the same set
A of sites as in the previous section. Indeed, we can ensure that the configuration in A coincides
with the “Poissonian configuration” with probability at least 1 − ρt(A), for

ρt(A) =
∑

z∈A

ρt(z) =
t
∑

u=0

πu(A). (6.22)

Appendix: Local Central Limit Theorem on the triangular lattice

We embed the triangular lattice T on Z2 by adding NE-SW diagonals on every face, and we
consider the simple random walk on this lattice

Zn = X1 + . . . + Xn,

where the Xi are i.i.d., uniform on {(±1, 0), (0,±1), (±1,∓1)}. This random walk is the image
of the simple random walk on T under the mapping x + eiπ/3y 7→ x + iy.
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6.4. Model with a source

Since Zn takes values in Z2, we know from the inversion formula for the characteristic function
that

πt(z) =
1

(2π)2

∫

[−π,π]2
e−iz.θ

[

φ(θ)
]t

dθ,

with φ(θ) = E[eiX1.θ]. We have

φ(θ) =
1

3

[

cos θ1 + cos θ2 + cos(θ1 − θ2)
]

= 1 − 1

3
Q(θ) + O(|θ|4)

as θ → 0, with Q(θ) = θ2
1 + θ2

2 − θ1θ2.
Note that in [−π, π]2, |φ(θ)| = 1 iff θ1 = θ2 = 0. The quadratic form Q being positive

definite, we have
c1|θ|2 ≤ Q(θ) ≤ c2|θ|2 (6.23)

for some c1, c2 > 0. We then take r > 0 such that

|φ(θ)| ≤ 1 − c1

2
|θ|2

for |θ| ≤ r, and for this r,
|φ(θ)| ≤ ρ = ρ(r) < 1

for |θ| ≥ r in [−π, π]2.
We can now follow the proof of [45]: we first cut πt(z) into two pieces πt(z) = I(t, z)+J(t, z),

with

I(t, z) =
1

(2π)2

∫

|θ|≤r
e−iz.θ

[

φ(θ)
]t

dθ

=
1

(2π
√

t)2

∫

|α|≤r
√

t
e−iz.α/

√
t
[

φ(α)
]t

dα

and |J(t, z)| ≤ ρt. We then write

(2π
√

t)2I(t, z) = I0(t, z) + I1(t, z) + I2(t, z) + I3(t, z),

with

I0(t, z) =

∫

R2

e−iz.α/
√

te−Q(α)/3dα

and the three remaining terms are all O(1/t) for the same reasons as in [45] (use Eq.(6.23)). By
diagonalizing Q, it is easy to check that

I0(t, z) = 2
√

3πe−(z2
1+z2

2+z1z2)/t,

whence the result, since z2
1 + z2

2 + z1z2 = ‖z1 + eiπ/3z2‖2.
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