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— Finite differences for spatial derivatives
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e Time integration : optimized Runge-Kutta schemes
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— Acoustic test problem : diffraction by a cylinder

— Navier-Stokes simulations (Large-Eddy Simulations)

e Concluding remarks



Motivations

vorticity field of a coaxial jet

e Development of Computational
AeroAcoustics (CAA)
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— direct simulation of sound generation by

solving the unsteady Navier-Stokes equa-

tions for compressible flows

— simulations of long-range propagation

(Linearized Euler Equations)

rfD2

e Key numerical issues in CAA

— disparities in magnitudes and length

scales between flow and acoustics

— turbulent and sound broadband spectra

— far-field propagation




Motivations

e Problem model for wave propagation

— 1-D advection equation :

— exact solution u(z,t) = g(z — ct)

by Fourier-Laplace transform : dispersion relation w = kc

elementary solution : harmonic plane wave Ae!kz—?)

— numerical approximation : wy; = ksc

e Development of schemes optimized in the Fourier space

— space : Dispersion-Relation-Preserving schemes of Tam & Webb (JCP,
1991), spectral-like schemes of Lele (JCP, 1992)

— time : Runge-Kutta algorithms of Hu et al. (JCP, 1996)
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Finite differences for spatial derivatives

o Explicit finite-difference schemes
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Finite differences for spatial derivatives

o Centered schemes (n = m)
3m/4

a; is antisymmetric N
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— high-order schemes : a; are determined by cancelling the Taylor series

formal truncation order O(Az*")

— low-dispersion schemes : a; are determined by minimizing the error
between the exact and numerical wavenumbers k£ and k; over a large

wavenumber range k;Az < kAz < k,Azx

e.g. in Bogey & Bailly (JCP, 2004), minimization of the integral error

/”/2 kAT kAT d1n(kAz)
7!'/16 s kJACB




Finite differences for spatial derivatives

o Non-centered schemes (n # m)

ks has an imaginary part (providing dissipation/amplification)

— approximate solution for the 1-D advection equation

_ pilk—Re(ks)|ct Im(ks)ct . 1k(z—ct)
u(z,t) = e T Laligiiar € ,
phase error dissipation exact
/amplification solution

— minimization both of phase error and of dissipation/amplification
e.g. in Berland et al. (JCP, 2006) with the integral error
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dispersion dissipation

— low-dispersion and low-dissipation schemes



Finite differences for spatial derivatives

e Numerical wavenumber ksAx vs. exact wavenumber kEAx

for centered schemes

Tt
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AX
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————— 2nd, 4th, 6th, 8th, 10th and

12th-order central differences

— + — DRP 7-pt Tam & Webb
(1993)
— x — DRP 15-pt Tam (2003)

—— 11-pt and —— 13-pt schemes
of Bogey & Bailly (2004)

— o — tridiag. 5-pt 6th-order and
compact 8th-order schemes, pen-
tadiag. 4th-order of Lele (1992)

— o — prefactored 5-pt 4th-order
scheme of Ashcroft & Zhang
(2003)



Finite differences for spatial derivatives

e Phase-velocity error in terms of points per wavelength

S — error observed for a har-
3 monic wave e'**~“) propa-
_Ym gating at v, = w/k = ck;/k
«

S e e

. accuracy limit given by

B,, = |ksAz — kAz|/m <5x107°




Finite differences for spatial derivatives

e Group-velocity error as a function of the exact wavenumber

propagation of a wave-packet at the group velocity

_dw Bk,
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accuracy limit given by E,, = |0k,/0k —1| <5 x 10~*



Finite differences for spatial derivatives

e Accuracy limits

scheme E,, <5X 10~° E,, <5X 104
EAT|max | A/AZ|min | EAT|max | A/AZ|min | EmaxAx k%/kmax

CFD 2nd-order 0.0986 63.7 | 0.0323 194.6 | 1.0000 0.10
CFD 4th-order 0.3439 18.3 | 0.2348 26.8 | 1.3722 0.25
CFD 6th-order 0.5857 10.7 | 0.4687 13.4 | 1.5860 0.37
CFD 8th-order 0.7882 8.0 0.6704 9.4 | 1.7306 0.46
CFD 10th-order 0.9550 6.6 | 0.8380 7.5 | 1.8374 0.52
CFD 12th-order 1.0929 5.7 | 0.9768 6.4 | 1.9208 0.57
DRP 7-pts 4th-order 0.4810 13.1 | 0.3500 18.0 | 1.6442 0.29
DRP 15-pts 4th-order | 1.8069 3.5 1.6070 3.9 2.1914 0.82
OFD 11-pts 4th-order | 1.3530 4.6 | 0.8458 7.4 | 1.9836 0.68
OFD 13-pts 4th-order | 1.3486 4.7 | 0.7978 7.9 | 2.1354 0.63
CoFD 6th-order 0.8432 7.5 | 0.7201 8.7 | 1.9894 0.42
CoFD 8th-order 1.1077 5.7 | 0.9855 6.4 2.1334 0.52
CoFD opt. 4th-order 2.4721 7.3 | 0.7455 8.4 | 2.6348 0.33
Opt. pre. 4th-order 0.7210 8.7 1 0.0471 133.3 | 2.3294 0.31




Selective spatial filtering

e Need for spatial filtering

— grid-to-grid oscillations are not resolved by F-D schemes according to

the Nyquist-Shannon theorem

— the highest wave-numbers, poorly resolved by F-D, must be removed

without affecting the long (physical) waves accurately discretized

kAx = 174 k Ax= 112 k AX= T11
AN AX =8 N AX =4 N AX =2

o Explicit discrete filtering (o e o o o)
uw! (z;) = u(z;) — Z d;u(z; + 7Az)
]=—m

n
transfer function in the Fourier space Gg(kAz)=1— Z djeijkm

j=-—m



Selective spatial filtering

e Requirements on the transfer function

— stability : |Gr(kAz)| < 1
—removal of grid-to-grid oscillations : Gi(m) =0

— normalization : G;(0) =1

o Centered filters '
— Gy is real (no dispersion) (see fig.) 073
S o4
o Non-centered filters -
0.25¢
— G has an imaginary part (phase error)

O 1 1
0 Tt/4 /2 3m/4 TT

e Optimized filtering kAz

by choosing d; minimizing an integral error
d(kAx)
kAz

T/2
e.g., // (1- )|~ Gy(kAa)| + & |¢c(kAz)|
m/16 ~ e

dissipation phase error



Selective spatial filtering

o Transfer function 1 — G5 of centered filters

0

10

10

——— 2nd, 4th, 6th, 8th, 10th and
12th-order standard explicit fil-

ters

—— optimized 7-pt 2nd-order fil-
ter of Tam & Webb (1993)

—— optimized 11-pt 2nd-order
and 13-pt 4th-order filters of Bo-
gey & Bailly (2004)

——— implicit tridiag. 2nd, 4th,
6th, 8th and 10th implicit fil-
ters (ay = 0.4), see Lele (1992),
Gaitonde & Visbal (2000)
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Time i1ntegration

o Explicit Runge-Kutta schemes

ou™

ot

differential equation = F(u",t) u"(z) = u(z,nAt)

General form of a low-storage Runge-Kutta scheme at p-stages :
p . . 2_1 .
W=t + ALY iK' with K'=F | u"+ ) agK', t" + At
i=1 j=1

By Fourier analysis, numerical amplification factor R;

,&n+1

p
Rs = =14+ ) yi(—wAt) exact factor : R, = e A
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j=1

e Optimized Runge-Kutta schemes

the coefficients 7; are determined by minimizing the errors

over a large range of pulsations wAt



Time i1ntegration

o Damping factor (dissipation)

0 —— 4th-order
10 - - - -
— o — 8th-order of Dormand &
- Prince (1980
10 f (1980)
optimized --- 2nd-order 2N (p =
= 157 6) of Bogey & Bailly (2004) and
3 —— 4th-order 2N (p = 6) of
Em Berland et al. (2006)
e 10_3-
N — o — 4th-order 2N (p = 5) of Car-
penter & Kennedy (1994)
10}
.4+ ... LDDRK46 and --- x ---
LDDRK56 of Hu et al. (1996)
10 R e.,,_ -
0 4 T2 34 T 5m/4 —$— opt. 4th-order 2N (p = 5) of

w At Stanescu & Habashi



Time i1ntegration

o Phase error (dispersion)
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Time i1ntegration

e Accuracy limits

dissipation E; =1 — |Rs(wAt)|

&

dispersion E, = |wAt — w;At|/7

CFL number § given for the opt. 11-pt FD scheme

scheme formal | E; <5 x107*|E, <5 x 1074 stability
order | wAt|max O WAt max B | wWAt|max| B

Standard RK4 4th 0.65 0.33 0.75 0.38 2.83 |[1.42
Standard RK8 Dormand et al.| 8th 1.79 0.90 2.23 1.12 3.39 |1.71
Stanescu et al. 4th 0.87 0.44 1.39 0.70 1.51 |0.76
Carpenter & Kennedy 4th 0.80 0.40 0.88 0.45 3.34 |1.68
Opt. LDDRK46 Hu et al. 4th 1.58 0.80 1.87 0.94 1.35 |0.68
Opt. LDDRK56 Hu et al. 4th 1.18 0.59 2.23 1.13 2.84 |[1.43
Opt. 2N-RK Bogey et al. 2nd 1.91 0.96 1.53 0.77 3.94 |1.99
Opt. 2N-RK Berland et al. 4th 1.97 0.99 1.25 0.63 3.82 [1.92




Outline - Road map

o Background / Motivations

e Spatial discretization optimized in the Fourier space

— Finite differences for spatial derivatives

— Selective filters for removing high-frequency waves

e Time integration : optimized Runge-Kutta schemes

e Applications

— Acoustic test problem : diffraction by a cylinder

— Navier-Stokes simulations (Large-Eddy Simulations)

e Concluding remarks



2-D Test problem - acoustic diffraction

e Acoustic diffraction by a cylinder
(2nd CA A Workshop, 1997)

— non-compact monopolar source

— scattering by the cylinder

— complex diffraction pattern sensitive

to numerical accuracy

Numerical methods : optimized 11-pt F-D & filters and 6-stage Runge-Kutta

2 configurations of algorithms near the wall

non-centered optimized

cerétered F-D & filters 11-point F-D & filters
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2-D Test problem - acoustic diffraction

e Results
Directivity D(0) = rp'? at r = 7.5D
x10 " x10 "
3 . . 3 .
—— analytical —— analytical
25 computation 25 computation

90 120 150 180 90 120 150 180

centered schemes at the wall non-centered schemes at the wall



Navier-Stokes simulations (Large-Eddy Simulations)

o Large Eddy Simulation (LES)

— the turbulent structures supported by the grid are computed

— the (dissipative) effects of the subgrid scales are modelized

e LES based on explicit filtering

N

viscous
dissipation

1/L k35 k9™ 1/X 1/n k

< >
< < —< >

resolved filtered subgrid
scales scales scales

— energy draining taken into ac-

count by the filtering

— resolved scales calculated accu-
rately by the F-D scheme, un-
affected by the filtering nor by

the time integration

— fow features independent of

the numerics

the use of optimized schemes appears appropriate for LES



Navier-Stokes simulations (Large-Eddy Simulations)

e Investigation of noise generation
— subsonic and supersonic jets
— cavity noise

— airfoil noise

e Noise generated by a subsonic jet (Mach 0.9 - Reynolds 500,000)

Velocity contour and pressure field Far-field pressure spectra at 8 = 40°
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Navier-Stokes simulations (Large-Eddy Simulations)

e Investigation of turbulence

— simulations under controlled (physical and numerical) conditions

— direct calculation of flow quantities including dissipation

e Energy budget in a turbulent jet

Mach 0.9 - Reynolds 11,000
Self-similarity region for 1207y < z < 1507

Vorticity norm

30
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-0.03f
0 O..5 1 l..5 2
Y%y g
convection : —— LES, o expe
production : —— LES, o expe
dissipation : —— LES, o expe
turb. diffusion : —— LES, o expe

LES



Concluding remarks

e Optimized finite-difference methods

accurate / simple / efficient

— treatment of boundary conditions
— non-uniform and curvilinear mesh
— complex geometries : interpolation, overset grids, multi-domain

— explicit selective filtering for Large Eddy Simulations (LES)

e Some difficulties

— large stencils (multi-domain / parallelization)

— treatment of shock-waves



