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Section description

Project name P 2

Scientific Machine Learning



3 Main Objectives:

  

What is our take on SciML

Provide an introduction to Hyper-Networks and Diffusion Models

Introduce tools adapted to SciML

   

What is this lecture about
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1 Block: Perspectives in SciML 

   Who we are, and what we do

Learning dynamics with HyperNetworks

2 Block Generative Modeling

Classical Sampling Methods

Diffusion Models

3 Block Probabilistic Modeling via Generative AI. 

Outline 
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Computer Lab: Led by Martin Guerra (University of Wisconsin-Madison)

   JAX as accelerated numpy and JAX transformations

Langevin Dynamics 

Diffusion Models

Outline 
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https://github.com/google/jax
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Block 1: Who we are and what we do
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Bio (short)
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Non-standard path (very usual nowadays)

Born and raised in the Atacama Desert, Chile

Diploma ,Ecole Polytechnique X2006, France Spectral Methods for Navier Stokes

Master Numerical Analysis and PDEs, Université de Paris VI  Shape Optimization

Ph.D. Mathematics, MIT Fast Methods

Visiting Assistant Professor, UC Irvine Wave propagation/Inverse problems

Postdoc, Lawrence Berkeley National Lab/UC Berkeley Quantum Chemistry

Assistant Professor of Mathematics, UW-Madison Scientific Machine Learning

Senior Research Scientist, Google Research SciML for Weather and Climate
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Foundational technologies that drive efficient modeling of large-scale, high-stake, 
and computationally intensive physical systemsMission 

Leonardo 
Zepeda-Núñez

Zhong Yi Wan Fei Sha
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Anudhyan Boral

Who we are

https://arxiv.org/search/cs?searchtype=author&query=Zepeda-N%C3%BA%C3%B1ez%2C+L


What we do

P 9

Upstream ML Research 

Probabilistic Modelling

● M. A. Finzi, A. Boral, A. G. Wilson, F. Sha, L. Zepeda-Núñez, User-defined Event Sampling and Uncertainty 
Quantification in Diffusion Models for Physical Dynamical Systems, ICML 2023

● Z. Y. Wan, R. Baptista, Y. Chen, J. Anderson, A. Boral, F. Sha, L. Zepeda-Núñez. Debias Coarsely, Sample 
Conditionally: Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models, submitted 
to NeurIPS 2023

Dynamical Systems

● A. Boral, ZY Wan, L Zepeda-Núñez, J. Lottes, Q. Wang, Y. Chen, J. Anderson, F Sha. Neural Ideal Large Eddy 
Simulation: Modeling Turbulence with Neural Stochastic Differential Equations, submitted to NeurIPS 2023

● Z. Y. Wan, L. Zepeda-Núñez, A. Boral, F. Sha. Evolve Smoothly, Fit Consistently: Learning Smooth Latent 
Dynamics For Advection-Dominated Systems, ICLR 2023

● G. Dresdner, D. Kochkov, P. Norgaard, L. Zepeda-Núñez, J. A. Smith, M. Brenner, S. Hoyer. Learning to correct 
spectral methods for simulating turbulent flows. TMLR 2023.
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Machine Learning by tasks
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Machine learning can be roughly divided into 3 buckets: 

Classification Learning a Partition of a domain Meshing techniques

Regression Learning a Map Approximating functions
Solving ODEs/PDEs
Approximating dynamics

Generation Learning a Distribution Solving SDEs
Sampling from Distributions
Uncertainty quantification

Classical Problems in Numerical Analysis / Computational Maths

Difference: Much Higher Dimension!!
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Scientific Machine Learning
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Focus: High Dimensional problems

Two stage approach: 

Use Numerical Analysis / Computational Maths insight to enhance ML techniques.

Use ML techniques to solve Scientific Problems (high dimensional ones!)
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Learning Dynamics with Machine Learning

P 12

Different approaches 

Physics Driven

Solving PDEs (seen Tuesday)
Learning operators (seen Wednesday)

Data-Driven

Reduced order models (seen Monday)
HyperNetworks + NeRF -> Neural Radiance Fields (this morning!)

https://www.matthewtancik.com/nerf
CEMRACS 23



Learning Dynamics with Machine Learning
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Different approaches 

Physics Driven

Solving PDEs (seen Tuesday)
Learning operators (seen Wednesday)

Data-Driven

Reduced order models (seen Monday)
HyperNetworks + NeRF -> Neural Radiance Fields (this morning!)

https://www.matthewtancik.com/nerf
CEMRACS 23

https://docs.google.com/file/d/19VM_XNUVGorPN6AtoPmUwb9GKbwDMnb5/preview?resourcekey=0-ZmuoVDAiAN4zFey1S6II_A
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Emphasis

● Learn model from data
● Incorporate physics-based inductive 

biases
● Sampling and inference efficiency

Prediction problem

Given present state 

Target future state after

Modeling Complex Time-dependent Systems

[Photo Credits: MeteoBlue, CNBC, MIT News]

Main Assumption

● No “exact” PDE model / solver available
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Setup
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● Time dependent (but unknown) PDE

● Snapshot

● Trajectories

● Objectives: from only trajectory data, 
○ can we learn a compressed/latent representation of a state?
○ can we learn the dynamics?
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Kolmogorov n-widths
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Kolmogorov n-widths
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Kolmogorov n-widths
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Kolmogorov n-widths
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Kolmogorov n-widths
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Kolmogorov n-widths
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Kolmogorov n-widths

P 22Dynamical Weights



Kolmogorov n-widths
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Kolmogorov n-widths and advection-dominated systems
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Kolmogorov n-widths and advection-dominated systems
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NeRF
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https://www.matthewtancik.com/nerf

Using a parametric functional Anzats in the form of a Neural Networks

Evolution of parameters, aka, neural network weights 



Machine Learning Methods: An Active Field
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Hybrid Physics-ML
Mishra, 2018
Bar-Sinai et al., 2019
Kochkov et al., 2021
List et al., 2022
Bruno et al., 2021
Frezat et al., 2022
Dresdner et al., 2022 

Operator Learning
Li et al., 2021
Tran et al., 2021
Fan et al., 2019
Li et al., 2020
Lu et al., 2021

Neural Ansatz
Raissi et al., 2019
Eivazi et al., 2021
E & Yu, 2018
Gao et al., 2022
Zang et al., 2020
de Avila Belbute-Peres et al.,2022
Bruna et al., 2022

Purely Learned Surrogates
Ronneberger et al., 2015
Wang et al., 2020
Sanchez-Gonzalez et al., 2020
Stachenfeld et al., 2022
Ayed et al., 2019
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Machine Learning Methods: An Active Field
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Hybrid Physics-ML
Mishra, 2018
Bar-Sinai et al., 2019
Kochkov et al., 2021
List et al., 2022
Bruno et al., 2021
Frezat et al., 2022
Dresdner et al., 2022 

Operator Learning:
Li et al., 2021
Tran et al., 2021
Fan et al., 2019
Li et al., 2020
Lu et al., 2021

Neural Ansatz
Raissi et al., 2019
Eivazi et al., 2021
E & Yu, 2018
Gao et al., 2022
Zang et al., 2020
de Avila Belbute-Peres et al.,2022
Bruna et al., 2022

Purely Learned Surrogates
Ronneberger et al., 2015
Wang et al., 2020
Sanchez-Gonzalez et al., 2020
Stachenfeld et al., 2022
Ayed et al., 2019

Dynamical Weights
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Machine Learning Methods: An Active Field
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PDE-based Data-driven

Functional Ansatz

Mesh based

PINNs
Neural Galerking

DeepONets

Fourier Neural Operator

Finite Differences/Volumes Graph-based methods

Dynamical Weights

Hybrid Physics-ML

Deep Ritz
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Encode-Process-Decode
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Physical space

Latent space

● Requires an uniform discretization in time
● Needs to go back to the ambient space at each time step
● Usually becomes unstable
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Framework

unknown process 
Physical space

Latent space

encode decode

● Model components fully learned from data
● Continuous in both space and time
● Encode once and rollout for as long as needed
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Framework

● Latent space - weights of a neural network
● Encoder training with smoothness inducing regularization
● Neural ODE model for latent dynamics

unknown process 
Physical space

Latent space

encode decode
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Network Weights as Time-Evolving Latent States

Representation 
Ansatz

Latent space

Physical space

Spatial 
Coordinates Snapshot
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Network Weights as Time-Evolving Latent States

Physical space

Latent space

Representation 
Ansatz

Spatial 
Coordinates Snapshot
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Network Weights as Time-Evolving Latent States

Physical space

Latent space

Representation 
Ansatz

Spatial 
Coordinates Snapshot

● Tailored to the problem
● Slight over-parameterization for better sampling efficiency

Representation Ansatz
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[Cai, Li, Liu]

MLP 
Envelope

Dot Product

● Baked-in periodic 
boundary conditions

● Suitable for a wide class of 
advection-dominated 
systems

Nonlinear Fourier Ansatz

CEMRACS 23

https://epubs.siam.org/doi/abs/10.1137/19M1310050
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Max 
compression

Less 
compressed

● Not pursue the most low-dimensional space and instead go for a better balance 
with dynamics efficiency

● Enforced during encoder training, decoupled from learning the latent dynamics

Representation vs. Dynamics Efficiency
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Solution: train the encoder on the full trajectory

                                                                                                                                      

Encoder Training

Diagram has to commute: following or  should be the same
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Solution: train the encoder on the full trajectory

                                                                                                                                      

Loss Function
snapshot reconstruction

encoding re-encoding

Encoder Training
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Ideal Method
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Solution: train the encoder on the full trajectory

We don’t know the dynamics!
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Latent space trajectories at various regularization strengths:

Helps reducing 
reconstruction error while 
inducing smoothness

Dashed - consistency 
Solid - reconstruction

Colors = different learning rates

Results shown for 
Kuramoto-Sivashinsky (KS) system

Smooth-inducing Regularization
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Learning Latent Dynamics
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Multi-step MSE loss 
(frozen encoder)
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Sample Rollouts (different ICs)

Viscous 
Burgers

(VB)

Kuramoto-S
ivashinsky

(KS)

Korteweg-
De Vries

(KdV)

Relative RMSE vs lead 
time

Log Energy Ratio against 
ground truth

tr
ut

h
pr

ed

Legend

time

space

tr
ut

h
pr

ed
tr

ut
h

pr
ed

[Dissipative]

[Chaotic]

[Wave Dispersion]
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Efficient Inference
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WCT = wall clock time; NFE = number of function evaluations

Solver: pseudo-spectral w/ same resolution; 
NFA: nonlinear Fourier ansatz
NDV: neural decoder variant
NG-Hi/Lo: high/low sampling Neural Galerkin
FNO: Fourier neural  operator
DMD: dynamic mode decomposition

low NFE counts by 
adaptive-step integrator 
because we have smoother 
latent trajectories!
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More Challenging Example: Kolmogorov Flow
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https://docs.google.com/file/d/1RxJYEYDS3XpeR55bLozHfci8JaTtCmLk/preview?resourcekey=0-u_59wUxkOEwkpUvGZcaiqg


Indefinite Stability in Rollouts
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https://docs.google.com/file/d/1chwLNqUvHthiGs47jzoAVGMW4bS83Nkj/preview?resourcekey=0-kwskqn5PKP3krN1s1piXUg
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● Correct physically pertinent ansatz for high-accuracy compression and good sampling 
efficiency

● Smooth latent space trajectories via consistency regularization
● Data-driven learning of the latent-space dynamics that is long-term stable
● Efficient inference from smooth trajectories

Conclusions
More details available in the preprint (arXiv:2301.10391), and

       github repository (https://github.com/google-research/swirl-dynamics)
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Block 2: Generative Modeling
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Classical Sampling Techniques
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Objective:  Sample from a given target distribution 

Main Idea:   Sample from an easy distribution and transform the sample to the target distribution

Classical Methods: Machine Learning Methods

Inverse Transform Sampler Generative Adversarial Networks

Rejection Sampler Variational Autoencoders

Langevin Dynamics Normalizing Flows

Diffusion Models
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Inverse Transformation
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Inverse Transformation
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Inverse Transformation
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Inverse Transformation
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Beyond 1D 

Main Idea:   Throw darts to a canvas 

            Accept the ones inside

Reject the rest

Main Idea:   Draw samples from 

Accept

Reject  

Rejection Sampling
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Langevin Dynamics
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Main Idea: Use an SDE, and look for the steady density. 

Instead of proposal density work directly with the target density  

Noisy version of flow equation

Drift term Noise term
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Langevin Dynamics
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Main Idea: Compute stationary (or steady) measure (depends only on the potential!)
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Euler-Maruyama
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Main Idea: Simplest discretization in time
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Langevin Dynamics Monte Carlo
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Main Idea: Use the Langevin Dynamics as a proposal distribution and add a rejection step.
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Block 3: Diffusion models and 
  Applications to Scientific

       Computing
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Diffusion models
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Main Idea: Sample by introducing noise/denoising

Sample from noise and transform the sample

Why? No access to the score function! Only samples

[Song et al, 2020]

[Saharia et al, 2020]

CEMRACS 23

https://arxiv.org/pdf/2205.11487.pdf


3 Descriptions
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    SDE ODE

PDE

Feynman-Kac Method of characteristics

Probability flow
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3 Different approaches
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There are 3 main approaches that focus on approximating a different quantity (usually via a neural network)

Score functions

Denoiser

Noise from Sample

They are asymptotically equivalent! 
Luo, C. Understanding Diffusion Models: A Unified Perspective, Arxiv 2208.11970
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https://arxiv.org/pdf/2208.11970.pdf
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Application: Climate Downscaling
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Motivation
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Climate models: very coarse resolution     Biases due to the lack of small scale dynamics

Lack the level of granularity for local studies

E.g. Is the likelihood of extreme heat and wildfire in Marseille increasing?

https://carbonplan.org/research/cmip6-downscaling-explainer
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https://carbonplan.org/research/cmip6-downscaling-explainer


Why is it hard?
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Two issues are entangled:

bias

super-resolution

Main difficulty: 

lack of paired data

https://iterative-refinement.github.io/

Solution:

Statistical Downscaling: 

transform data from low-resolution to high-resolution

CEMRACS 23

https://iterative-refinement.github.io/


2-step framework
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Probabilistic framework:

“Conditional sampling from a high-quality prior”.

But map          is unknown

Factorization 👉

Preserves statistical information
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Diffusion model
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Learn a prior           of the high-resolution data.

Why?

High-quality samples

High coverage of the distribution

On-demand sampling from the prior

[Song et al, 2020]

[Saharia et al, 2020]
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https://arxiv.org/pdf/2205.11487.pdf


Diffusion model - conditional sampling

P 68

Two main approaches: train-time conditioning 

inference-time conditioning 

Train a prior unconditionally

Then conditional sampling at inference (example inpainting)

This procedure can be used for super-resolution

[Ho et al. 2021]

[Lugmayr et al. 2021]
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https://arxiv.org/abs/2106.15282
https://arxiv.org/pdf/2201.09865.pdf


Debiasing - Optimal transport
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There is a bias in the samples

super-resolving can only do Fourier extrapolation

https://pythonot.github.io/
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https://pythonot.github.io/


Debiasing - Optimal transport
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How to fix the bias? Compute debiasing map 

https://pythonot.github.io/
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https://pythonot.github.io/


Downscaling = Debiasing         Upsample
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Two sequential steps: Debias 

Upsample

Goal:

Debias

Upsample
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Results
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Data: Kuramoto-Sivashinsky system: simplest chaotic one-dimensional system.

 Kolmogorov flow benchmark of chaotic system
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Results
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Our method

8x

16x

 Input
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Results
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Energy Spectrum: 

The energy at each Fourier mode / wavenumber

Provides a measure of the spatial features (up to translations) in the snapshot   
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Results
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Near perfect 
match to 
ground-truth
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Results: Spectral Energy
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*Zero is a perfect match. Our method has the the smallest error

CEMRACS 23



Results: Spectral Energy
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Results: Variability
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Climate Applications (WIP)
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CESM simulation snapshot



Climate Applications (WIP)
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Unbiased and downscaled snapshot



Conclusion
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New probabilistic framework: 

High-fidelity samples with correct biases

Robust debiasing based on a optimality conditions

One prior rule-them all  We only train one diffusion model

Inference-time conditioning
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