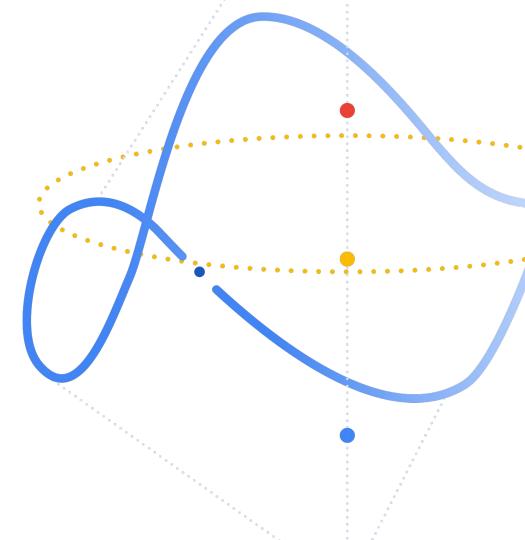


CEMRACS 23 Summer school



Leonardo Zepeda-Núñez, Senior Research Scientist

Scientific Machine Learning

Section description

What is this lecture about

3 Main Objectives:

What is our take on SciML

Provide an introduction to Hyper-Networks and Diffusion Models

Introduce tools adapted to SciML

Outline

1 Block: Perspectives in SciML

Who we are, and what we do

Learning dynamics with HyperNetworks

2 Block Generative Modeling

Classical Sampling Methods

Diffusion Models

3 Block Probabilistic Modeling via Generative Al.

Outline

Computer Lab: Led by Martin Guerra (University of Wisconsin-Madison)

JAX as accelerated numpy and JAX transformations

Langevin Dynamics

Diffusion Models

Block 1: Who we are and what we do

Bio (short)

Non-standard path (very usual nowadays)

Born and raised in the Atacama Desert, Chile Diploma ,*Ecole Polytechnique* X2006, France Master Numerical Analysis and PDEs, *Université de Paris VI* Ph.D. Mathematics, *MIT* Visiting Assistant Professor, *UC Irvine* Postdoc, *Lawrence Berkeley National Lab/UC Berkeley* Assistant Professor of Mathematics, *UW-Madison* Senior Research Scientist, Google Research

Spectral Methods for Navier Stokes Shape Optimization Fast Methods Wave propagation/Inverse problems Quantum Chemistry Scientific Machine Learning SciML for Weather and Climate

Who we are

Zhong Yi Wan

Anudhyan Boral

Leonardo Zepeda-Núñez

Fei Sha

Mission

Foundational technologies that drive **efficient modeling** of large-scale, high-stake, and **computationally intensive** physical systems

What we do

Upstream ML Research

Probabilistic Modelling

- M. A. Finzi, A. Boral, A. G. Wilson, F. Sha, L. Zepeda-Núñez, User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems, ICML 2023
- Z. Y. Wan, R. Baptista, Y. Chen, J. Anderson, A. Boral, F. Sha, L. Zepeda-Núñez. Debias Coarsely, Sample Conditionally: Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models, submitted to NeurIPS 2023

Dynamical Systems

- A. Boral, ZY Wan, L Zepeda-Núñez, J. Lottes, Q. Wang, Y. Chen, J. Anderson, F Sha. Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations, submitted to NeurIPS 2023
- Z. Y. Wan, L. Zepeda-Núñez, A. Boral, F. Sha. Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For Advection-Dominated Systems, ICLR 2023
- G. Dresdner, D. Kochkov, P. Norgaard, L. Zepeda-Núñez, J. A. Smith, M. Brenner, S. Hoyer. Learning to correct spectral methods for simulating turbulent flows. TMLR 2023.

Machine Learning by tasks

Machine learning can be roughly divided into 3 buckets:

Classification

Learning a **Partition** of a domain

Meshing techniques

Regression

Learning a **Map**

Approximating functions Solving ODEs/PDEs Approximating dynamics

Generation

Learning a **Distribution**

Solving SDEs Sampling from Distributions Uncertainty quantification

Classical Problems in Numerical Analysis / Computational Maths

Difference: Much Higher Dimension!!

Scientific Machine Learning

Focus: High Dimensional problems

Two stage approach:

Use Numerical Analysis / Computational Maths insight to enhance ML techniques.

Use ML techniques to solve Scientific Problems (high dimensional ones!)

Learning Dynamics with Machine Learning

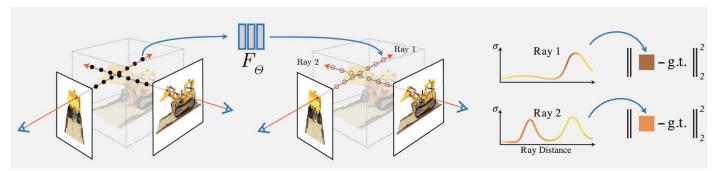
Different approaches

Physics Driven

Solving PDEs (seen Tuesday) Learning operators (seen Wednesday)

Data-Driven

Reduced order models (seen Monday) HyperNetworks + NeRF -> Neural Radiance Fields (this morning!)



https://www.matthewtancik.com/nerf

Learning Dynamics with Machine Learning

Different approaches

Physics Driven

Solving PDEs (seen Tuesday) Learning operators (seen Wednesday)

Data-Driven

Reduced order models (seen Monday) HyperNetworks + NeRF -> Neural Radiance Fields (this morning!)

https://www.matthewtancik.com/nerf

Modeling Complex Time-dependent Systems

[Photo Credits: MeteoBlue, CNBC, MIT News]

Prediction problem

Given	present state	u(x,0)
Target	future state after	u(x,t)

Main Assumption

• No "exact" PDE model / solver available

Emphasis

- Learn model from data
- Incorporate physics-based inductive biases
- Sampling and inference efficiency

Setup

• Time dependent (but unknown) PDE

$$\left\{egin{array}{ll} \partial_t u(x,t)&=\mathcal{F}[u(x,t)],\ u(x,0)&=u_0. \end{array}
ight.$$

$$u(t_i) := u(x,t_i)$$

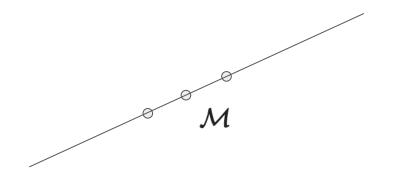
• Trajectories

$$u_0 \sim \mathcal{D} \qquad \qquad [u_0, u(t_1), u(t_2), \dots, u(t_{n-1}), u(T)]$$

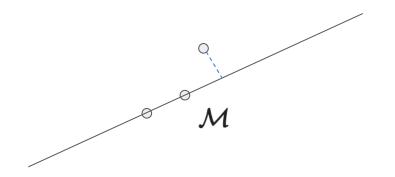
- **Objectives:** from only trajectory data,
 - can we learn a **compressed/latent representation** of a state?
 - can we learn the **dynamics**?

$$d_N(\mathcal{M}) := \inf_{V_N \subset H} \sup_{u \in \mathcal{M}} \inf_{v_N \in V_N} \left\| u - v_N
ight\|$$

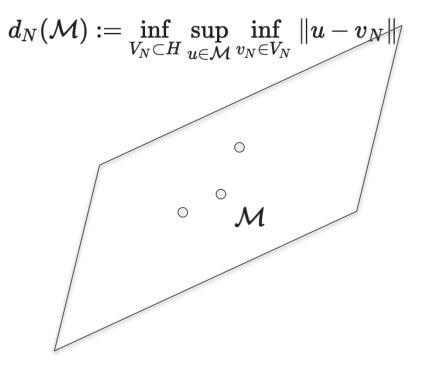
$$d_N(\mathcal{M}) := \inf_{V_N \subset H} \sup_{u \in \mathcal{M}} \inf_{v_N \in V_N} \left\| u - v_N
ight\|$$



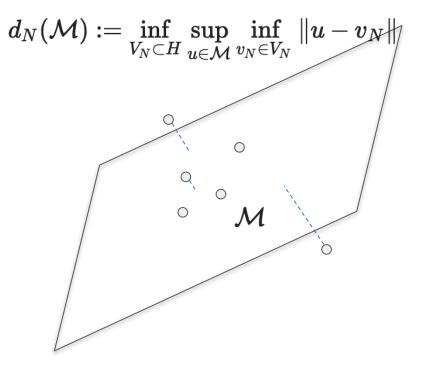
$$d_N(\mathcal{M}) := \inf_{V_N \subset H} \sup_{u \in \mathcal{M}} \inf_{v_N \in V_N} \left\| u - v_N
ight\|$$

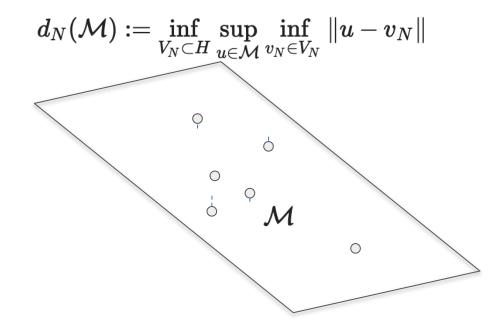


$$d_N(\mathcal{M}) := \inf_{V_N \subset H} \sup_{u \in \mathcal{M}} \inf_{v_N \in V_N} \|u - v_N\|$$



$$d_N(\mathcal{M}) := \inf_{V_N \subset H} \sup_{u \in \mathcal{M}} \inf_{v_N \in V_N} \|u - v_N\|$$





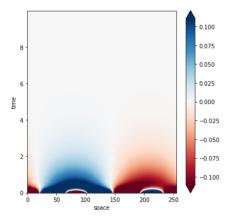
Kolmogorov n-widths and advection-dominated systems

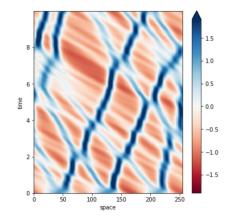
$$d_N(\mathcal{M}) := \inf_{V_N \subset H} \sup_{u \in \mathcal{M}} \inf_{v_N \in V_N} \|u - v_N\|$$

$$\mathcal{M}=[u_0,u(t_1),u(t_2),\ldots,u(t_{n-1}),u(T)]$$

$$\partial_t u = \partial_{xx} u$$

$$\partial_t u = -3 \partial_x (u^2) - \partial_{xxx} u$$





Kolmogorov n-widths and advection-dominated systems

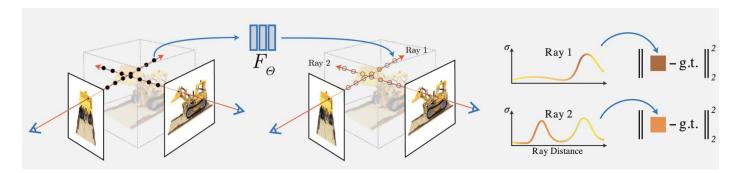
$$d_N(\mathcal{M}) := \inf_{V_N \subset H} \sup_{u \in \mathcal{M}} \inf_{v_N \in V_N} \|u - v_N\|$$

 $\mathcal{M} = [u_0, u(t_1), u(t_2), \dots, u(t_{n-1}), u(T)]$
 $\partial_t u = \partial_{xx} u$ $\partial_t u = -3\partial_x (u^2) - \partial_{xxx} u$

apres -

Using a parametric functional Anzats in the form of a Neural Networks

Evolution of parameters, aka, neural network weights



https://www.matthewtancik.com/nerf

Machine Learning Methods: An Active Field

Hybrid Physics-ML

Mishra, 2018 Bar-Sinai et al., 2019 Kochkov et al., 2021 List et al., 2022 Bruno et al., 2022 Frezat et al., 2022 Dresdner et al., 2022

Neural Ansatz

Raissi et al., 2019 Eivazi et al., 2021 E & Yu, 2018 Gao et al., 2022 Zang et al., 2020 de Avila Belbute-Peres et al.,2022 Bruna et al., 2022

Operator Learning

Li et al., 2021 Tran et al., 2021 Fan et al., 2019 Li et al., 2020 Lu et al., 2021

Purely Learned Surrogates

Ronneberger et al., 2015 Wang et al., 2020 Sanchez-Gonzalez et al., 2020 Stachenfeld et al., 2022 Ayed et al., 2019

Machine Learning Methods: An Active Field

Hybrid Physics-ML

Mishra, 2018 Bar-Sinai et al., 2019 Kochkov et al., 2021 List et al., 2022 Bruno et al., 2022 Frezat et al., 2022 Dresdner et al., 2022

Operator Learning:

Li et al., 2021 Tran et al., 2021 Fan et al., 2019 Li et al., 2020 Lu et al., 2021

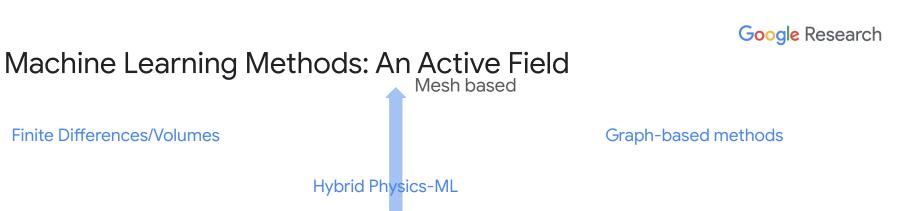
Neural Ansatz

Raissi et al., 2019 Eivazi et al., 2021 E & Yu, 2018 Gao et al., 2022 Zang et al., 2020 de Avila Belbute-Peres et al.,2022 Bruna et al., 2022

Dynamical Weights

Purely Learned Surrogates

Ronneberger et al., 2015 Wang et al., 2020 Sanchez-Gonzalez et al., 2020 Stachenfeld et al., 2022 Ayed et al., 2019



Fourier Neural Operator

Data-driven

DeepONets

Dynamical Weights

Functional Ansatz

Hybrid Physics-ML

PINNs

PDE-based

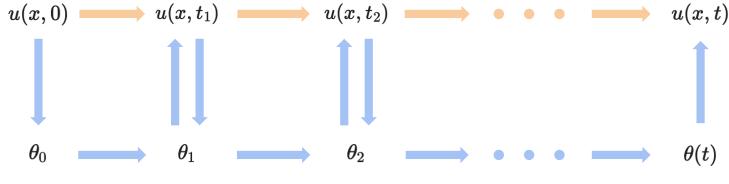
Deep Ritz

Neural Galerking

Finite Differences/Volumes

Encode-Process-Decode

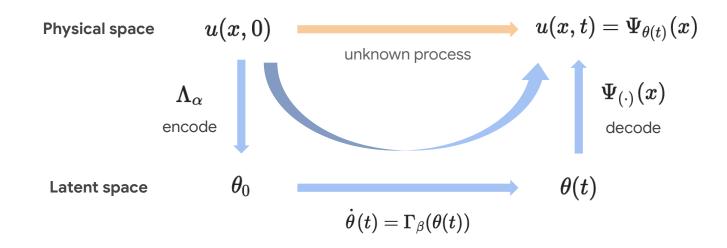
Physical space



Latent space

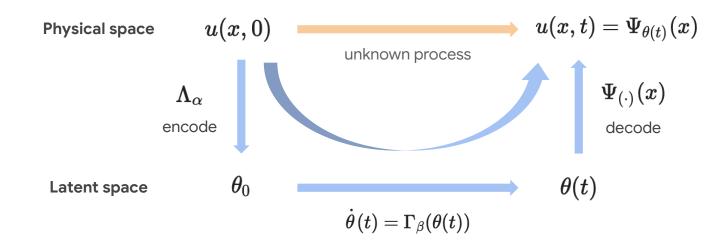
- Requires an uniform discretization in time
- Needs to go back to the ambient space at each time step
- Usually becomes unstable

Framework



- Model components fully learned from data
- Continuous in both space and time
- Encode once and rollout for as long as needed

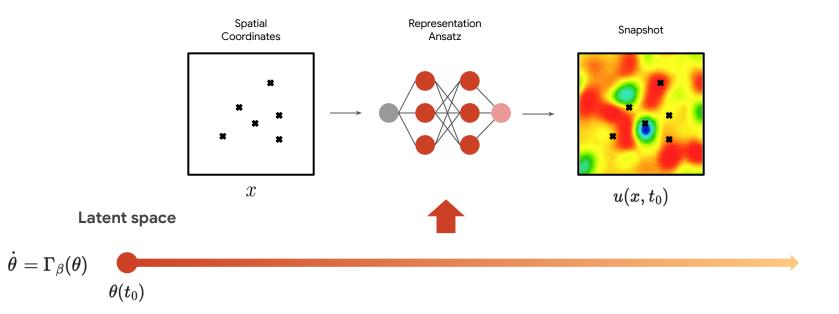
Framework



- Latent space weights of a neural network
- Encoder training with smoothness inducing regularization
- Neural ODE model for latent dynamics

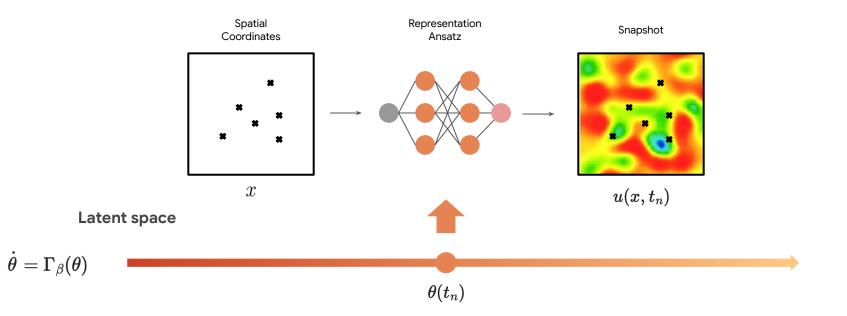
Network Weights as Time-Evolving Latent States

Physical space



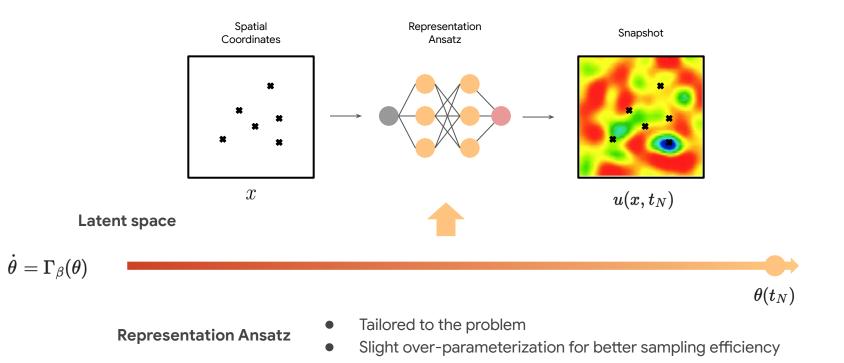
Network Weights as Time-Evolving Latent States

Physical space



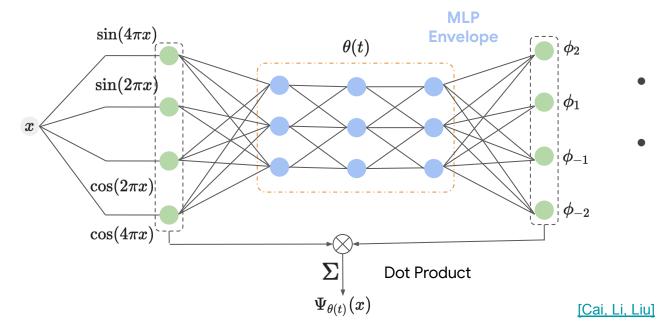
Network Weights as Time-Evolving Latent States

Physical space



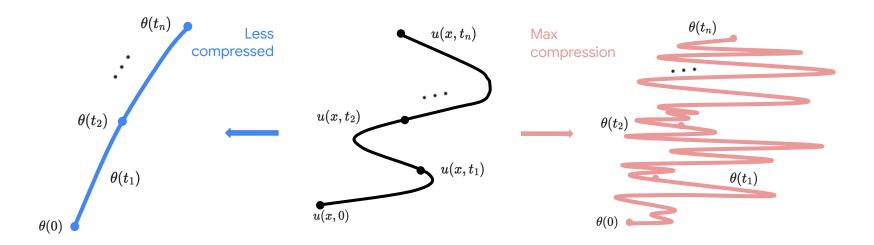
Nonlinear Fourier Ansatz

$$u(x,t) = \Psi_{ heta(t)}(x) = Re\left(\sum_{k=-K}^{K} \phi_k(x; heta(t)) \expigg(rac{2i\pi kx}{L}igg)
ight) \qquad K = \mathcal{O}(1) \qquad (ext{e.g.}=3)$$



- Baked-in periodic boundary conditions
- Suitable for a wide class of advection-dominated systems

Representation vs. Dynamics Efficiency



- Not pursue the most low-dimensional space and instead go for a better balance with dynamics efficiency
- Enforced during encoder training, decoupled from learning the latent dynamics

Encoder Training

Solution: train the encoder on the full trajectory

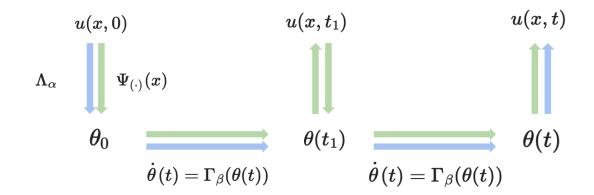


Diagram has to **commute**: following \rightarrow or \rightarrow should be the same

Encoder Training

L

Solution: train the encoder on the full trajectory

$$\mathcal{L}(u) = \mathcal{L}_{ ext{reconstruction}}(u) + \gamma \mathcal{L}_{ ext{consistency}}(\Lambda(u))$$

snapshot reconstruction

oss Function
$$\mathcal{L}_{ ext{reconstruct}}(u) = \|u - \Psi(\Lambda(u))\|^2$$

encoding re-encoding

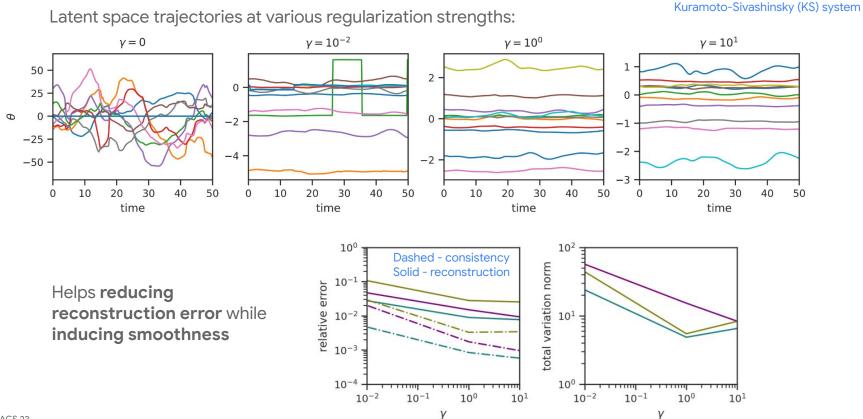
$$\mathcal{L}_{ ext{consistency}}(heta) = \| heta - \Lambda(\Psi(heta))\|^2$$

Ideal Method

Solution: train the encoder on the full trajectory

Results shown for

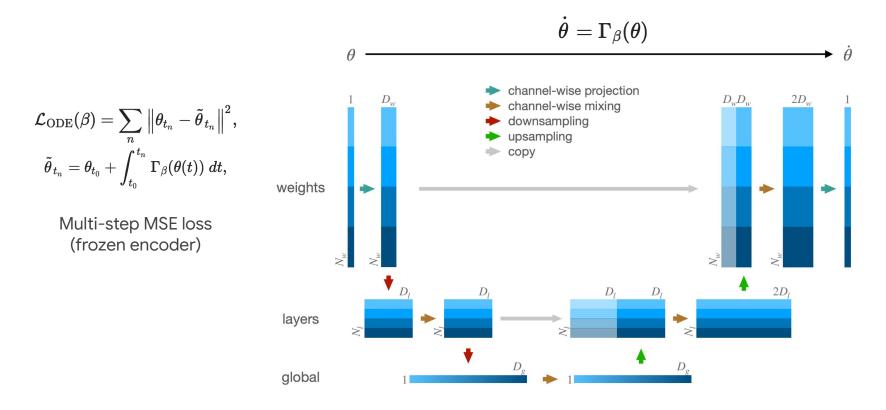
Smooth-inducing Regularization

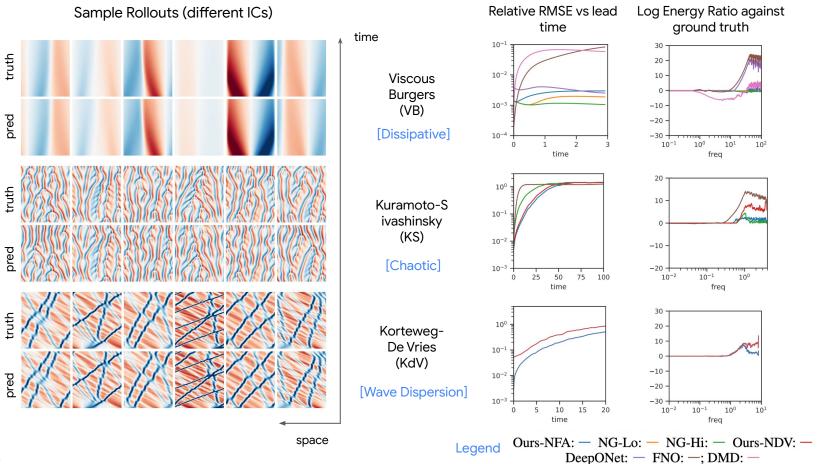


CEMRACS 23

Colors = different learning rates

Learning Latent Dynamics





P 43

Efficient Inference

WCT = wall clock time; NFE = number of function evaluations

	VB				KS				KdV			
	WCT		NFE		WCT		NFE		WCT		NFE	
	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
Solver	8.4	0.5	-	-	5.2	0.3	-	-	1041	13.1	-	-
Ours-NFA	3.8	0.9	16.0	4.1	1.7	2.2	5.3	0.2	52.1	18.4	164.7	40.3
Ours-NDV	-	-	-	-	1.1	0.6	7.1	2.7	18.0	5.4	71.4	19.5
NG-Lo	30.2	8.5	27.5	10.8	167.9	21.4	114.7	13.3	-	-	-	-
NG-Hi	49.6	7.7	27.5	10.8	319.4	33.5	111.7	11.7	35670	29035	11651	9502
FNO	18.1	14.5	100.0	0.0	0.4	0.4	5.0	0.0	-	-	-	-
DMD	2.4	0.4	100.0	0.0	-	-	-	-	-	-	-	-
					0.4		5.0 -	0.0	-	-		

Solver: pseudo-spectral w/ same resolution;

NFA: nonlinear Fourier ansatz

NDV: neural decoder variant

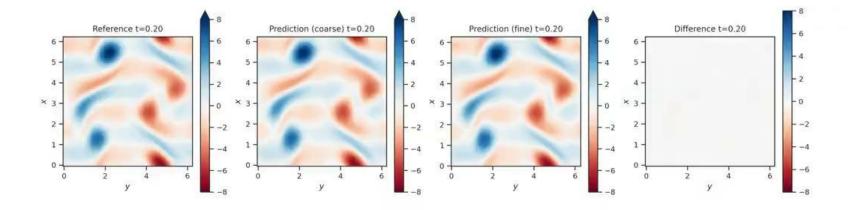
NG-Hi/Lo: high/low sampling Neural Galerkin

FNO: Fourier neural operator

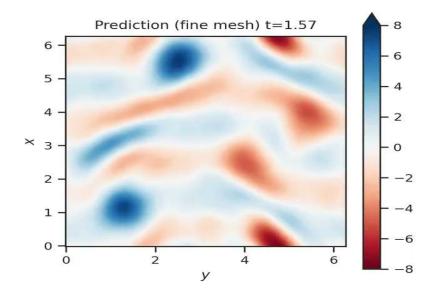
DMD: dynamic mode decomposition

low NFE counts by adaptive-step integrator because we have smoother latent trajectories!

More Challenging Example: Kolmogorov Flow



Indefinite Stability in Rollouts



Conclusions

More details available in the preprint (arXiv:2301.10391), and

github repository (https://github.com/google-research/swirl-dynamics)

- Correct physically pertinent ansatz for high-accuracy compression and good sampling efficiency
- Smooth latent space trajectories via consistency regularization
- Data-driven learning of the latent-space dynamics that is long-term stable
- Efficient inference from smooth trajectories

Block 2: Generative Modeling

Classical Sampling Techniques

Objective: Sample from a given target distribution p(x)

Main Idea: Sample from an easy distribution and transform the sample to the target distribution

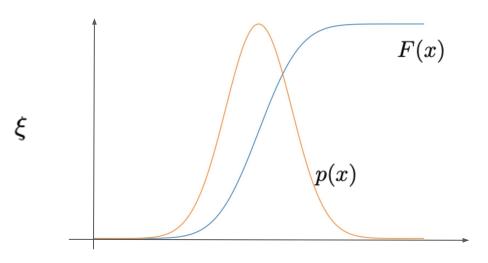
Classical Methods:

Machine Learning Methods

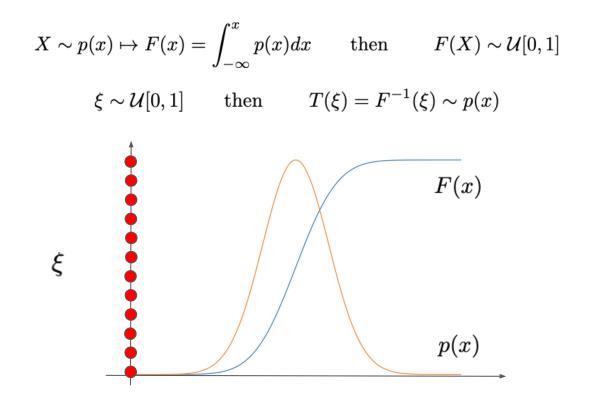
Inverse Transform Sampler Rejection Sampler Langevin Dynamics Generative Adversarial Networks Variational Autoencoders Normalizing Flows Diffusion Models

Inverse Transformation

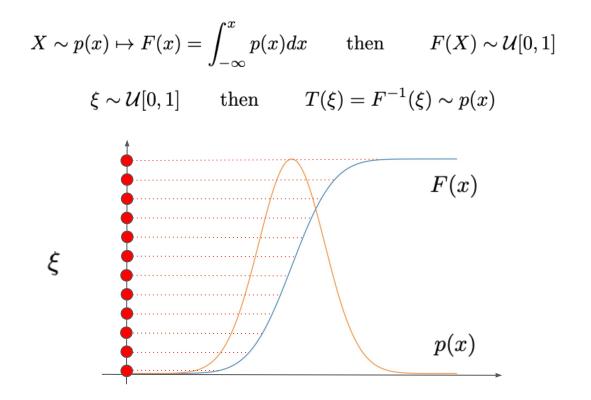
 $X \sim p(x) \mapsto F(x) = \int_{-\infty}^{x} p(x) dx$ then $F(X) \sim \mathcal{U}[0, 1]$ $\xi \sim \mathcal{U}[0, 1]$ then $T(\xi) = F^{-1}(\xi) \sim p(x)$



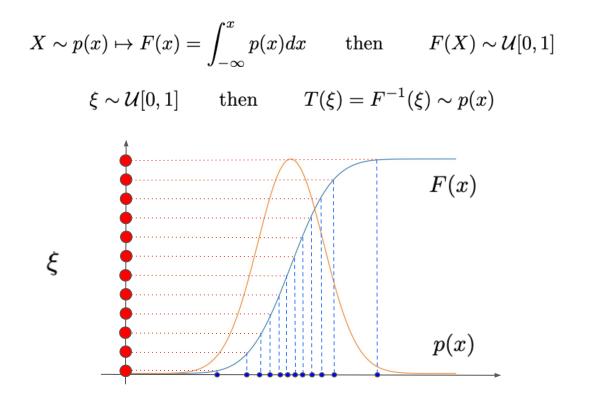
Inverse Transformation



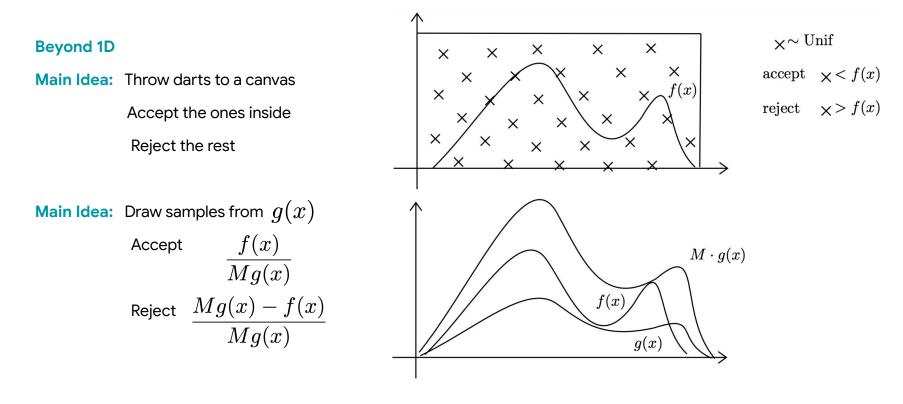
Inverse Transformation



Inverse Transformation



Rejection Sampling



Langevin Dynamics

Main Idea: Use an SDE, and look for the steady density.

Instead of proposal density work directly with the target density

$$dX_t = -\underbrace{\nabla V(X_t)dt}_{} + \underbrace{\sqrt{2}dW_t}_{}$$

Drift term

Noise term

Noisy version of flow equation

$$\dot{x} = -\nabla V(x)$$

Langevin Dynamics

Main Idea: Compute stationary (or steady) measure (depends only on the potential!)

 $X_t \sim p(x, t)$ $p(x, t) \to p_{\infty}(x) \quad \text{as} \quad t \to \infty$

Euler-Maruyama

Main Idea: Simplest discretization in time

$$dX_t = \nabla \log p(X)dt + \sqrt{2}dW_t$$

$$\downarrow$$

$$X_{n+1} = X_n + \nabla \log p(X_n)\Delta t + \sqrt{2}\Delta t\xi_n$$

$$\xi_n \sim \mathcal{N}(0, 1)$$

Langevin Dynamics Monte Carlo

Main Idea: Use the Langevin Dynamics as a proposal distribution and add a rejection step.

$$\begin{split} \tilde{X}_{n+1} &= X_n + \nabla \log p(X_n) \Delta t + \sqrt{2\Delta t} \xi_n \\ \alpha &= \min \left\{ 1, \frac{p(\tilde{X}_{n+1})q(X_n|\tilde{X}_{n+1})}{p(X_n)q(\tilde{X}_{n+1}|X_n)} \right\} \qquad q(x'|x) = \exp \left(-\frac{1}{4\Delta} \|x' - x - \Delta t \nabla \log p(x)\|^2 \right) \\ X_{n+1} &= \left\{ \begin{array}{cc} \tilde{X}_{n+1}, & \text{if } U < \alpha, \\ X_n, & \text{if } U \ge \alpha. \end{array} \right. \qquad U \sim \mathcal{U}(0,1) \end{split}$$

Block 3: Diffusion models and Applications to Scientific Computing

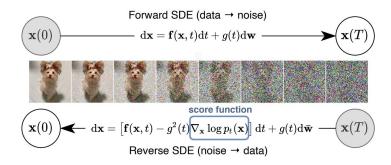
Diffusion models

Main Idea: Sample by introducing noise/denoising Sample from noise and transform the sample

Why? No access to the score function! Only samples

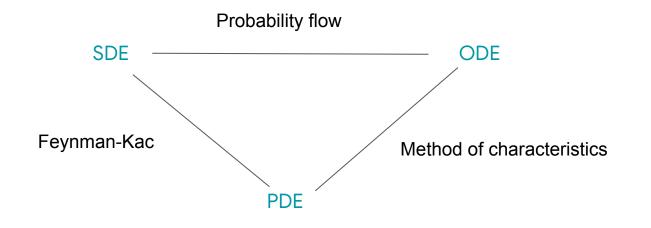
A cute corgi lives in a house made out of sushi

[Saharia et al, 2020]



[Song et al, 2020]

3 Descriptions



3 Different approaches

There are 3 main approaches that focus on approximating a different quantity (usually via a neural network)

Score functions
$$abla_x \log p_t(x)$$
Denoiser $D(x,\sigma) o x_0, \qquad x = x_0 + \epsilon_\sigma$ Noise from Sample $\varepsilon(x,\sigma), \qquad \frac{x - \varepsilon(x,\sigma)}{\sigma^2} = x_0$

They are asymptotically equivalent!

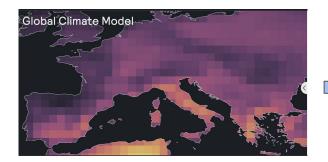
Luo, C. Understanding Diffusion Models: A Unified Perspective, Arxiv 2208.11970

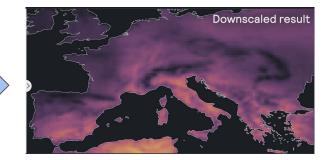
Application: Climate Downscaling

Motivation

Climate models: very coarse resolution \implies Biases due to the **lack of small** scale dynamics **Lack** the level of **granularity** for local studies

E.g. Is the likelihood of extreme heat and wildfire in Marseille increasing?





Why is it hard?

Solution:

Statistical Downscaling:

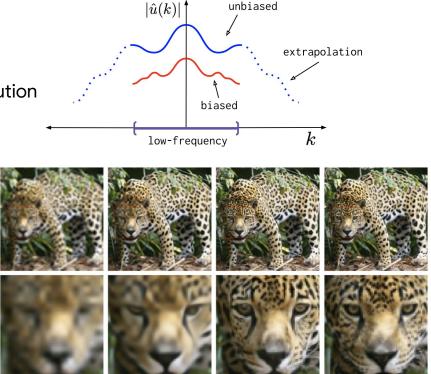
transform data from low-resolution to high-resolution

Two issues are entangled: bias

super-resolution

Main difficulty:

lack of paired data



unbiased

2-step framework

Probabilistic framework:

"Conditional sampling from a high-quality prior".

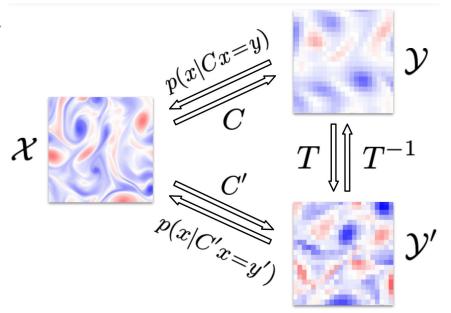
$$p(x|Cx=y)$$

But map C is **unknown**

Factorization
$$\leftarrow C = T^{-1} \circ C'$$

Preserves statistical information

$$(T^{-1} \circ C')_{\sharp} \mu_X = \mu_Y$$



Diffusion model

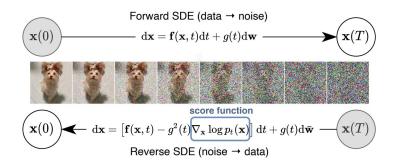
Learn a prior p(x) of the high-resolution data. Why?

> **High-quality** samples High **coverage** of the distribution

On-demand sampling from the prior

A cute corgi lives in a house made out of sushi

[Saharia et al, 2020]



[Song et al, 2020]

Diffusion model - conditional sampling

Two main approaches: train-time conditioning

inference-time conditioning



[Lugmayr et al. 2021]

Train a prior unconditionally p(x)

Then conditional sampling at inference (example inpainting)

p(x|C'x=y)

This procedure can be used for super-resolution

64x64

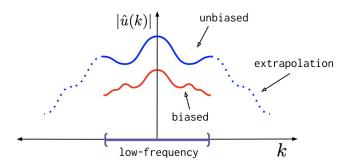
256x256

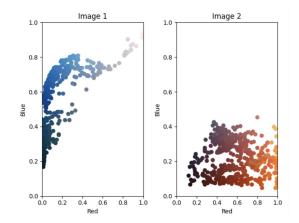
[Ho et al. 2021]

Debiasing - Optimal transport

There is a **bias** in the samples

super-resolving can only do Fourier extrapolation

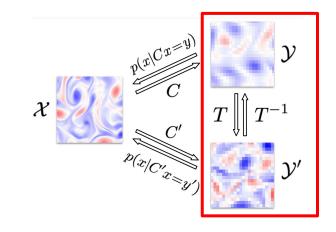




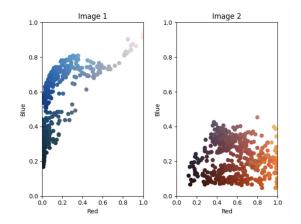
https://pythonot.github.io/

Debiasing - Optimal transport

How to fix the bias? Compute debiasing map



$$\min_{T} \left\{ \int c(y, T(y)) d\mu_{Y}(y) : T_{\sharp} \mu_{Y} = C_{\sharp}' \mu_{X} \right\}$$



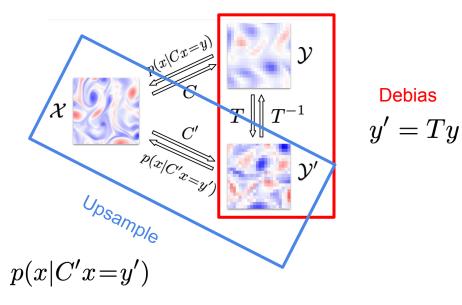
https://pythonot.github.io/

Downscaling = Debiasing \implies Upsample

Two sequential steps: Debias

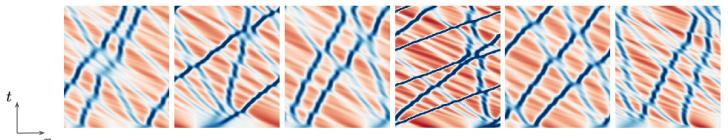
Upsample

Goal: p(x|Cx=y)

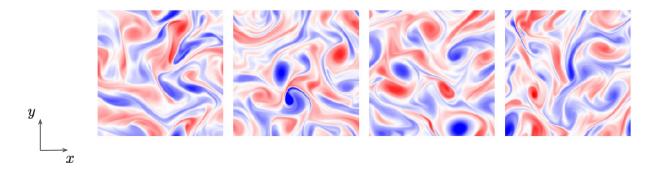


Results

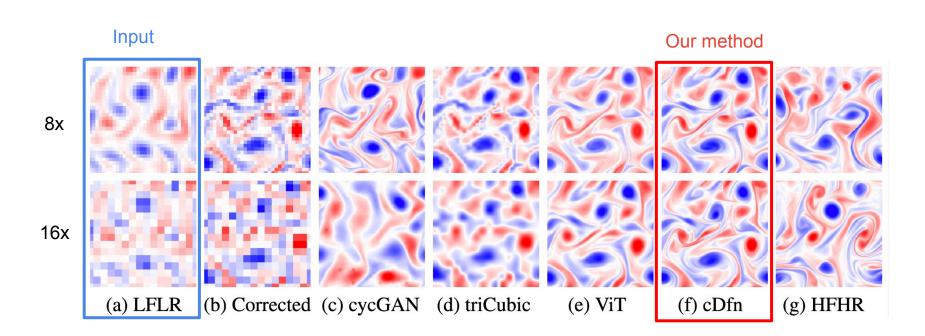
Data: Kuramoto-Sivashinsky system: simplest chaotic one-dimensional system.



xKolmogorov flow benchmark of chaotic system



Results



Results

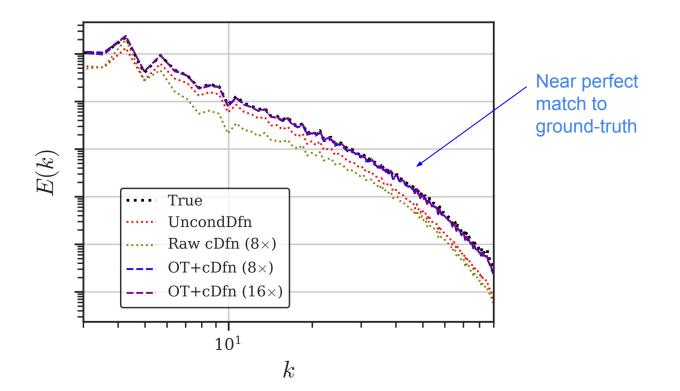
Energy Spectrum:

The **energy** at each Fourier mode / wavenumber

Provides a measure of the spatial features (up to translations) in the snapshot

$$E(k) = \sum_{|\underline{k}|=k} |\hat{u}(\underline{k})|^2 = \sum_{|\underline{k}|=k} \left| \sum_{i} u(x_i) \exp(-j2\pi \underline{k} \cdot x_i/L) \right|^2$$

Results



Results: Spectral Energy

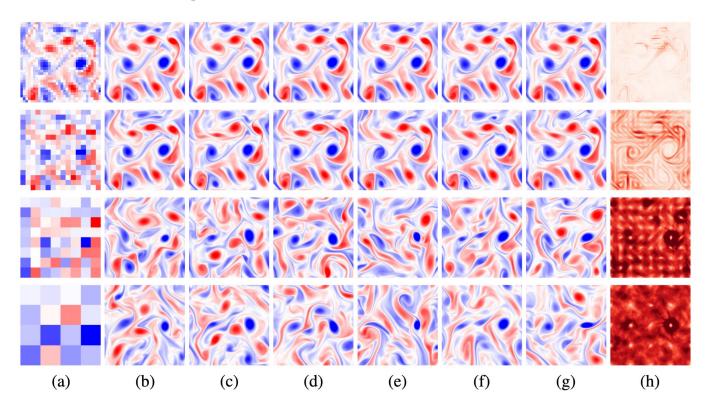


Our method has the the smallest error

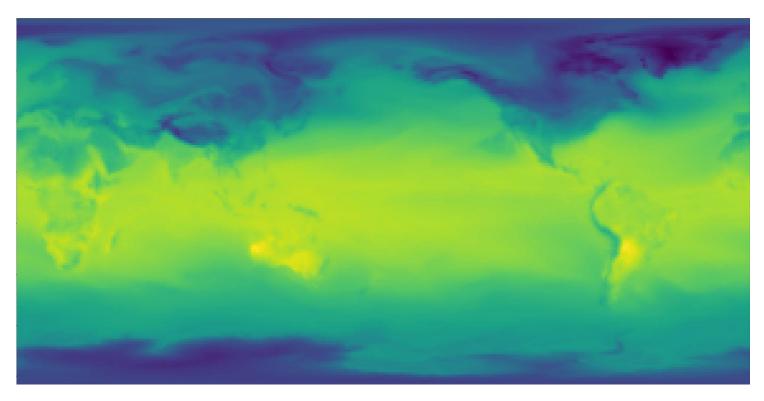
Results: Spectral Energy

	NS 8× downsample				NS 16× downsample					
Metric	cyc	Raw	OT+	OT+	OT+	сус	Raw	OT+	OT+	OT+
	GAN	cDfn	triCub	ViT	cDfn	GAN	cDfn	triCub	ViT	cDfn
Constraint RMSE ↓	-	0.001	0	1.52	0.001	-	0.001	0	0.72	0.001
Sample Variability ↑	0	0.27	0	0	0.36	0	1.07	0	0	1.56
MELR (unweighted) \downarrow	0.08	0.79	0.52	0.38	0.06	1.14	0.54	0.55	1.38	0.05
MELR (weighted) \downarrow	0.05	0.37	0.06	0.18	0.02	0.28	0.30	0.13	0.09	0.02
KDE-KLD↓	1.62	73.16	1.46	1.72	1.40	2.05	93.87	7.30	1.67	0.83

Results: Variability

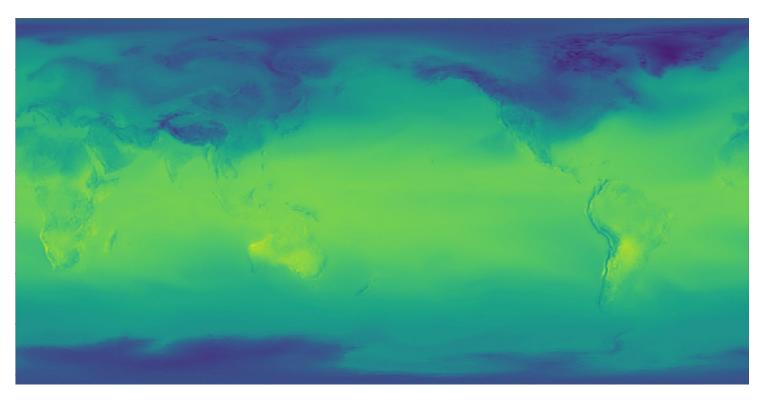


Climate Applications (WIP)



CESM simulation snapshot

Climate Applications (WIP)



Unbiased and downscaled snapshot

Conclusion

New probabilistic framework:

High-fidelity samples with correct biasesRobust debiasing based on a optimality conditionsOne prior rule-them allWe only train one diffusion modelInference-time conditioning