Title: Embedded machine learning models for the near well region within a conventional physics-based reservoir simulator.

Contact: Tor Harald Sandve
Institution or company: NORCE
Email: tosa@norceresearch.no
Phone number: +4741106542

1. Context
 Define the scientific and technological context with a brief state of the art.

Advanced methods for data-driven modeling are becoming more important in porous media research, from data processing to numerical modeling. Recent advances include machine learning aided data analysis, machine-learning enhanced numerical methods, as well as hybrid modeling, to mention a few. For instance, the next generation of reservoir simulators will to an increasing degree couple conventional flow models with models that represent complementary physics or different spatial resolution (regional or near-well models). At the same time, today’s physics-based models will be supplemented with data-driven models. Combining data-driven models and physics-based models requires improved mathematical understanding and new numerical methods that are fast and robust for combined models.

2. Description and objectives
 Describe the proposed mini-project and state the foreseen results, if possible, with quantitative metrics.

This mini-project aims at providing prototypes where trained machine learning models are efficiently embedded as modules/components in existing simulation frameworks using traditional physics-based models, e.g., Dune or OPM. (dune-project.org, opm-project.org). The application will be to model the impact of fluctuating injection on reservoir performance. The aim is to provide a prototype reservoir simulator where impact of the near well region is modeled efficiently using a trained machine learning model.

3. Proposed methodology
 Describe the proposed methodology for the realization of the mini project.

In reservoir models the well is traditionally modeled using a Peaceman model were the well flow into the reservoir \(q_w \) is proportional to the difference of the cell and well pressure:

\[
q_w = -C (P_c - P_w).
\]

The proportionality factor \(C \) depends on both fluid and rock properties and the grid size. For single phase flow, from a single well in a homogenous Cartesian cell, the \(C \) factor can be derived exactly from analytical solutions for steady state solutions [1]. For the application we are considering with rapid fluctuating injection these conditions are never strictly satisfied, and we thus aim at replacing the factor \(C \) in (1) with a trained machine learning model. We will use a refined grid for the near well region to generate the data for the training and replace the \(C \) factor with the trained network in the reservoir simulator and compare it with a full refined solution for the whole reservoir. The machine learning based model should provide efficient solutions that are faster than the classical physics-based simulators on a refined grid. Different machine learning algorithms such as Neural Networks [2], Linear/Logistics Regression or...
Random Forest [3] are planned to be investigated in the course of the project. The implementation will be based on Tensorflow[4] or Pytorch [5] depending on the student's level of knowledge of such frameworks.

4. Software requirements
List the required software for implementing the mini project.

Dune and OPM. (dune-project.org, opm-project.org).
Programming language: Python
Dataset with relevant initial and boundary conditions for the near-well region and the reservoir.

5. References

