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1. Context 
 

Neural networks are increasingly used in the context of scientific computing. Indeed, once trained, 
they can approximate highly complex, non-linear, and high dimensional functions for dramatically 
less time than traditional simulation codes based on finite-differences methods. However, unlike 
traditional simulation, whose error can be controlled, neural networks are statistical, data-driven 
models, so no approximation error guarantee can be naturally provided. This limitation prevents 
neural networks from being safely used on par with finite elements-based simulation codes in 
scientific computing. 
 
Several deep-learning applications, such as adversarial robustness [5] or optimal transport [6], have 
recently stimulated research about the construction of 1-Lipschitz neural networks [1,2]. The rigid 
constraints imposed to enforce the 1-Lipschitz property lead to networks of remarkable regularity, 
and the knowledge of their Lipschitz constant enable certificates for perturbation robustness [2,5]. 
These characteristics of 1-Lipschitz networks (regularity and certifiability) make them particularly 
appealing for applications in scientific computing. 
 
At DEEL, a research lab that is part of ANITI and IRT Saint Exupery, an important line of research is 
focused on 1-Lipschitz networks and their application to vision tasks [2,5,7,8]. This project aims to 
study these networks for approximating numerical solutions of PDEs, intensively used at the CEA. 
 

2. Description and objectives 
 
This project aims to study 1-Lipschitz networks for function approximation with an emphasis on the 
analysis of their benefits in terms of regularity and error control. The project's first objective is to 
study and improve their capacity to approximate complex functions that are solutions to PDEs. The 
second objective is to theoretically derive generalization bounds based on the Lipschitz property of 
the neural networks and to verify them empirically. Ultimately, the question that the project is 
intended to help answer is “are 1-Lipschitz networks capable of accurately approximating PDE 
solutions together with providing relevant error guarantees?”. A positive answer to this question 
would further unlock the use of Deep Learning in Scientific Computing.  
 

3. Proposed methodology 
 

The methodologies designed during the project will be empirically evaluated on regression of 
numerical solutions of simple PDE resolution problems. 
 

1) Due to constraints imposed during training and the value of their Lipschitz constant, 1-
Lipschitz networks are known to be less expressive than unconstrained networks. Therefore, 
the project's first step will be to obtain a decent approximation error with Lipschitz networks. 
Several ways can be suggested. 

 



• To make the network >1 Lipschitz: 
o Removing the 1-Lipschitz constraint in the last linear layer of the neural network. 
o Multiplying the output of the network component-wise by a trainable vector.  
o Multiplying the output of the network component-wise by a vector which is the 

output of an auxiliary neural network. 
 

• To make the network more accurate/expressive: 
o Add a Physics-Informed regularization term [3] in the loss of the network. 
o Construct 1-Lipschitz Neural Operator [4,9]. 
o Find applications where the Lipschitz constraint of the neural network can be 

seen as an implicit bias. 
 

2) Then, the regularity of the obtained neural networks will be empirically and theoretically 
assessed: 

 
• Theoretically: Construction of a generalization bound on max error based on the 

maximum variation (according to the Lip constant) of the neural network between points 
of the training set, under hypotheses on the function to approximate. This part is 
theoretical and open-ended, but several lines are possible, ranging from a simple bound 
in 1-2 dimensions from a regular grid that can be derived easily to more complex bounds 
in N dimensions (exploratory, but some ideas will be presented to the participants). 

• Empirically: Evaluation of max error with an intensive sampling of the input space. 
Validation of the theoretical bound and comparison with a regular neural network. 

 
The time spent on the project can be divided between 1) and 2) according to the participant’s 
preferences and progression. 
 

3) Software requirements 
 

The project will be conducted in Python. Required packages are (not exhaustive and definitive list): 
 
py-pde (zwicker-group/py-pde: Python package for solving partial differential equations using finite 
differences. (github.com)): A python package to simulate solutions of simple PDEs. 
PDEBench (pdebench/PDEBench: PDEBench: An Extensive Benchmark for Scientific Machine Learning 
(github.com)) 
deel-lip (deel-ai/deel-lip: Tensorflow 2 implementation of k-Lipschitz layers. (github.com)): A python 
package, based on tensorflow, to construct 1-Lipschitz networks. A Pytorch version is available (but 
less mature) at deel-ai/deel-torchlip (github.com) 
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