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Regression Analysis in Interpretable Machine Learning

Definition
The relationship between a set of independent variables X (inputs)
and a dependent variable Y (output):

y = f ∗(x , θ∗) + ϵ Rd → R

Main Objective (in most regression problems)

Achieving a good fit between inputs and output, regardless of the
form the mapping function assumes!

But! At times, we desire to represent f ∗ with a mathematical
expression, ideally a “simple” one to enhance interpretability.
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Approaches to Function Discovery

At times, f ∗ is straightforward to
determine due to its pre-specified

model structure: e.g., linear,
polynomial, etc. · · ·

However, sometimes the solution
space is either unknown in

advance or vast, leading to the
need for “symbolic regression”.
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Symbolic Regression (SR)

Main idea:

Inferring the best-fitting model (both structure and parameters)
from a dataset in terms of both “accuracy” and “simplicity”
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Symbolic Regression Methods

• Eureqa - Genetic Programming method family
• AIFeynman - Divide and Conquer method family
• Bayesian Symbolic Regression (BSR) - Markov Chain Monte

Carlo method family
• Sparse Identification of Nonlinear Dynamics (SINDy)
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SINDy Method

fθ(x) =
M∑
j=1

θj fj(x) ∀j , fj ∈ F

F : space of expressions, also called
“function dictionary”.

F ={x0, x1, x2, x3, . . . ,

sin(x), sin(x2), . . . , ex}

Central Assumption: Only a select few
important fi that govern the problem, implying:

f (x) is sparse in the space of expressions
⇒ for most j : θj = 0
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SINDy Model Optimization

Regression Component

min
θ

N∑
i=1

∥yi − fθ(xi )∥22

Representational Sparsity Component

Lasso L1 norm penalty (on the representation):

λ

M∑
j=1

|θj | λ ∈ [0,∞]

Clément Flint, Louis Fostier, Reyhaneh Hashemi CEMRACS 2023

Nested Neural SINDy Approach 10 / 40



Introduction SINDy Approach Nested SINDy Application to ODE discovery Conclusion References

Sparsity mechanism by L1

L1(w) =
d(L1(w))

dw
= sign(w) = (

w1

|w1|
,
w2

|w2|
,
w3

|w3|
, · · · , wM

|wM |
)

-1

1

L1(w) dL1(w)/dw

Weight Update Rule:

w1 ← w1 − α
dL1(w)

dw
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Advantages of the SINDy Approach

• Straightforward implementation
• Compact solutions due to sparsity loss
• Simultaneous optimization of representation and form via

gradient descent
• Strong generalization ability

Figure 1: Generalization ability in the SINDy method Sahoo, Lampert,
and Martius 2018
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Limitations

Known cases where the SINDy approach is expected to struggle:

• When the unknown function involves function composition.
• When the unknown function is a product of multiple functions.

Example:

damped harmonic oscillator:
exp−αt(A cos(ωt + ϕ) + B sin(ωt + ϕ))
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Introduction to Nested SINDy
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...

sin(x)

cos(x)
...

atan(x)

exp(x)

Duplication Radial layer Linear layer

Figure 2: Base SINDy structure. Different layers can be added before
and after the radial layer.

• SINDy models can be extended by increasing the number of
layers.
• We can add various layers before and after the radial layer.
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Justifications for Nested SINDy

The use of a nested structure has two main goals:
• Expressivity: Nested structures can capture complex function

compositions.
• Flexibility: The number of blocks can be varied to adapt to

different complexities.
However, the nested structure introduces new challenges:
• Computational complexity: The number of parameters

increases with the number of blocks.
• Learning: The model is more likely to encounter local

minima, as the presence of nonlinear functions across multiple
layers complicates the optimization landscape.

We will present two models that extend SINDy to achieve greater
representative potential.
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The PR Block
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x1

x2

x3

...

sin(x)

cos(x)
...

atan(x)

exp(x)

Figure 3: Structure of the PR model.

First model: the PR model (Polynomial - Linear - Radial - Linear
layers):
• A polynomial layer, that creates multiple monomials from the

input.
• A linear layer that combines them into a polynomial for each

nonlinear function.
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Structure of the PR Block

• The PR block is designed to extend the capabilities of the
SINDy model.
• It is represented (in 1D) by:

fθ(x) =
l∑

j=1

cj fj

(
d∑

i=1

ωi ,jx
i + bj

)
+ B

• The trainable parameters are θ = {cj , ωi ,j , bj ,B}.
• The fj are functions from the dictionary F .
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PR Block: Advantages and Challenges

• Advantage: Expressivity - The PR block can express a
composition of polynomials and functions from the dictionary.
This reduce the number of necessary functions in the
dictionary.
• Challenge: Local Minima - Classical problem in symbolic

regression. Introducing a new nonlinear layer increases the
likelihood of encountering local minima.
• Solutions:

• Adjust the Lasso coefficient during the simulation.
• Add a Brownian motion on the weight gradients in the learning

process, at each epoch.
• Reduce the model’s parameter count (dictionary size, pruning,

etc.).
• Run several learning processes
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PR Block: Example

Objective: Learn the function f (x) = cos(x2) on the domain [0, 3]

• SINDy Limitations: Cannot learn cos(x2) unless it is
explicitly in the dictionary.
• PR’s Strength: Capable of learning compositions, such as x2

with cos(x).

Learnt function (after training):

−0.985 cos(1.0x2 + 3.13)

Achieves close approximation to cos(x2). Only 3 out of 29
parameters are non-zero.
Sparsity: ✓
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Evolution of the Learnt Model over Epochs
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The PRP Block

An advanced model: the PRP model (Polynomial - Linear - Radial -
Linear - Polynomial - Linear layers).

The PRP block is an extension of the PR model where:
• After the radial layer, we introduce another polynomial layer.
• This additional polynomial layer combines the results of the

radial layer into different polynomial combinations.
The PRP model offers significantly improved expressivity.

Clément Flint, Louis Fostier, Reyhaneh Hashemi CEMRACS 2023

Nested Neural SINDy Approach 22 / 40



Introduction SINDy Approach Nested SINDy Application to ODE discovery Conclusion References

Advantages and Challenges of the PRP Block

• Advantage: Enhanced Expressivity - The PRP block can
represent more complex functions. In particular, a product of
dictionary functions can now be expressed.
• Challenge: Finding True Formula - While the expressivity is

high, the true formula is rarely identified.
• Performance: Even when the true formula is not identified,

the PRP model typically demonstrate low Mean Squared Error
(MSE).
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Objective: Learn the function f (X ) = 2 sin(x0) cos(x1)
on the domain [−2, 2]2

• Impossible with SINDy - With a 2-dimensional input, SINDy
cannot express the required x0 and x1 combination.

• Product of Dictionary Functions - PRP can theoretically
express a product of two functions.

Learnt Function:

− 0.77
(
1− 0.612 sin

(
0.032x2

0 − 0.162x0x1 + 0.998x0 + 0.035x2
1 − x1 − 0.14

))2
+ 2.01 (cos (0.039x0x1 − 0.499x0 − 0.497x1 + 0.809))2

Sparsity: 14 non-zero coefficients from the original 32 parameters.

Not the exact function, but a close approximation over the domain.
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PRP Block: Example

Objective: Learn the function f (x) = 2 sin(x0) cos(x1)

Figure 4: True Function Figure 5: Model Prediction
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Conclusion on the PRP Block

The PRP block:
• offers a promising approach for capturing complex function

compositions
• balances between accurate function discovery and error

minimization: it rarely captures the true formula
• can lead to sparser representations than classical regression

approaches
Future work could focus on strategies to control the balance
between sparsity and accuracy.
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Conclusion on Nested SINDy

• Strengths:
• Excels at capturing polynomial behaviors.
• Effectively captures functions of the dictionary.

• Challenges:
• More complex learning landscape.
• Less guarantee of retrieving the true formula.

• In practice, adding one composition with polynomials does not
prevent a proper learning (while greatly improving the
expressivity).

In the next section, we will explore the application of Nested SINDy
in ODE discovery.
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Neural NestedSINDy for modeling dynamical systems

Introduced by Lee, Trask, and Stinis 2021 for Neural SINDy
Data:

Time (t)

Solution
Space

x(l)
t=0

x(l)
t=1

x(l)
t=n

x(l)
t=N

x(1)
t=0

x(1)
t=1

x(1)
t=n

x(1)
t=N

x(2)
t=0

x(2)
t=1

x(2)
t=n

x(2)
t=N

Aim: Discover the unknown
ODE x ′(t) = f (x(t)) (i.e.
recover f ), from observed
trajectories of this system.
How: By approaching the
observed dynamics by the
following dynamical system:

x ′Θ(t) = fΘ(x(t))

where fΘ is a NestedSINDy NN,
parameterized by Θ.
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Neural NestedSINDy

Loss function:

L(Θ) =
1

ntraj

ntraj∑
l=1

Nt∑
i=1

∥∥∥x (l)Θ (ti )− x
(l)
data(ti )

∥∥∥
2
+ λlasso ∥Θ∥1

where
(
x
(l)
Θ (ti )

)
i≥1

= ODEsolver
(
x
(l)
data(t0), fθ

)
(Euler,

RK2,dopri5,...)
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Neural SINDy - Training

Lee, Trask, and Stinis 2021 Batch:

Time (t)

Solution
Space

x(1)
t=0

x(1)
t=N

t=0 t=N

One Time Batch for Trajectory 1
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First experiments

We performed some experiments, with "convenient" data, i.e. with
dense, noise-free, data, for many trajectories, and with uniform
time discretization along trajectories (however, the method is
expected to be robust, as for the nSINDy presented in Lee, Trask,
and Stinis 2021)

We tried to recover the dynamic of the following dynamic systems:
• An "easy" ODE (no composition) x ′ = sin(x)

• A "not so easy" ODE (composition) x ′ = sin(x2)
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x ′ = sin(x)

Data: 200 trajectories, 1000
sample points per trajectory

Neural network : PR
"Output space" :

fΘ(x) = sin(P1(x)) + P2(x),
P1 of degree 2, P2 of degree 4

Results: Formula found without
pruning : −0.001x2 + 0.005x +
0.991sin(1.000x − 0.002) + 0.004
(see animation)
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x ′ = sin(x2)

Data: 100 trajectories, 1000
sample points per trajectory

We do not recover sin(x2), but the
dynamics is well approximated for
initial data in [0,

√
π]. fΘ(x) =

−0.393x2+0.291x+1.19sin(−0.983x2+

0.942x + 1.36) + 1.04arctan(0.836x2 +

0.304x − 0.935)− 0.406

Results:
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Conclusion

• Showcased the capabilities of Nested Neural SINDy for
equation discovery.
• Future directions:

• Refinement of hyperparameters such as learning rate,
optimizer, and Lasso coefficient.

• Exploration of SINDY-specific parameters:
• Selection from a set of functions.
• Decision-making on the choice of specific models.
• Potential integration with predictive models for better

parameter tuning.
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Perspectives - numerical diffusion

Scalar conservation laws:

∂tu + ∂x f (u) = 0

Finite volume scheme: un+1
i = uni −

∆t
∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
with Fi+ 1

2
= f (ui )+f (ui+1)

2 − D(uni , u
n
i+1) , D numerical diffusion

Example for the Upwind scheme with f (u) = cu:
D(uni , u

n
i+1) =

c
2

(
uni+1 − uni

)
The upwind scheme discretization is also the discretization of the
following convection-diffusion equation:

∂tu + ∂x(cu)−
c∆x

2
∂xxu = 0
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Perspectives - numerical diffusion

Goal: Find a interpretable diffusion term D that minimizes the
error of the scheme, i.e.

∑N
n=1 ∥ (uni )i − (u(tn, xi )i ∥
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Thank You
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