Nested Neural SINDy Approach
Discovering Equations and Numerical Methods

Clément Flint, Louis Fostier, Reyhaneh Hashemi
CEMRACS 2023

Supervisors: Victor Michel-Dansac, Emmanuel Franck, Camilla Fiorini, Wassim Tenachi

August, 2023
1 Introduction

2 SINDy Approach

3 Nested SINDy

4 Application to ODE discovery

5 Conclusion
Introduction

SINDy Approach

Nested SINDy

Application to ODE discovery

Conclusion

References

1 Introduction

2 SINDy Approach

3 Nested SINDy

4 Application to ODE discovery

5 Conclusion
Regression Analysis in Interpretable Machine Learning

Definition

The relationship between a set of independent variables \(X \) (inputs) and a dependent variable \(Y \) (output):

\[
y = f^*(x, \theta^*) + \epsilon \quad \mathbb{R}^d \rightarrow \mathbb{R}
\]

Main Objective (in most regression problems)

Achieving a **good fit** between inputs and output, regardless of the form the mapping function assumes!

But! At times, we desire to represent \(f^* \) with a mathematical expression, ideally a “simple” one to enhance interpretability.
At times, f^* is straightforward to determine due to its pre-specified model structure: e.g., linear, polynomial, etc. · · ·

However, sometimes the solution space is either unknown in advance or vast, leading to the need for “symbolic regression”.

Approaches to Function Discovery
Symbolic Regression (SR)

Main idea:

Inferring the best-fitting model (both structure and parameters) from a dataset in terms of both “accuracy” and “simplicity”
Symbolic Regression Methods

- Eureqa - Genetic Programming method family
- AI Feynman - Divide and Conquer method family
- Bayesian Symbolic Regression (BSR) - Markov Chain Monte Carlo method family
- Sparse Identification of Nonlinear Dynamics (SINDy)
1 Introduction

2 SINDy Approach

3 Nested SINDy

4 Application to ODE discovery

5 Conclusion
SINDy Method

\[f_\theta(x) = \sum_{j=1}^{M} \theta_j f_j(x) \quad \forall j, f_j \in \mathcal{F} \]

\(\mathcal{F} \): space of expressions, also called “function dictionary”.

\[\mathcal{F} = \{x^0, x^1, x^2, x^3, \ldots, \sin(x), \sin(x^2), \ldots, e^x\} \]

Central Assumption: Only a select few important \(f_i \) that govern the problem, implying:

\[f(x) \text{ is sparse in the space of expressions} \]

\[\Rightarrow \text{ for most } j: \theta_j = 0 \]
SINDy Model Optimization

Regression Component

$$\min_{\theta} \sum_{i=1}^{N} \| y_i - f_{\theta}(x_i) \|^2_2$$

Representational Sparsity Component

Lasso L^1 norm penalty (on the representation):

$$\lambda \sum_{j=1}^{M} |\theta_j| \quad \lambda \in [0, \infty]$$
Sparsity mechanism by L_1

$$L_1(w) = \frac{d(L_1(w))}{dw} = \text{sign}(w) = \left(\frac{w_1}{|w_1|}, \frac{w_2}{|w_2|}, \frac{w_3}{|w_3|}, \ldots, \frac{w_M}{|w_M|} \right)$$

Weight Update Rule:

$$w_1 \leftarrow w_1 - \alpha \frac{dL_1(w)}{dw}$$
Advantages of the SINDy Approach

- Straightforward implementation
- Compact solutions due to sparsity loss
- Simultaneous optimization of representation and form via gradient descent
- Strong generalization ability

Figure 1: Generalization ability in the SINDy method Sahoo, Lampert, and Martius 2018
Limitations

Known cases where the SINDy approach is expected to struggle:

- When the unknown function involves function composition.
- When the unknown function is a product of multiple functions.

Example:

damped harmonic oscillator:
$$\exp^{-\alpha t}(A \cos(\omega t + \phi) + B \sin(\omega t + \phi))$$
1 Introduction

2 SINDy Approach

3 Nested SINDy

4 Application to ODE discovery

5 Conclusion
Introduction to Nested SINDy

- SINDy models can be extended by increasing the number of layers.
- We can add various layers before and after the radial layer.

Figure 2: Base SINDy structure. Different layers can be added before and after the radial layer.
Justifications for Nested SINDy

The use of a nested structure has two main goals:

• **Expressivity**: Nested structures can capture complex function compositions.

• **Flexibility**: The number of blocks can be varied to adapt to different complexities.

However, the nested structure introduces new challenges:

• **Computational complexity**: The number of parameters increases with the number of blocks.

• **Learning**: The model is more likely to encounter local minima, as the presence of nonlinear functions across multiple layers complicates the optimization landscape.

We will present two models that extend SINDy to achieve greater representative potential.
First model: the **PR model** (Polynomial - Linear - Radial - Linear layers):

- A polynomial layer, that creates multiple monomials from the input.
- A linear layer that combines them into a polynomial for each nonlinear function.
Structure of the PR Block

- The PR block is designed to extend the capabilities of the SINDy model.
- It is represented (in 1D) by:

\[
f_\theta(x) = \sum_{j=1}^{l} c_j f_j \left(\sum_{i=1}^{d} \omega_{i,j} x^i + b_j \right) + B
\]

- The trainable parameters are \(\theta = \{c_j, \omega_{i,j}, b_j, B\} \).
- The \(f_j \) are functions from the dictionary \(\mathcal{F} \).
PR Block: Advantages and Challenges

- **Advantage: Expressivity** - The PR block can express a composition of polynomials and functions from the dictionary. This reduces the number of necessary functions in the dictionary.

- **Challenge: Local Minima** - Classical problem in symbolic regression. Introducing a new nonlinear layer increases the likelihood of encountering local minima.

- **Solutions:**
 - Adjust the Lasso coefficient during the simulation.
 - Add a Brownian motion on the weight gradients in the learning process, at each epoch.
 - Reduce the model’s parameter count (dictionary size, pruning, etc.).
 - Run several learning processes
Objective: Learn the function $f(x) = \cos(x^2)$ on the domain $[0, 3]$

- **SINDy Limitations**: Cannot learn $\cos(x^2)$ unless it is explicitly in the dictionary.
- **PR’s Strength**: Capable of learning compositions, such as x^2 with $\cos(x)$.

Learnt function (after training):

$$-0.985 \cos(1.0x^2 + 3.13)$$

Achieves close approximation to $\cos(x^2)$. Only 3 out of 29 parameters are non-zero.

Sparsity: ✓
Evolution of the Learnt Model over Epochs

Learned function at epoch 50

Learned function at epoch 100

Learned function at epoch 150

Learned function at epoch 250
The PRP Block

An advanced model: the **PRP model** (Polynomial - Linear - Radial - Linear - Polynomial - Linear layers).

The PRP block is an extension of the PR model where:

- After the radial layer, we introduce another polynomial layer.
- This additional polynomial layer combines the results of the radial layer into different polynomial combinations.

The PRP model offers significantly improved expressivity.
Advantages and Challenges of the PRP Block

- **Advantage: Enhanced Expressivity** - The PRP block can represent more complex functions. In particular, a product of dictionary functions can now be expressed.

- **Challenge: Finding True Formula** - While the expressivity is high, the true formula is rarely identified.

- **Performance** - Even when the true formula is not identified, the PRP model typically demonstrate low Mean Squared Error (MSE).
Objective: Learn the function \(f(X) = 2\sin(x_0)\cos(x_1) \) on the domain \([-2, 2]^2\)

- **Impossible with SINDy** - With a 2-dimensional input, SINDy cannot express the required \(x_0 \) and \(x_1 \) combination.

- **Product of Dictionary Functions** - PRP can theoretically express a product of two functions.

Learnt Function:

\[
-0.77 \left(1 - 0.612\sin(0.032x_0^2 - 0.162x_0x_1 + 0.998x_0 + 0.035x_1^2 - x_1 - 0.14) \right)^2 \\
+ 2.01 \left(\cos(0.039x_0x_1 - 0.499x_0 - 0.497x_1 + 0.809) \right)^2
\]

Sparsity: 14 non-zero coefficients from the original 32 parameters.

Not the exact function, but a close approximation over the domain.
Objective: Learn the function \(f(x) = 2 \sin(x_0) \cos(x_1) \)

Figure 4: True Function

Figure 5: Model Prediction
Conclusion on the PRP Block

The PRP block:

- offers a promising approach for capturing complex function compositions
- balances between accurate function discovery and error minimization: it rarely captures the true formula
- can lead to sparser representations than classical regression approaches

Future work could focus on strategies to control the balance between sparsity and accuracy.
Conclusion on Nested SINDy

Strengths:
- Excels at capturing polynomial behaviors.
- Effectively captures functions of the dictionary.

Challenges:
- More complex learning landscape.
- Less guarantee of retrieving the true formula.
- In practice, adding one composition with polynomials does not prevent a proper learning (while greatly improving the expressivity).

In the next section, we will explore the application of Nested SINDy in ODE discovery.
Introduction

SINDy Approach

Nested SINDy

Application to ODE discovery

Conclusion References
Neural NestedSINDy for modeling dynamical systems

Introduced by Lee, Trask, and Stinis 2021 for Neural SINDy

Data:

Aim: Discover the unknown ODE $x'(t) = f(x(t))$ (i.e. recover f), from observed trajectories of this system.

How: By approaching the observed dynamics by the following dynamical system:

$$x'_\Theta(t) = f_\Theta(x(t))$$

where f_Θ is a NestedSINDy NN, parameterized by Θ.
Neural Nested SINDy

Loss function:

\[L(\Theta) = \frac{1}{n_{\text{traj}}} \sum^{n_{\text{traj}}}_{l=1} \sum^{N_t}_{i=1} \left\| x_{\Theta}^{(l)}(t_i) - x_{\text{data}}^{(l)}(t_i) \right\|_2^2 + \lambda_{\text{lasso}} \| \Theta \|_1 \]

where \(x_{\Theta}^{(l)}(t_i) \) \(i \geq 1 \) = ODEsolver \(x_{\text{data}}^{(l)}(t_0), f_{\theta} \) (Euler, RK2, dopri5,...)
Lee, Trask, and Stinis 2021

Algorithm 1: Neural SINDy training

1. Initialize Θ
2. for ($i = 0; i < n_{\text{max}}; i = i + 1$) do
3. Sample n_{batch} trajectories randomly from D_{train}
4. Sample initial points randomly from the sampled trajectories: $x^r_s(r), s(r) \in [0, \ldots, m - \ell_{\text{batch}} - 1]\$
5. for $r = 1, \ldots, n_{\text{batch}}$
6. $\tilde{x}(t_1), \ldots, \tilde{x}(t_m) = \text{ODESolve}(x^r_s(r), f_\Theta, t_1, \ldots, t_m),$
7. Compute the loss L (Eq. (1))
8. Update Θ via SGD
9. Prune Θ based on the magnitude (Eq. (3))
10. end

Batch:

Clément Flint, Louis Fostier, Reyhaneh Hashemi

Nested Neural SINDy Approach

CEMRECS 2023
First experiments

We performed some experiments, with "convenient" data, i.e. with dense, noise-free, data, for many trajectories, and with uniform time discretization along trajectories (however, the method is expected to be robust, as for the nSINDy presented in Lee, Trask, and Stinis 2021)

We tried to recover the dynamic of the following dynamic systems:

- An "easy" ODE (no composition) \(x' = \sin(x) \)
- A "not so easy" ODE (composition) \(x' = \sin(x^2) \)
\[x' = \sin(x) \]

Data: 200 trajectories, 1000 sample points per trajectory

Results: Formula found without pruning:
\[-0.001x^2 + 0.005x + 0.991\sin(1.000x - 0.002) + 0.004\]
(see animation)

Neural network: PR

"Output space":
\[f_\Theta(x) = \sin(P_1(x)) + P_2(x), \]
\(P_1 \) of degree 2, \(P_2 \) of degree 4
$x' = \sin(x^2)$

Data: 100 trajectories, 1000 sample points per trajectory

We do not recover $\sin(x^2)$, but the dynamics is well approximated for initial data in $[0, \sqrt{\pi}]$. $f_\Theta(x) = -0.393x^2 + 0.291x + 1.19\sin(-0.983x^2 + 0.942x + 1.36) + 1.04\arctan(0.836x^2 + 0.304x - 0.935) - 0.406$
1 Introduction

2 SINDy Approach

3 Nested SINDy

4 Application to ODE discovery

5 Conclusion
Conclusion

• Showcased the capabilities of Nested Neural SINDy for equation discovery.

• Future directions:
 • Refinement of hyperparameters such as learning rate, optimizer, and Lasso coefficient.
 • Exploration of SINDY-specific parameters:
 • Selection from a set of functions.
 • Decision-making on the choice of specific models.
 • Potential integration with predictive models for better parameter tuning.
Perspectives - numerical diffusion

Scalar conservation laws:

\[\partial_t u + \partial_x f(u) = 0 \]

Finite volume scheme: \[u_{i}^{n+1} = u_{i}^{n} - \frac{\Delta t}{\Delta x} \left(F_{i+\frac{1}{2}}^{n} - F_{i-\frac{1}{2}}^{n} \right) \]

with \(F_{i+\frac{1}{2}} = \frac{f(u_{i})+f(u_{i+1})}{2} - D(u_{i}^{n}, u_{i+1}^{n}) \), \(D \) numerical diffusion
Perspectives - numerical diffusion

Scalar conservation laws:

$$\partial_t u + \partial_x f(u) = 0$$

Finite volume scheme: $u_i^{n+1} = u_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+\frac{1}{2}}^n - F_{i-\frac{1}{2}}^n \right)$

with $F_{i+\frac{1}{2}} = \frac{f(u_i) + f(u_{i+1})}{2} - D(u_i^n, u_{i+1}^n)$, D numerical diffusion

Example for the Upwind scheme with $f(u) = cu$:

$D(u_i^n, u_{i+1}^n) = \frac{c}{2} (u_{i+1}^n - u_i^n)$

The upwind scheme discretization is also the discretization of the following convection-diffusion equation:

$$\partial_t u + \partial_x (cu) - \frac{c \Delta x}{2} \partial_{xx} u = 0$$
Perspectives - numerical diffusion

Goal: Find an interpretable diffusion term D that minimizes the error of the scheme, i.e. $\sum_{n=1}^{N} \| (u^n_i)_i - (u(t_n, x_i)_i \|
Thank You