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Data-Driven Reduced Order
Modelling



Motivation: Parametric PDEs and Solution Manifolds

= multi-query contexts (optimisation, inverse problems, control, ...) require the repeated
solution of parametric PDEs.

= parametrised PDE problem for u € Vand p € P

Flu(p);p) =0

= numerical algorithms seek approximate solutions u;, ~ u in finite-dimensional spaces
Vh, ~ V.

RQN

= without model reduction the space Vj = must be very large!

= Reduced Order Modelling (ROM) aims at alleviating this cost by using machine learning
(ML) techniques.
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Snapshot Matrix

= Construct a snapshot matrix M = [u(ty), u(t1),. .., u(ts)].
= each column @(t;) of Mis a vector € V.

= ) are the data from which the reduced basis is constructed.

i (to) 1 w(tr) P (ty)
U(to) | w2(tr) | ()
@2;\;('750) : AL2N.('t1) : : ﬂQ[\f'('tf)

= Goal: Reduce dimension from 2N to 2n (n < N) with mappings P and R.
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Offline and Online Phase

= Offline phase: construct mappings P and R in a data-driven way (ML).

= |n the online phase the smaller system is solved. This also requires machine learning

techniques!

= All maps should be symplectic! The goal of the project was to do it for NN
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Hamiltonian Systems



Hamiltonian Systems and Symplectic Maps

= Canonical Hamiltonian systems (Hamiltonian ODE):

OH OH
q= o D= “ 90 y=U05,VH(2), 2= (¢p) € M=R?", He C°(R™)

with Jq,, being the canonical symplectic matrix (anti-symmetric, non-degenerate):

®n ﬂn _
Jan = (-nn @n> BT

= Linear Symplectic Mappings (A € R?"*2n);
ATJon A = D,
= Nonlinear Symplectic Mappings:

P (R, Jay) — (R?™, Jy,)  such that (V1)) Tdan(V.00) = Jap.

6/32



Symplectic Maps

= the flow ¢y of a Hamiltonian system is a symplectic map in phase space

(P, q") = ou(ti, t0)(»°, )
a linear map A4 : R?® — R2" is called symplectic if ATJs,A4 = Joy,
a nonlinear map ¢ : R?" — R?" is called symplectic if (D¢)?Js,(D¢p) = Jay,

The flow of a Hamiltonian ODE is symplectic = consequences: preservation of
phasespace area as well as higher Poincaré integral invariants

; ;
. : : AW
symplecticity dramatically restricts the w

number of possible mappings! >
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Gromov’s Non-Squeezing Theorem

Theorem
A symplectic transformation cannot map a ball B(R) = {z € R?": ||2|| < R} into a cylinder

Z(r)={2z€R?™: 27 + 8 <} ifr< R.
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Symplecticity is a strong property that dramatically resricts the number of possible
maps!

phase space-preserving

all maps
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Parameter Dependence and Symplecticity

Enforce\Symplecticity

Attention Layer

Transformer

Enforce\Symplecticity

Attention Layer

Symplectic Transformer]
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PSD and Symplectic Autoencoders

= Hamiltonian PDE = high-dimensional Hamiltonian ODE = low-dimensional
Hamiltonian ODE = high-dimensional Hamiltonian ODE.

= There is a symplectic version of POD: PSD!.

= Symplectic Autoencoders?

ILigian Peng and Kamran Mohseni. “Symplectic model reduction of Hamiltonian systems”. In: SIAM Journal
on Scientific Computing 38.1 (2016), A1-A27.

2GeometricMachineLearning .j1
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SympNets




SympNets I3

= SympNets can approximate arbitrary canonical symplectic maps

= Each layer of a SympNet only transforms ¢ or p with a map that depends exclusively on

the other variable. This preserves the symplectic structure.

Input Output
I o— I — I I
P | D1 D2 A Pn
K T, . T,
q ™ q1 q2 qn
I — I — I I

Figure 1: Schematic diagram of a SympNet, image taken from Jin et al. [3].

3Pengzhan Jin et al. “SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian
systems”. In: Neural Networks 132 (2020), pp. 166-179.

12/32



Universal Approximators

= Feedforward neural networks are universal approximators!*

= Sympnets are universal approximators in the set of canonical symplectic maps!®

Y € Symp(R*) = ¢ : (RN, Jyny) — (RN, Jon) & (Va10) Tdan(V.10) = Jan.

4Kurt Hornik, Maxwell Stinchombe, and Halbert White. “Multilayer feedforward networks are universal
approximators”. In: Neural networks 2.5 (1989), pp. 359-366.
5Pengzhan Jin et al. “SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian

systems”. In: Neural Networks 132 (2020), pp. 166-179.
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SympNets Il

= Gradient-type Layers

AN q+KTdiag(a)0(Kp+b)7 a) ., o
p p P p+ K'diag(a)o(Kq+ b)

where K is an M x n matrix, b and a are vectors of size M. M can be chosen arbitrarily.

= The collection of all possible combinations of these layers is referred to as G-SympNets
Ve

W is r-uniformly dense on compacta in SP"(U), where U C R%V.

This means that for every f€ SP"(U), K C U compact and € > 0, 3¢ € ¥ such that
If = ¥llrk < ewith [[fllnx = 324 <, maXi<i< v SUP,e g [ D fi(2)].
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Transformers




Sequential data

= Sequential input data:

[ i ¢t i i ¢" ]
qél) [ qf) [ [ qu)
| | |
cee e e
1, (2, . (1)
an qn qn
P(M)[u:u+T—1] = ' @ b =: [Z(l), 2(2), RN Z(T)] =7
by : Y2 : : Py
1 2 T
p;) [ pé> [ [ pé )
| | |
cee e e
_p53)1p53>] }p<nT>_

= Sympnets (and the majority of other neural networks) cannot process sequential data!
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Transformers

= Composition of ResNets? and attention® layers.

= (Multihead) Attention enables processing time-series

data. Output
= Reweights input vectors based on a learned correlation {
matrix: Z+— ZTAZ. > Add
= Attention : Z+— ZA(Z), where Feed
A(Z) = softmax(ZTAZ).
= The softmax is applied column-wise and returns Lx
probability vectors as output: > Add
[softmax( €)= e/ (4, e1). ﬁ
= softmax(C) =: Y= [y, ¢y ... 4D] and \ )

T 1) (¢ T T) (i
0, ATY = (S A, ).

Az 2+ o(Az+ b)
bThe “Add” connection is optional.

Input
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Attention Layer

Transformers perform a reweighting of the input based on a learned correlation matrix
A(Z) so that sequential data can be processed!

= Correlation matrix (with learned A): C'= ZTAZ.
= Probability vectors: softmax(C) =: Y= [y(1), ¢ ... D]
» Reweighting of input: [), ... A0y =[S0 V200 ST 000,

The last step constitutes a convex combination of the input vectors.
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Structure-Preserving
Transformers




Structure-Preservi nsformer

= ResNet — SympNet.
= Symplecticity for Z= [2),..., D] € R?" x --- x R*". = Symplecticity for multistep
method.
= Feng Kang suggests to study the symplecticity for multistep method:

k k
Z AjYn+j = hz bjf(yn+j)
=0 =0

via its underlying one-step method, i.e. step-transition operator.®
= The scaled dot-product is not a standard map for input sequence.

= Nonlinear activation function,i.e., softmax, can not preserve the sympleciticity.

"Symplectifying” the attention layer = difficult !!!

6Kang Feng. “The step-transition operators for multi-step methods of ODE's". In: Journal of Computational

Mathematics (1998).
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Structure-Preserving Transformer

£
2
I
O |
= Modifying the input sequence format qél) | qg) | | q(QT) ql(l)
| | | 2
O o e
Q N R ¢ T
= Denote the input as Z = 2 @' @ Loy | qu, )
Py P : Py : : Dy p(l)
1
Py P;> [ 22) [ \P(QT) !
| | | e
1 T p
L e ] (1)
%)
T
[ o |
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New Activation Function for the Attention Layer

= We replace the softmax activation function:

o(C) = Cayley(upper_triangular_asymmetrize(C))

Cij if i <j
= [upper_triangular_asymmetrize(C)|; = —cj; if i>j
0 else.

= Cayley(Y) = (Iz = V)(Ir + Y)~".

They Cayley transform maps skew-symmetric matrices to orthonormal matrices!
» A(2)=0(ZTAZ)
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The Attention Matrix

= Apply A(Z) to the big [ qgl) ]

vector Z! qu)
= A(Z) orthonormal — I
A(Z) symplectic, i.e. ql(l)

. . A(Z) o ... 0 4
N2)" Do N(2) = Japr, . 0 A2 -+ O
M2 Z:= _ gy

where we define a big O 0 A(2)
symplectic matrix 7
O  lur (1)

J o= n . p2
ot <_|]nT o )
"
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Architecture

Output
1

1. Softmax — Cayley activation.
2. Remove “add connection” after attention layer.

3. Feedforward — SympNet.

[ Attention

w/ Cayley Activation
£y
Input
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GeometricMach

ain(Dense - dim, tanh
MultiHeadAttention(transformer dim, num head
ResNet(t dim, h),
MultiHeadAttention(transformer dim, num head
dim, nh),
r_dim, sys dim, identit

initialp T U ckend model)

o = Optimizer

1_len
pullback
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Experiments




System of Coupled Harmonic Oscillators

2 2
R +k1 +/€2 —|—]<‘(T( )7((]1 qz)

H =
(qlaQQaphI)Q) le 2 92 )

with o(z) = 1/(1 4+ e ).

Changing k changes the shapes of the trajectories = test bed for Transformer!
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Trajectories for different values of £ and same initial conditions

o5 — ~ y N - k=40
90 A / / AN A \
B / \. / N\ \
a8 . y / ) \/ / - . \
2 s0 7 100
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ResNet v SympNet |
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ResNet v SympNet Il
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SympNets don’t work here

SympNets give guaranteed long-time stability but cannot process data coming from different

parameters!
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Transformer v Structure-Preserving Transfromer |l
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Drawback(s) and Next Steps

= Parallelization of the activation function. The new architecture is slower than the
transformer by a factor of about 10! *

= Using the structure-preserving transformer in the online stage of a ROM model.

= [nvestigating paths to making it truly symplectic or checking if the current architecture is
sufficient (perhabs it is “conjugate symplectic”®).

"Approx. 30min for training as opposed to 3min on GeForce RTX 4090.
8Robert | McLachlan and Christian Offen. “Backward error analysis for conjugate symplectic methods”. In:

arXiv preprint arXiv:2201.03911 (2022).
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