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1 Context

Two of the many trends in neural network research of the past few years have been (i) the “learning”
of dynamical systems, especially with recurrent neural networks such as LSTMs [9, 2, 10], and (ii) the
introduction of transformer neural networks for natural language processing (NLP) tasks [8]. Both of these
trends have created enormous amounts of traction, particularly the second one: transformer networks
now dominate the field of NLP.

The reasons for this are essentially two-fold: one is the simplicity and interpretability of the trans-
former architecture and the other one is its parallelizability for computation on GPUs. While vanilla
recurrent neural networks also lend themselves to almost straightforward interpretation, LSTMs (their
more succesful version) do not, as the network architecture involves many complex components. In
addition, all recursive neural networks are sequential by design, which makes optimization on a GPU
impractical.

Some efforts have already been made to include elements of the transformer architecture into neural
networks that are designed to learn dynamical systems [7, 1], but although showing some success, these
approches only utilize part of the transformer network. This negligence means that the success that
transformers have experienced in NLP has not been extended to dynamical systems.

2 Description and objectives

The original transformer paper [8] proposed a relatively simple neural network architecture that is easy
to train (allows for straightforward parallelization) and shows remarkable success when applied to NLP
tasks.

Even though the transformer contains many components (for example vanilla feedforward neural
networks), the two core components are a “positional encoding” and a “attention mechanism”; the
second component appears several times in the transformer. The positional encoding is a mapping that
takes a set of vectors ξ1, . . . , ξT (i.e. time-series data; in the original paper ξi represents the i-th word in
a sentence of length T ) and produces a new set of vectors ξ̃1, . . . , ξ̃T that “are aware” of their position in
the sentence/time series. For the original transformer paper this was done in the following way:

ξji 7→ ξ̃ji := ξji +

{
sin(i · 10−4j/e) if j is even

cos(i · 10−4(j−1)/e) if j is odd,
(1)

where e is the length of the vector ξi, i.e. the dimension of the “embedding space”. In mathematical
terms this positional encoding adds an element of the torus T⌊e/2⌋ to the input (⌊·⌋ is the floor or “rounding
down” operation). Even more concretely, the embedding corresponds to the solution of a system of ⌊e/2⌋
independent harmonic oscillators with frequencies 10−2j/e (for j ∈ {1, . . . , ⌊e/2⌋}); i ∈ {1, . . . , T} in the
above equation is the time step. The vastly different frequencies of the harmonic oscillators (very high
for low j and very low for high j) are meant to capture different features of the data.

The other core component is an “attention mechanism” whose inputs are sets of “queries” Q, “keys”
K and “values” V (in the original paper each row of these matrices represents a word in a sentence) and
performs a reweighting of V̂ := VWV based on Q̂ := QWQ and K̂ := KWK :

Attention(Q̂, K̂, V̂ ) = softmax

(
Q̂K̂T

√
e

)
V̂ . (2)

This realizes a position-dependent reweighting of the each row in V̂ (each row of V or V̂ represents a
word, previously called ξi); the matrices WQ, WK and WV are “projection matrices” that are learned
during training. For NLP tasks this reweighting step is crucial as it assigns higher value to words that
contain meaning and lesser value to words such as arcticles (“a”, “the”) that do not.
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The objective of this project is the adaptation of the transformer architecture, especially the two
crucial components (the positional encoding and the attention mechanism) to dynamical systems. A
point of interest will be investigating the role that the positional encoding plays for such systems; in
the case of the original transformer this adds a simple dynamical system to the input - this may be
superfluous if the input is already a dynamical system.

An effort should also be made towards making the network architecture “structure-preserving” (i.e.
such that the resulting integration scheme is symplectic). A possible way to do this is to design the
new networks in a similar way to SympNets [4], i.e. updating the q and p components of a canonical
Hamiltonian system separately.

3 Proposed methodology

The project can roughly be divided into four steps.
In the initial stage of the project some familiarity with the transformer architecture should be gained;

this may involve implementing the original transformer [8].
The next stage will be adjusting the attention mechanism (equation (2)) to dynamical systems: this

will perhaps require changing the activation function from a softmax to something different.
A third step will be investigating different choices of input embeddings to the original one (equation

(1)). As this is essentially an addition of the input by the solution of a simple dynamical system, it should
be possible to improve on this.

Lastly, efforts should be made to make the resulting network structure-preserving, i.e. symplectic, in
a similar way as was done for SympNets.

4 Software Requirements

The project will be implemented in Julia. Aspects of the Lux [6] and Flux [3] libraries will be used for
the machine learning part and the library GeometricIntegrators [5] will be used for generating training
data. The results will be integrated into the library GeometricMachineLearning.
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