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1. Context 

Nuclear fusion aims at producing on Earth the energy of the stars, by confining the 
fuel (called plasma). However, a fusion plasma is a complex system, characterised by 
instabilities developing on disparate spatio-temporal scales which, in nonlinear regimes, 
can lead to turbulent transport. It is well-known that turbulence can limit the performance 
of fusion devices. Therefore, understanding, predicting and controlling turbulence and the 
induced transport and losses of particles is of prime importance for nuclear fusion and 
represents an extremely challenging research activity for the ITER project.  In tokamak, 
plasmas are characterized by low collisionality regimes, so that conventional fluid models 
are questionable and kinetic descriptions are more appropriate. In such kinetic 
descriptions of plasmas, the six dimensional evolution equation for the distribution 
function -Vlasov or Fokker-Planck equations- is solved for each species, coupled to the 
self-consistent equations for the electromagnetic fields, namely Maxwell's equations. 
Fortunately, as far as turbulent fluctuations are concerned, they develop at much lower 
typical frequencies than the high frequency cyclotron motion. Therefore, this 6D problem 
(3D in space and 3D in velocity) can be reduced to a 5D (3D in space and 2D in velocity), 
known as the gyrokinetic model. But even with this dimensionality reduction, the 
development process leading to a 5D gyrokinetic code reveals extremely challenging and 
requires state-of-the-art high performance computing (HPC). There exist about a dozen of 
gyrokinetic codes in the world, five being European. 

The 5D GYSELA [1] (for GYrokinetic SEmi-LAgrangian) code is developed at IRFM/
CEA for 20 years through national and international collaborations with a strong interaction 
between physicists, mathematicians and computer scientists. The code is optimized up to 
500k cores and uses frequently from 16k to 64k cores for simulations which often run 
during several weeks. The annual time consumption on supercomputing facilities is 
currently of 150 million of core-hours. Because of the multi-scale physics at play and 
because of the duration of discharges, we already know that ITER core-edge simulations 
will require exascale HPC capabilities. The GYSELA code produces very large amounts of 
data. A typical 5D mesh contains several hundreds of billions of points, which leads to 5D 
distribution functions of the order of 2 TB to be followed at each time iteration. Given 
10,000 to 100,000 iterations for each simulation, it is not conceivable to store the time 
evolution of the distribution functions. In the end, out of the Petabytes of data 
manipulated during a GYSELA simulation, only a few Terabytes are saved due to storage 
capacity limits. This data reduction is based on saving at fixed time steps a number of 
mainly 3D fluid quantities.  Knowing that there is a growing gap between CPU performance 
and I/O bandwidth on large-scale systems, this post-hoc approach is already very 
constraining and will become even more so. 

 In this framework, the use of Artificial intelligence (AI) techniques might provide to 
optimize the storage of information. Specifically, Physics Informed Neural Networks (PINN) 
[2] techniques could be good candidates for reducing the amount of information stored. 
Indeed, in recent years, physics-based learning has been proposed in many areas of 
scientific computing due to its ability to easily integrate data-driven methods and domain-
specific theoretical knowledge, allowing for the training of better performing neural 
network models that conform to physical laws, even in the face of data scarcity.  



2. Description and objectives 
The first tests on simplified 2D Vlasov-Poisson problems are encouraging [3] but 
show that there are still many obstacles to overcome in order to apply to 
gyrokinetic equation systems. The objective of this project is to test PINN methods 
on more complex problems, both in terms of higher dimensionality and more 
complex operators (including for example collision operators) keeping in mind the 
final objective of exploring the capabilities of PINN neural networks for gyrokinetic 
applications like the GYSELA code. 

3. Proposed methodology 
1. The first step will be to take in hand the PINN method on the 2D wave-particle 

problems (namely Landau damping and bump-on-tail instabilities) studied in [3]. 
The Python scripts developed for this purpose will be provided as starting point. 

2. Try to improve the PINN approach proposed in [3] which shows some limitations. 
A first idea will be to compare with the recent CAN-PINN approach [4] or 
variants.  

3. Apply the methods successfully tested in step 2 to a more complex Vlasov-
Poisson 2D problem used for kinetic simulations of the plasma sheath [5]. This 
implies to take into account a collision operator and steep temperature 
gradients for which non-equidistant meshes are required. 

4. If there is time left, PINN methods can be applied to higher dimensional 
problems such as 4D drift-kinetic problems [6]. 

4. Software requirements 
The required simulation database will be created with the Gyselalibxx tools 
https://github.com/gyselax/gyselalibxx/ developed in C++.  
Python (Keras, TensorFlow and the standard libraries for scientific computation). 
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