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1. Context  
This mini-project is a part of the ANR project Top-up (math.unice.fr/~brenner/top-up.html) 
and will be dealing with approximation of the nonlinear elliptic PDEs involving highly variable 
coefficients. More specifically we will be interested in replacing some of the components of 
the traditional scientific computing methods such as Ritz-Galerkin [6, 7] and Domain 
Decomposition methods [5] with models resulting from the training of the artificial neural 
networks. 

Multi-scale PDEs are relevant for multiple scientific and industrial applications. Here 
our major motivation stems from the modeling of floods in urbanized areas based on diffusive 
shallow water model [1], where the multi-scale character of the problem results from of the 
numerous structural features, such as building, walls, cars, etc., having strong hydraulic impact. 

The numerical challenges associated with the multi-scale PDEs arise from the contrast 
between the typical domain size and the scale at which the material properties are 
represented. As the result, when discretized with Finite Elements (FE), they lead to very large 
systems of algebraic equations. Efficient linear solvers for such systems can be constructed, 
for example, within the framework of the two-level Domain Decomposition (DD) methods, 
which follows the divide and conquer paradigm based on the partitioning of the spatial 
domain. Then, the fine-scale FEM approximation is recovered iteratively, using the solution of 
the local problems together with the so-called coarse correction based on a low-dimensional 
approximation space. For multi-scale problems the performance of two-level DD methods is 
strongly impacted by the quality of the coarse approximation space; moreover, if the coarse 
space is rich enough it can be used to define a standalone approximation method. The latter 
approach leads to the family of multi-scale approximation methods such as, for example, the 
MsFEM [4]. 

Both Ms and DD methods are well established for linear problems and some viable 
strategies for the extension to the nonlinear PDEs are known. However, certain features of 
those methods appear inherently linearity based. In particular, traditional MsFEM and, in some 
extend, DD methods relies on the reuse of the computations. For example, the stiffness matrix 
of the MsFEM method (as well as its basis) can be computed only once, while being reused for 
multiple right-hand-sides, or within an iterative multigrid-like algorithm. Similarly, the iterative 
substructuring DD methods could benefit from the precomputed LU decomposition of the local 
matrices. Unfortunately, those reuse strategy do not extend naturally to the nonlinear 
problems and some further model reduction must be mobilized in order to accelerate the 
evaluation of the local Dirichlet-to-Neumann (DtN) operators [3, 2]. 

 
 
 



2. Description and objectives  
In this mini-project we propose to revisit the traditional MsFEM with machine learning tools. 
We aim to extend it to the nonlinear problems by means of learning the local nonlinear 
Dirichlet-to-Neumann maps. The training will be performed based on the local FE 
computations. The resulting learning based multi-scale method is going to be tested on some 
nonlinear models PDEs using heterogeneous domains based on realistic urban geometries. The 
set of the nonlinear model problem would typically include the nonlinear advection diffusion 
equation and the p-Laplace problem, for which Python FE implementation will be provided.  

 
3. Proposed methodology 

Following the methodology of the linear MsFEM we propose to construct a low-dimensional 
approximations of the nonlinear PDEs using the neural network (NN) approximation of the 
local DtN operators that are going to be learned during the training stage. Unlike the MsFEM 
we will not compute the multi-scale basis, instead, based on FEM-generated data, the NN will 
be trained to replicate the action of the local nonlinear DtN maps on some coarse subset of 
the trace space. Once the training is completed the surrogate DtN operators will be used to 
form the global coarse problem based on Ritz or Petrov-Galerkin formulation. The latter is 
nonlinear problem is going to be solved by quasi-Newton method.  
 

4. Software requirements 
To generate the training sets the mini-project will rely on the prototype FEM software (in 
Python) that implements model nonlinear PDEs as well as the infrastructure for MsFEM and 
DD methods. The neural networks will be implemented in TensorFlow. 

 
5. References 

 
[1] Alonso, R., Santillana, M., & Dawson, C. (2008). On the diffusive wave approximation of 
the shallow water equations. European Journal of Applied Mathematics, 19(5), 575-606. 
 
[2] Chaturantabut, S., & Sorensen, D. C. (2010). Nonlinear model reduction via discrete 
empirical interpolation. SIAM Journal on Scientific Computing, 32(5), 2737-2764. 

 
[3] Efendiev, Y., Galvis, J., & Hou, T. Y. (2013). Generalized multiscale finite element methods 
(GMsFEM). Journal of computational physics, 251, 116-135. 
 
[4] Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite 
materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997) 

 
[5] Li, W., Xiang, X., & Xu, Y. (2020, August). Deep domain decomposition method: Elliptic 
problems. In Mathematical and Scientific Machine Learning (pp. 269-286). PMLR. 
 
[6] Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial 
differential equations. Journal of computational physics, 375, 1339-1364. 

 
[7] Yu, B. (2018). The deep Ritz method: a deep learning-based numerical algorithm for 
solving variational problems. Communications in Mathematics and Statistics, 6(1), 1-12. 
 
 


